Dissertations / Theses on the topic 'Réseaux électriques intelligents – Fiabilité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Réseaux électriques intelligents – Fiabilité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ismail, Ziad. "Stratégies de défense optimales pour améliorer la sécurité et la résilience des Smart Grids." Electronic Thesis or Diss., Paris, ENST, 2016. http://www.theses.fr/2016ENST0026.
Full textThe evolution of the threat landscape has made the security risk management in the smart grid a challenging task. This thesis addresses this problem and proposes solutions based on non-cooperative game theory, attack graphs and Constrained Markov Decision Processes (CMDPs). In the first part of this thesis, using the framework of non-cooperative game theory, we define and solve models to optimize the deployment of defense resources in the smart grid. We find the optimal choice of security modes to enable on each equipment in the Advanced Metering Infrastructure (AMI) to protect the confidentiality of customers’ data. In addition, we present an analytical model for identifying and hardening the most critical communication equipment used in the power system. In order to improve the security of industrial control systems, the defense strategy needs to be both proactive by anticipating potential targets of adversaries, and reactive by adjusting the type and strength of the response to the threat level. In the second part of this thesis, we address this challenge by presenting a solution that computes the optimal security policy that guarantees that the defender’s objectives are satisfied. This policy is obtained by solving a CMDP built using information in an attack graph generated beforehand that represents the evolution of the attacker’s state in the system
Besançon, Mathieu. "Modèles biniveaux pour la réponse de la demande dans les réseaux électriques intelligents." Thesis, Centrale Lille Institut, 2020. http://www.theses.fr/2020CLIL0022.
Full textThis thesis focuses on bilevel optimization, some variants, and an application to optimal price-setting in smart power grids.Bilevel optimization problems are a special subclass of constrained mathematical optimization problems where another problem, the lower level is embedded in the constraints.We consider their application to the optimal pricing of a Time-and-Level-of-Use Demand Response program, allowing an electricity supplier to leverage the flexibility of users through an economic incentive.A generalized form of bilevel optimization is also proposed where the lower level may pick a solution that is not optimal as typically assumed but near-optimal, that is feasible and within a fixed tolerance from an optimal solution.Solving this variant of bilevel optimization requires anticipation of the deviation from optimality and a guarantee that a solution remains feasible even with this deviation
Amicarelli, Elvira. "Stratégies de gestion des réseaux électriques intelligents à fort taux de production renouvelable distribuée." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT056/document.
Full textIn 2007 with the renewable energy directive, the European Union established the development of a low-carbon economy. This directive aims to decrease greenhouse gas emissions by increasing the energy produced by renewable energy. Already today, the massive diffusion of renewable systems is tangible in the European electricity mix. However, in spite of their potential benefits, their large-scale integration leads to new technical and regulatory questions. Consequently, new management strategies need to be developed and applied in order to ensure a reliable and economical operation of the system. Microgrids are considered to be one of the most effective and flexible solutions able to meet these new needs.The main goals of this thesis are the conceptualization, development and implementation of different management strategies for microgrids. The algorithms developed aim to facilitate the massive integration of renewables and at the same time lead to an effective and economic operation of the systems. A new architecture of distribution grids based on cluster of microgrids was proposed. Each microgrid is composed of a number of renewable-based and conventional generation systems, storage systems and consumption. An optimal and distributed energy management strategy was then defined and developed. This strategy allows to manage the short-term energy management and real-time control of microgrids by using the connected sources in a smart and cost-efficient way. A multi-agent system and the mixed integer linear optimization technique were used for the implementation of this strategy.From a global point of view, each microgrid is seen as a coherent entity, which can support network operation by using its flexible and aggregated sources. Hence, the second part of this thesis aims to understand how distribution grids can exploit these cluster of microgrids and their properties. Different mechanisms for the active management of distribution grids are conceptualized from the technical and economical point of view. A new strategy based on hierarchical management of different smart levels allow to reduce the complexity of the system and to implement a more flexible and extensible system, thanks to a more local use of model knowledge and users behaviour. On the end, the theoretical work were tested on an experimental test-bed in order to show the effectiveness of the proposed theories
Theologou, Olympia. "Contribution à l'évaluation de la fiabilité des réseaux." Compiègne, 1990. http://www.theses.fr/1990COMPD271.
Full textSidqi, Yousra. "Analyse et planification fractales des réseaux électriques du futur." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT089.
Full textUrban infrastructure analysis has shifted recently from the original considerations about housing and urban segregation to a more systemic view of new facilities and utilities taking into consideration urban metabolism and vulnerabilities, smart cities, communication networks and urban networks (water, roads,..). Complex relationships between the urban structure and daily mobility were investigated and scrutinized in the literature.Power systems are a key infrastructure of smart cities. They are supposed to become in the future more and more scaling because they are made of recursive assembly of active devices, smart buildings, micro-grids, district grids…Studying the relationships of the power grid with related networks within this urban structure is getting more attention as part of planning more sustainable, energy efficient future cities.Classical approaches used to investigate power systems are mono-scale; hence they do not allow to comprehend complex systems with structural elements often belonging to different scales. Understanding this complexity helps design flexible and resilient architectures for the optimization of smart grids operations. This is a major challenge to increase efficiency and to avoid or better manage random breakdowns.Moreover, at an urban level, power networks provide energy access to buildings. Their spatial development should thus be correlated to built-up patterns. We may as well expect that power networks go through existing corridors, which means here the street networks. Therefore, it seems interesting to explore to what extent the current power grid fits the existing built-up spaces and road network. This will lead to a better perception of how the current power grid spatial coverage is with regard to the road network. These results would ultimately be used to propose a reconfiguration of the existing urban structures but and also a new architecture for future planning of urban districts.Traditional models such as complex networks theory, stochastic geometry or random graph do not consider geometrical, functional and dynamical aspects of a city and its associated networks at the same time. Hence, we carry out a fractal-based approach to analyze the properties of power systems and understand their organization across scales. To show the usefulness of our approach, results are shown for Grenoble’s Medium Voltage network but also on the LV network of the Franche-Comté region. We will focus on the structural concordance between the power grid, the road network and the buildings.Fractal geometry has been widely and rather successfully used for over twenty years in disciplines like meteorology, biology, physics, thermodynamics, art, history, philosophy of seismology but also in geography. While considering urban fabrics, fractal analysis turned out to be a powerful instrument for exploring their spatial organization. Public transportation networks were considered as well and showed a connection between both built-up spaces and street networks.The fractal approach is geometrical, which makes it possible to study spatial phenomena either by using reference models or morphometric fractal measurements. By using fractal measurements, we can verify the existence of hierarchical scaling laws in spatial distributions. Being able to study a phenomenon throughout different scales provides the possibility of discovering thresholds or breaks within spatial organization.Urban fabrics and related networks are usually not issued from any coherent planning process and show no obvious specific organization. However, they are deeply multiscale, reaching the metropolitan scale to that of buildings. Hence, using fractals seems to be an interesting way to characterize these forms and unravel the complexity of underlying layers, which is a step further than classical Euclidian approaches
Roche, Robin. "Algorithmes et architectures multi-agents pour la gestion de l'énergie dans les réseaux électriques intelligents." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2012. http://tel.archives-ouvertes.fr/tel-00864268.
Full textFouathia, Ouahab. "Stratégie de maintenance centrée sur la fiabilité dans les réseaux électriques de haute tension." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211003.
Full textCette thèse rentre dans le cadre d’un projet de recherche lancé par ELIA, et dénommé COMPRIMa (Cost-Optimization Models for the Planning of the Renewal, Inspection, and Maintenance of Belgian power system facilities). Ce projet vise à développer une méthodologie qui permet de modéliser une partie du réseau électrique de transport (par les réseaux de Petri stochastiques) et de simuler son comportement dynamique sur un horizon donné (simulation de Monte Carlo). L’évaluation des indices de fiabilité permet de comparer les différents scénarios qui tentent d’améliorer les performances de l’installation. L’approche proposée est basée sur la stratégie RCM (Reliability-Centered Maintenance).
La méthodologie développée dans cette thèse permet une modélisation plus réaliste du réseau qui tient compte, entre autres, des aspects suivants :
- La corrélation quantitative entre le processus de maintenance et le processus de vieillissement des composants (par un modèle d’âge virtuel) ;
- Les dépendances liées à l’aspect multi-composant du système, qui tient compte des modes de défaillance spécifiques des systèmes de protection ;
- L’aspect économique lié à la stratégie de maintenance (inspection, entretien, réparation, remplacement), aux coupures (programmées et forcées) et aux événements à risque (refus disjoncteur, perte d’un client, perte d’un jeu de barres, perte d’une sous-station, etc.).
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Kusnetsova, Elizaveta. "Microgrid agent-based modelling and optimization under uncertainty." Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS005S.
Full textThis thesis concerns the energy management of electricity microgrids. The scientific contribution follows two directions: (i) modelling individual intelligence in energy management under uncertainty and (ii) microgrid energy management integrating diverse actors with conflicting objectives. Agent-Based Modelling (ABM) is used to describe the dynamics of microgrid actors operating under limited access to information, and operational and environmental uncertainties. The approaches considered to model individual intelligence in this thesis, Reinforcement Learning and Robust Optimization, provide each agent with the capability of making decision, adapting to the stochastic environment and interacting with other agents. The modelling frameworks developed have been tested on urban microgrids integrating different energy consumers, sources of renewable energy and storage facilities, for optimal energy management in terms of reliability and economic indicators under operational and environmental uncertainty, and components failures
Perrot, Serge. "Prévision de la sureté de fonctionnement des systèmes : système-expert RAS." Châtenay-Malabry, Ecole centrale de Paris, 1985. http://www.theses.fr/1985ECAP0006.
Full textHadj, said Ahmed. "Intégration du stockage dans les méthodes de planification des réseaux électriques basse tension." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT004/document.
Full textThe opening up of energy markets and new uses have led to significant changes in distribution grids, in particular low-voltage grids. Notably, it has led to an augmentation in the integration of renewable energy production, an increase in the peak consumption, among others. This is accompanied by the appearance of the electrical constraints with which power systems must cope. This has resulted in the development multiple flexibility capabilities such as load/source management or energy storage, providing new solutions, now to be considered in planning methods. This thesis studies the issue of energy storage in the low-voltage grid planning. The first part of this thesis studies the impact of storage and photovoltaic production on variables involved in distribution grid planning. In the second part, a method for calculating the cost of losses is adapted to the presence of energy storage and/or PV production. Finally, advanced d operation algorithms are developed to illustrate the economic value of energy storage in LV distribution grid planning, compared to a more expensive conventional planning method
Zheng, Tian. "Analyse de Fiabilité et de performance d'un Système de Véhicules Intelligents." Phd thesis, Ecole Centrale de Lille, 2013. http://tel.archives-ouvertes.fr/tel-00866223.
Full textMontenegro, Martinez Davis. "Diakoptics basée en acteurs pour la simulation, la surveillance et la comande des réseaux intelligents." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT106/document.
Full textSimulation of power systems is an important tool for designing, developing and assessment of new grid architectures and controls within the smart grid concept for the last decades. This tool has evolved for answering the questions proposed by academic researchers and engineers in industry applications; providing different alternatives for covering several realistic scenarios. Nowadays, due to the recent advances in computing hardware, Digital Real-Time Simulation (DRTS) is used to design power systems, to support decisions made in automated Energy Management Systems (EMS) and to reduce the Time to Market of products, among other applications.Power system simulations can be classified in the following categories: (1) Analog simulation (2) off line simulation (3) Fully digital simulation (4) Fast simulation (5) Controller Hardware-In-the-Loop (CHIL) simulation and (6) Power Hardware-In-the-Loop (PHIL) simulation. The latest 3 are focused on Real-Time Hardware-In-the-Loop (RT-HIL) simulation. These categories cover issues related to Electromagnetic Transients (EMT), phasor simulation or mixed (phasor and EMT). As mentioned above, these advances are possible due to the evolution of computing architectures (hardware and software); however, for the particular case of power flow analysis of Distribution Systems (DS) there are still challenges to be solved.The current computing architectures are composed by several cores, leaving behind the paradigm of the sequential programing and leading the digital system developers to consider concepts such as parallelism, concurrency and asynchronous events. On the other hand, the methods for solving the dynamic power flow of distribution systems consider the system as a single block; thus they only use a single core for power flow analysis, regardless of the existence of multiple cores available for improving the simulation performance.Divided into phase and sequence frame methods, these methods have in common features such as considering a single sparse matrix for describing the DS and that they can solve a single frequency simultaneously. These features make of the mentioned methods non-suitable for multithread processing. As a consequence, current computer architectures are sub-used, affecting simulator's performance when handling large scale DS, changing DS topology and including advanced models, among others real life activities.To address these challenges this thesis proposes an approach called A-Diakoptics, which combines the power of Diakoptics and the Actor model; the aim is to make any conventional power flow analysis method suitable for multithread processing. As a result, the nature and complexity of the power system can be modeled without affecting the computing time, even if several parts of the power system operate at different base frequency as in the case of DC microgrids. Therefore, the dynamic load flow analysis of DS can be performed for covering different simulation needs such as off-line simulation, fast simulation, CHIL and PHIL. This method is an advanced strategy for simulating large-scale distribution systems in unbalanced conditions; covering the basic needs for the implementation of smart grid applications
Abdeslam, Saad. "Etude des effets thermiques, structuraux et mécaniques sur la fiabilité des interconnexions des circuits intégrés par simulation numérique." Lyon, INSA, 1993. http://www.theses.fr/1993ISAL0001.
Full textAs the complexity of integrated circuits and their size shrinking increase, the VLSI reliability become impacted by interconnections. The physical process leading to damage is electro migration or mass transport induces by direct current. Inhomogeneities in the microstructure, geometry, or thermal of flux lead to hillocks and void formation and increase of the electrical resistance. The lifetime measurments are performed under accelerated test conditions and it is necessary to be able to extrapolate the lifetime values down to standard device operating conditions. Simulations of interconnection failure, principal topic of our study, allow to separate structural and mechanical effects by balancing in each section of the conductor line the relevant mass flow with thickness variation. The thermal study give essential rules to respect during the analysis of electromigration data. The structural study minus fairly well the experimental scattering of lifetime data and allows us to attribute this dispersion to microstructure inhomogeneities. Finally, the mechanical study reproduces the beneficial effect of passivation layers. Passivation layers lead to an increase in the lifetime and a decrease in the time to failure standard deviation
Dahmani, Ouahid. "Modélisation, optimisation et analyse de fiabilité de topologies électriques AC de parcs éoliens offshore." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=f600bf1d-f958-4169-862b-896e31b48209.
Full textThe aim of this thesis is to design connection topologies of AC power systems which optimize the energy efficiency of offshore wind farms with different power levels, taking into account technical constraints such as power losses, reliability and also economical aspect. First, a mono- and multi-objective optimization platform based on genetic algorithm and Prim’s algorithm was developed and tested with several objective functions. The suggested new technique of coding the network topology into a binary string enables to take into account the three parts of the electrical grid of an offshore wind farm, namely the connection among the wind turbines of the MV grid side, the locations of the offshore electrical substations and the connection map of the HV transmission system. Then, a comprehensive study is carried out on the power system reliability issues using several methods. Different electrical arrangements are analyzed according to both investment cost and energy loss in order to evaluate the effectiveness and the optimal locations of the redundant paths on the network. Three real offshore wind farms are studied, including the “Banc de Guérande” park with a capacity of 480 MW. The results prove the performance of this optimization approach and its usefulness during the planning phase of a radial or meshed electrical network in an offshore wind farm
Codani, Paul. "Integration des véhicules électriques dans les réseaux électriques : Modèles d’affaire et contraintes techniques pour constructeurs automobiles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC073/document.
Full textElectric vehicles (EVs) penetration has been rapidly increasing during the last few years. If not managed properly, the charging process of EVs could jeopardize electric grid operations. On the other hand, Grid Integrated Vehicles (GIVs), i.e. vehicles whose charging and discharging patterns are smartly controlled, could turn into valuable assets for the electrical grids as distributed storage units.In this thesis, GIVs are studied from a technical, regulatory, and economics perspectives. First, the general framework for a smart grid integration of EVs is reviewed: application areas and benchmark scenarios are described, the main actors are listed, and the most important challenges are analyzed.Then, the emphasis is put on system wide services, and more particularly on frequency control mechanisms. The regulatory conditions enabling the participation of GIV fleets to this service are studied based on an intensive survey of existing transmission system operator rules. Several economics and technical simulations are performed for various market designs.Then, local grid services are investigated. A representative eco-district is modeled, considering various consumption units and distributed generation. A local energy management system is proposed; it is responsible for controlling the charging / discharging patterns of the GIVs which are located in the district in order to mitigate the overloading conditions of the eco-district transformer. Economic consequences are derived from this technical analysis.At last, some experimental results are presented. They show the behavior of two GIVs, including one with bidirectional capabilities. The experimental proof of concepts confirm the theoretical abilities of GIVs: they are very fast responding units (even considering the complete required IT architecture) and are able to follow grid signals very accurately
Leprêtre, Nicolas. "Les transformations de l’action publique au prisme des réseaux électriques intelligents. Le cas des expérimentations de smart communities au Japon." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN033/document.
Full textAs smart grids’ experiments and smart cities are spreading through the world, this doctoral thesis questions the reconfigurations that have been affecting public action about energy issues since the appearance of these technological innovations. Through an analysis of energy policy tools and case studies of the governance of four ‘smart communities’ demonstration projects in Japan, my goal is to understand how the State redefines its role and its process of interaction with local governments and private actors. My main contribution is to analyze the practice of experimentation as an emerging tool of local policies, in response to major transformation that affect energy policies. Based on a neo-institutionalist approach, I highlight that the introduction of smart grids is based on continuities in terms of policymaking process and cognitive frames, while the policy tools used to implement smart grids are characterized by a ‘gradual institutional change’. Through an analysis of the first ‘smart communities’ demonstration projects that have been implemented by the Ministry of Economy, Trade and Industry (METI) between 2010 and 2015 in Yokohama, Toyota, Kyōto Keihanna et Kitakyūshū, I study the influence of experimentations in the implementation of local energy policies and in the interactions between the State and local actors. My case studies show that proactive local actors took over experiment as a way of enhancing the exemplariness of their territory and “best practices”. From a strategic point of view, this approach aims at attracting public and private funding, but in an institutional perspective, it also reveals how the State positions itself in order to increase its control over territorialized energy policies by promoting experimentation projects according to its strategies. I use the notion of ‘meta-governor’ and ‘governing by distance’ as a way of describing the measures implemented by the METI and other ministries to give room for manoeuvre to local actors and to grant concessions that fits with their strategies, while controlling over this process in order to maintain the general structure of the grid
Chabaud, Aurélie. "Micro-réseau intelligent pour la gestion des ressources énergétiques." Perpignan, 2014. https://hal-univ-perp.archives-ouvertes.fr/tel-01260201.
Full textMelhem, Fady Y. "Méthodes d'optimisation et de gestion de l’énergie dans les réseaux intelligents "Smart Grids"." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCA014/document.
Full textThe current electricity grids will experience a profound change in the coming years. The new generation is the Smart Grid (SG) which is characterized by information and communication layer enabling the communication between the different components of the grid. It needs to consider all sides of power grid, making it more intelligent and flexible. This notion is presented as an answer to changes in the electricity market, aiming to manage the increased demand while ensuring a better quality of service and more safety.First, we present a mixed integer linear programming formulation to optimize the energy production and consumption systems in a smart home with an effective deployment of several distributed energy resources. Then through the design of experiments with the Taguchi method, diverse scenarios are introduced by varying significant factors. Afterward, a heuristic technique is proposed to solve the problem of residential energy management by finding the global optimum solution for many consecutive days with significant reduction of execution time.Second, an energy management model is proposed thanks to mathematical models to optimize the grid, renewable energy resources, battery and electric vehicles are presented as well as for different type of thermal and electrical appliances. An exact solution method is implemented to reduce the electricity cost in a smart home and find out operation modes of different loads. Then a math-heuristic optimization algorithm is proposed to solve the problem with extended simulation time horizon.Finally, we study a microgrid energy management problem which comprises multiple smart homes. Each of them owns renewable energy resources, one electric vehicle and smart appliances. The renewable energy resources inject the excess energy in the shared energy storage system. An optimized energy management model using mixed integer linear programming is proposed to reduce the total electricity cost in the microgrid. Comparisons with conventional scenarios where each smart home has its individual small energy storage system without sharing energy with their neighbors are done to ensure that the proposed formulation is well efficient
Warkozek, Ghaith. "Génération automatique de problèmes d'optimisation pour la conception et la gestion des réseaux électriques de bâtiments intelligents multi-sources multi-charges." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00625784.
Full textDad, Cherifa. "Méthodologie et algorithmes pour la distribution large échelle de co-simulations de systèmes complexes : application aux réseaux électriques intelligents (Smart Grids)." Electronic Thesis or Diss., CentraleSupélec, 2018. http://www.theses.fr/2018CSUP0004.
Full textThe emergence of Smart Grids is causing profound changes in the electricity distribution business. Indeed, these networks are seeing new uses (electric vehicles, air conditioning) and new decentralized producers (photovoltaic, wind), which make it more difficult to ensure a balance between electricity supply and demand, and imposes to introduce a form of distributed intelligence between their different components. Considering its complexity and the extent of its implementation, it is necessary to co-simulate it in order to validate its performances. In the RISEGrid institute, CentraleSupélec and EDF R&D have developed a co-simulation platform based on the FMI2 (Functional Mock-up Interface) standard called DACCOSIM, permitting to design and develop Smart Grids. The key components of this platform are represented as gray boxes called FMUs (Functional Mock-up Unit). In addition, simulators of the physical systems of Smart Grids can make backtracking when an inaccuracy is suspected in FMU computations, unlike discrete simulators (control units) that often can only advance in time. In order these different simulators collaborate, we designed a hybrid solution that takes into account the constraints of all the components, and precisely identifies the types of the events that system is facing. This study has led to a FMI standard change proposal. Moreover, it is difficult to rapidly design an efficient Smart Grid simulation, especially when the problem has a national or even a regional scale.To fill this gap,we have focused on the most computationally intensive part, which is the simulation of physical devices. We have therefore proposed methodologies, approaches and algorithms to quickly and efficiently distribute these different FMUs on distributed architectures. The implementation of these algorithms has already allowed simulating large-scale business cases on a multi-core PC cluster. The integration of these methods into DACCOSIM will enable EDF engineers to design « large scale Smart Grids » which will be more resistant to breakdowns
Grangereau, Maxime. "Contrôle optimal de flexibilités énergétiques en contexte incertain." Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAX010.
Full textIn this PhD dissertation, we use tools from stochastic optimal control, stochastic optimization and convex optimization to design mechanisms to control energy storage systems, to deal with the challenges created by the uncertain production of intermittent energy sources. First, we introduce a commitment mechanism where an individual consumer chooses a consumption profile, then controls its storage devices to track in real-time this profile. We formulate a Mean-Field Control problem to model this situation, for which we establish theoretic and numerical results. Second, we introduce a control problem for a large population of Thermostatically Controlled Loads (TCLs) subject to a common noise and providing ancillary services to the grid. We show that the centralized control problem can be replaced by a stochastic Stackelberg differential game with minimal information-sharing. This allows for a decentralized control scheme with performance guarantees, while preserving privacy of consumers and limiting telecommunication requirements. We then develop a Newton method for stochastic control problems. We show that the computation of the Newton step reduces to solving Backward Stochastic Differential Equations, then we design an appropriate line-search procedure and prove global convergence of the Newton method with line-search in an appropriate space. Its performance is illustrated on a problem of control of a large number of batteries providing services to the grid. Last, a multi-stage stochastic Alternating Current Optimal Power Flow problem is formulated in order to control a power network equipped with energy storage systems. A priori conditions ensuring a vanishing relaxation gap are derived and an easily computable a posteriori bound on the relaxation gap of the problem is given. Using Shapley-Folkman-type results, a priori bounds on the duality gap of non-convex multi-stage stochastic problems with a generic structure are derived
Ould, El Mehdi Souleiman. "Synthèse et identification des réseaux de Petri : application aux études de fiabilité et au diagnostic des défauts." Le Havre, 2009. http://www.theses.fr/2009LEHA0021.
Full textReliability analysis and fault diagnosis for dynamical systems are often based on timed stochastic Petri net models. A priori knowledge about fault and recovery processes is difficult to obtain and, as a consequence, the model structure and parameters are mainly unknown. In that case, synthesis and identification methods based on analysis of collected event sequences are of great interest. The contribution of our work concerns the synthesis and identification of timed stochastic Petri net models. Stochastic and deterministic-stochastic Petri nets with deterministic and exponentially distributed transition durations are considered. Systematic synthesis and identification methods are proposed according to event sequences that are recorded by supervision systems. A learning algorithm is proposed for the synthesis of the structure. The identification method is based on the idea that the dynamic behavior of the considered Petri net can be mapped into a Markov model with state space isomorphic to the reachability graph of the untimed PN model. Applications to the reliability analysis and fault detection and isolation are proposed
Diop, Fallilou. "Analyses probabilistes pour l'étude des réseaux électriques de distribution." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC055/document.
Full textThe current changes on the electrical system bring out economic and technical issues in the management of the latter. Among these issues, the impact of distributed generation and VEs on the technical constraints of the distribution network. The aim of this thesis is to study probabilistic models to estimate the impacts of photovoltaic production and electrical vehicles on medium and low voltage distribution networks. Two different probabilistic models of production and consumption were studied : one based on the fitting of historical data by one probability density function, the other one based on the data clustered in groups defined by a standard profile and a probability of occurrence. Three probabilistic load flow technics have been studied in this thesis. The first is based on the Monte Carlo simulation method, the second is based on the PEM approximation method and the last, based on the use of clustering, is called pseudo Monte Carlo method
Ngo, Hoang Giang. "De l'interconnexion à la coopération des systèmes pair-à-pair." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00937695.
Full textVelay, Maxime. "Méthodes d’optimisation distribuée pour l’exploitation sécurisée des réseaux électriques interconnectés." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT063/document.
Full textOur societies are more dependent on electricity than ever, thus any disturbance in the power transmission and delivery has major economic and social impact. The reliability and security of power systems are then crucial to keep, for power system operators, in addition to minimizing the system operating cost. Moreover, transmission systems are interconnected to decrease the cost of operation and improve the system security. One of the main challenges for transmission system operators is therefore to coordinate with interconnected power systems, which raises scalability, interoperability and privacy issues. Hence, this thesis is concerned with how TSOs can operate their networks in a decentralized way but coordinating their operation with other neighboring TSOs to find a cost-effective scheduling that is globally secure.The main focus of this thesis is the security of power systems, this is why the evolution of the main characteristics of the blackouts that are failures in power system security, of the period 2005-2016 is studied. The approach consists in determining what the major characteristics of the incidents of the past 10 years are, to identify what should be taken into account to mitigate the risk of incidents. The evolution have been studied and compared with the characteristics of the blackouts before 2005. The study focuses on the pre-conditions that led to those blackouts and on the cascades, and especially the role of the cascade speed. Some important features are extracted and later integrated in our work.An algorithm that solve the preventive Security Constrained Optimal Power Flow (SCOPF) problem in a fully distributed manner, is thus developed. The preventive SCOPF problem consists in adding constraints that ensure that, after the loss of any major device of the system, the new steady-state reached, as a result of the primary frequency control, does not violate any constraint. The developed algorithm uses a fine-grained decomposition and is implemented under the multi-agent system paradigm based on two categories of agents: devices and buses. The agents are coordinated with the Alternating Direction method of multipliers in conjunction with a consensus problem. This decomposition provides the autonomy and privacy to the different actors of the system and the fine-grained decomposition allows to take the most of the decomposition and provides a good scalability regarding the size of the problem. This algorithm also have the advantage of being robust to any disturbance of the system, including the separation of the system into regions.Then, to account for the uncertainty of production brought by wind farms forecast error, a two-step distributed approach is developed to solve the Chance-Constrained Optimal Power Flow problem, in a fully distributed manner. The wind farms forecast errors are modeled by independent Gaussian distributions and the mismatches with the initials are assumed to be compensated by the primary frequency response of generators. The first step of this algorithm aims at determining the sensitivity factors of the system, needed to formulate the problem. The results of this first step are inputs of the second step that is the CCOPF. An extension of this formulation provides more flexibility to the problem and consists in including the possibility to curtail the wind farms. This algorithm relies on the same fine-grained decomposition where the agents are again coordinated by the ADMM and a consensus problem. In conclusion, this two-step algorithm ensures the privacy and autonomy of the different system actors and it is de facto parallel and adapted to high performance platforms
Koeth, Felix. "Enquêtes sur les propriétés spectrales dans les systèmes électriques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT082.
Full textThis thesis investigates the fundamental properties of a simplified dynamical power system model. These models can be used to study the influence of the geometrical properties of the network describing the power system. These models and some important properties of the models are presented in chapter 1. One of the main challenges in power system research is the complexity of the system. We want to use spectral graph theory to decompose the system into different modes, which can be studied individually. The second chapter introduces the mathematical background of spectral graph theory and the applications to power systems. A simple example for the application of spectral graph theory in power system research is given in chapter 3, where the static power flow system is investigated. We can see that the eigenvalues and eigenvectors of the nodal admittance matrix of the power system can be used to calculate the phases and flows in a static system. The dynamical properties are then deeper investigated in the next chapter. Here, a quadratic eigenvalue problem has to be used to investigate the system. We introduce the fundamental properties of the quadratic eigenvalue problem and the application to power system research. An extensive investigation of the spectral properties of a dynamical power system using the quadratic eigenvalue problem is then performed. We observe short and long range interactions in the system and see that the short range interactions are more sensitive to the machine parameters and are important for the stability of the power system, as they are related to local plant modes. The emergence of this localised behaviour is investigated in chapter 5. We derive two eigenvector bounds which can be used to predict and describe localisation in a network. These bounds are then applied to simple example graphs and a power system test case, to show how they can successfully predict, explain and describe localisation
Alinia, Bahram. "Optimal resource allocation strategies for electric vehicles in smart grids." Thesis, Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0012/document.
Full textWith the increased environmental concerns related to carbon emission, and rapid drop in battery prices (e.g., 35% drop in 2017), the market share of Electric Vehicles (EVs) is rapidly growing. The growing number of EVs along with the unprecedented advances in battery capacity and technology results in drastic increase in the total energy demand of EVs. This large charging demand makes the EV charging scheduling problem challenging. The critical challenge is the need for online solution design since in practical scenario the scheduler has no information of future arrivals of EVs in a time-coupled underlying problem. This thesis studies online EV scheduling problem and provides three main contributions. First, we demonstrate that the classical problem of online scheduling of deadlinesensitive jobs with partial values is similar to the EV scheduling problem and study the extension to EV charging scheduling by taking into account the processing rate limit of jobs as an additional constraint to the original problem. The problem lies in the category of time-coupled online scheduling problems without availability of future information. Using competitive ratio, as a well-established performance metric, two online algorithms, both of which are shown to be (2 − 1/U)-competitive are proposed, where U is the maximum scarcity level, a parameter that indicates demand-to-supply ratio. Second, we formulate a social welfare maximization problem for EV charging scheduling with charging capacity constraint. We devise charging scheduling algorithms that not only work in online scenario, but also they address the following two key challenges: (i) to provide on-arrival commitment; respecting the capacity constraint may hinder fulfilling charging requirement of deadline-constrained EVs entirely. Therefore, committing a guaranteed charging amount upon arrival of each EV is highly required; (ii) to guarantee (group)-strategy-proofness as a salient feature to promote EVs to reveal their true type and do not collude with other EVs. Third, we tackle online scheduling of EVs in an adaptive charging network (ACN) with local and global peak constraints. Two alternatives in resource-limited scenarios are to maximize the social welfare by partially charging the EVs (fractional model) or selecting a subset of EVs and fully charge them (integral model). For the fractional model, both offline and online algorithms are devised. We prove that the offline algorithm is optimal. We prove the online algorithm achieves a competitive ratio of 2. The integral model, however, is more challenging since the underlying problem is NP-hard due to 0/1 selection criteria of EVs. Hence, efficient solution design is challenging even in offline setting. We devise a low-complexity primal-dual scheduling algorithm that achieves a bounded approximation ratio. Built upon the offline approximate algorithm, we propose an online algorithm and analyze its competitive ratio in special cases
Ben, Romdhane Lamia. "A Multi-Agent Architecture Framework for Energy Systems Design." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS141.
Full textIn recent years, multi-agent systems (MAS) have emerged as one of the most promising technologies for the design and development of intelligent energy systems, also known as Smart-Grid. However, the use of agent technology in systems engineering to model, control and simulate energy system’ behavior still faces many challenges: methodological; technical (generally related to MAS engineering); standardization and architectural exploration (specifically related to the Smart Grid domain). This thesis proposes an architectural framework in accordance with ISO 42010, containing all the conventions, principles and practices for the description of multi-agent architectures established in the field of Smart-Grids, as an adequate solution to solve the problems mentioned above. The architectural framework relies on Model Driven Engineering (MDE) to solve technical and methodological problems. This framework is supported by a methodology that adheres the use of agent and energy standards in the MAS analysis and design phases. The framework is based on a multi-agent architecture style evaluation approach to select the most appropriate style to meet non-functional requirements related to a specific application domain. In addition, a platform-independent agent modeling language was proposed to model MASs and analyze the developed models to verify their compliance with the selected MAS architecture style. The approach was prototyped in a Model Driven Engineering environment and evaluated on a representative application case from the Smarts-Grids domain
Mahdi, Khouloud. "Modèle d'exploitation de flux d'événements complexes (CEP) par des patrons spatiotemporels agrégés dans un contexte de réseau de distribution énergétique." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/29754.
Full textVincent, Rémy. "Energy management strategies applied to photovoltaic-based residential microgrids for flexibility services purposes." Thesis, Nantes, 2020. http://www.theses.fr/2020NANT4025.
Full textThe rising share of renewable sources, residential consumers as well as novel energy transition policies call for new energy management strategies to deal with renewable energy sources uncertainty issues and to provide cost-competitive flexibility services. This thesis focuses on flexibility related usecases applied to residential microgrids. Presented sizing approach uses both mono and multiobjective particle swarm optimization to optimize both solar generation and storage taking into account cost competitiveness, user comfort and renewable energy penetration while respecting local regulations. First energy management approach compares 24 and 48h time-horizons for energy arbitrage and assess extended possibilities provided by a wider horizon. Second energy arbitrage approach focuses on energy injection accuracy in a bid-based market context. A novel auto-regressive short term solar irradiation forecast method suitable for peninsular weather is proposed and compared with a reference method. Regarding the sizing optimization, results showed that proposed optimization can generate bill savings for households. Nevertheless, due to current storage cost, off-grid operation is still an unreliable option regarding cost-competitiveness. Both presented energy management strategies showed profitability gains compared to their respective reference. To conclude, strategies showed costcompetitive operation and ability to mitigate supply and demand imbalances. Association of renewable energy and microgrids abilities for communities is an excellent opportunity for cleaner, more reliable and cheaper energy
Correa, Florez Carlos Adrian. "Optimisation des flexibilités des « consommacteurs » dans le contexte des marchés d’électricité." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM011.
Full textThis thesis presents an optimization framework under uncertainty for the case in which an aggregator manages residential storage devices and renewable energy as sources of flexibility, participating directly in the day-ahead energy market and offering services to minimize operational costs. Residential flexibility assets are composed by batteries, electric water heaters and PV panels, which are optimally managed and controlled by an aggregator. The optimization model also considers battery’s cycling aging cost which allows capturing the non-linear relation between depth of discharge and total life cycling. The following sources of uncertainty are considered: electrical and thermal demand, PV production and energy prices. These uncertainties are included in the mathematical model by means of robust optimization theory and a methodology based on Pareto-optimality is proposed to detect the solutions with the best trade-off between cost and risk. In addition, this thesis presents a local flexibility management strategy, which is based on two products: 1) flexibility bids into a local market; and 2) local constraint support for the Distribution System Operator (DSO) in the form of maximum allowed net power and net ramping rate. An adjustable robust optimization model is proposed for coordinated management of resources and allows to demonstrate that the strategic bidding framework is robust enough to enable coordinated participation in three different marketplaces: energy, local flexibility and bilateral trading with the DSO
Sakr, Daniel. "Smart Grid deployment and use in a large-scale demonstrator of the Smart and Sustainable City (SunRise) : comprehensive analysis of the electrical consumption." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10088/document.
Full textThe Smart City and Smart Grids constitute a great opportunity to meet the environmental challenges and to build inclusive cities that focus on the quality of life of citizens. However, these concepts are complex and recent. Their implementation requires learning from large experimentations. This work concerns this issue. It is carried within the large-scale demonstrator of the Smart City (SunRise) which is conducted at the Scientific Campus of the University of Lille. It includes three parts:The first part focuses on literature review of researches and achievements in the field of the Smart City and Smart Grids. It presents the city challenges such as the population growth, energy consumption, greenhouse emission and climate change. Then it discusses the digital mutation and its potential role in transforming the City into a Smart City and the conventional Electrical Grid into a Smart Grid. The second part describes the Electrical Grid of the Scientific Campus. It presents the project SunRise, that consists in the construction of a demonstrator of smart urban networks at the Scientific Campus, which is equivalent of a town with around 25 000 inhabitants. Then, it presents the electrical system of the campus as well as its management.The last part concerns analysis of the electrical consumption of the campus. It presents the methodology developed for data analysis including (i) record of the electrical consumption and transmission to the server, (ii) Data transmission, (iii) Data cleaning, (iv) construction of buildings’ consumption profiles and consumption analysis. This methodology is applied for analysis of the global consumption of the campus and three buildings
Matta, Natalie. "Vers une gestion décentralisée des données des réseaux de capteurs dans le contexte des smart grids." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0010/document.
Full textThis thesis focuses on the decentralized management of data collected by wireless sensor networks which are deployed in a smart grid, i.e. the evolved new generation electricity network. It proposes a decentralized architecture based on multi-agent systems for both data and energy management in the smart grid. In particular, our works deal with data management of sensor networks which are deployed in the distribution electric subsystem of a smart grid. They aim at answering two key challenges: (1) detection and identification of failure and disturbances requiring swift reporting and appropriate reactions; (2) efficient management of the growing volume of data caused by the proliferation of sensors and other sensing entities such as smart meters. The management of this data can call upon several methods, including the aggregation of data packets on which we focus in this thesis. To this end, we propose to aggregate (PriBaCC) and/or to correlate (CoDA) the contents of these data packets in a decentralized manner. Data processing will thus be done faster, consequently leading to rapid and efficient decision-making concerning energy management. The validation of our contributions by means of simulation has shown that they meet the identified challenges. It has also put forward their enhancements with respect to other existing approaches, particularly in terms of reducing data volume as well as transmission delay of high priority data
Gouin, Victor. "Évaluation de l’impact du Smart Grid sur les pratiques de planification en cas d’insertion de production décentralisée et de charges flexibles." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT097/document.
Full textThe Smart Grids are the combination of electrical networks and new information and communication technologies. They deal with a change of paradigms that are the insertion of distributed generation and the development of new forms of consumption, such as electric vehicles and prosumers. These changes induce many constraints on networks both aging and historically not sized for this context. This thesis studies the impact of these paradigms on the rules for electrical distribution networks planning. A first tool using an adapted simulated annealing algorithm and methods from graph theory was developed to size the networks at low cost, according to the usual rules for planning. Secondly, a methodology combining a Monte Carlo approach and the construction of annual load profiles was proposed to analyze the impact of distributed generation and electric vehicles in an environment subject to uncertainties. The third stage of the work was to implement advanced distribution automations as an alternative to reinforcement, which is very expensive. This part is focused on demand side management. Finally, a new operational planning combining the previous developed tools was created to move towards the planning of the Smart Grids
Beaude, Olivier. "Modélisation et optimisation de l'interaction entre véhicules électriques et réseaux d'électricité : apport de la théorie des jeux." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS131/document.
Full textThis thesis studies the technical and economical interaction between electric vehicles and electrical networks. The recent development of electric mobility leads to the analysis of potential impacts of electric vehicle charging on the electrical networks, but also to the possible support that these particular electric consumers could provide in the future smart grids. In this direction, most of the results given in this thesis also apply to a washing machine, a water-heater, a TV, as soon as these equipments are capable of being smart! When the decisions of flexible electric consumers interact, the considered framework naturally offers a unique exercise area for the tools of game-theory. The interpretation is straightforward when the considered problem is strategic by definition, but these tools allow also shedding light on other aspects: algorithmic coordination, information exchange, etc. The description of the benefits of using game-theory in this context is the aim of this work. This is done according to three aspects. In these three directions, a particular attention is drawn to the case of rectangular charging profiles, which are very practical, but often ignored by the literature. First, algorithmic issues arise when coordinating the charging of electric vehicles in a same area of the electrical network. A charging algorithm is proposed and analyzed. This is done by studying an underlying auxiliary game. This game is proved to belong to the class of potential games under very general physical and economic assumptions. In turn, it inherits from the strong properties of this class of games, namely convergence and an efficiency result in the case of a large number of electric vehicles. Considering information exchange, a model is proposed to design a good communication scheme between an operator of the electrical system and an electric vehicle. Both agents have an interest in exchanging information to schedule optimally the charging profile of the electric vehicle but they do not share the same objective. This framework is closely related to Cheap-talk in game theory and to quantization in signal processing. Amongst others, this work explains interesting connections between both topics. Furthermore, a method, which is used offline, is given to obtain a good communication mechanism between both agents. Finally, game theory is used in its traditional form, studying the strategic interaction when groups of a large number of electric vehicles – seen as fleets – coexist with individual vehicles. This allows the application of the very recent concept of composite games. In the three parts of the work, simulations are conducted in a French realistic distribution network, which could be the first part of the electrical system severely impacted by a non-coordinated charging. This highlights the robustness of rectangular charging profiles against forecasting errors on the parameters of the models
Platis, Agapios. "Modélisation de la sûreté de fonctionnement par des chaînes de Markov non-homogènes : application à la modélisation de la fiabilité d'un poste électrique." Compiègne, 1997. http://www.theses.fr/1997COMP1076.
Full textBanjar, nahor Kevin. "Micro-réseau résilient à haute stabilité dynamique en présence d’une intégration massive des énergies renouvelables variables." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT093.
Full textThis thesis deals with the stability issues introduced by the interconnection of massive renewables into an isolated microgrid. This research aims to identify the problems related to the topic, the indices to help understand the issues, and the strategy to enhance microgrid stability from the power system point of view.In the first part, a state of the art on the evolution of power stability is addressed. A short history of power system stability since its first identification and how it has evolved is firstly presented. This part also provides a literature review of the power system stability, including its classification, and how it has evolved due to two reasons: the microgrid concept and the trend towards the integration of more inverter-based generation. A review of the practical indices for grid stability assessment is also reported, including the ones that we propose. This part is also useful for analyzing the positioning of this PhD research.The second part of thesis presents the efforts to enhance the dynamic stability of microgrids characterized by massive renewable penetration. The main challenges and the current efforts are reviewed, which have shown that the current solutions focus on maintaining the philosophy of a classical power grid. With the advent of more intermittent energy, the current efforts have proven to be costly. Therefore, a new perspective is proposed. Here, the generating elements and the customers are exposed with higher deviations in voltage and frequency, which are necessary so that that the power equilibrium and the stability of the microgrid can be maintained. This perspective is suitable with the microgrid concept to realize the dream of universal electricity.The concept is then developed into a novel regulation strategy in which the system frequency and voltage are maintained in such a way to keep their ratio essentially constant around 1 (p.u. voltage to p.u. frequency). This strategy can potentially be implemented on all grid forming technologies. The benefits of employing this strategy include assurance that the electrical machinery is not harmed, plug-and-play feature, compatibility with current grid-tied inverter technologies, and no need for fast communication systems. Finally, this proposed strategy is easy to implement and does not require revolution in terms of power system equipment and control. This implementation of this concept provides a very valuable piece of flexibility: time, which enhances the resilience and stability of a microgrid. However, wider frequency and voltage deviations occur and have to be accepted by all the actors within the microgrid. A validation through computer simulations in Power Factory and real-time hardware in the loop experiments has been carried out with satisfactory results
Moulichon, Audrey. "Conception d'un système adaptatif dynamique de "générateur synchrone virtuel" pour la stabilisation des micro-réseaux électriques à fort taux de pénétration d'énergie renouvelable." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT064.
Full textThe classical distributed energy resources (DER) supplying energy to microgrids (usually diesel generator-sets) are progressively supplanted by supplier based on renewable energy sources (RES). However, the intermittency of RES leads to major stability issues, especially in the context of microgrids, notably because these sources usually decrease the available inertia of the grid. Hence, the traditional control strategies for inverters, interfacing the various DERs connected to the microgrid, needs adapting.The virtual synchronous generator (VSG) is one of the most popular solution that can participate in increasing the microgrids inertia and that could be integrated into traditional stability studies because it presents similarities with a synchronous machine. As the VSG is still a recent concept, mostly considered for the DER integration in microgrid, various problematics remain unresolved (some of which are addressed in this manuscript). In addition, the different solutions that can be found in the literature do not consider the industrial and practical aspect of its development (also considered in this industrial thesis).This thesis is dedicated to the VSG-based inverters and their integration in microgrids with a high level of variable renewable energy penetration. This PhD have been carried out thanks to the cooperation between two laboratories, G2Elab and Gipsa-Lab, in collaboration with Schneider Electric and its R&D team, Power Conversion
Rekik, Mouna. "Routage géographique multi-chemin basé sur l’intelligence d’essaim pour réseaux de capteurs et d’actionneurs sans fil : application aux Smart Grids." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10059/document.
Full textThe Smart Grid (SG) enables an intelligent management of the electrical grid. The implementation of SGs is conditional to the implementation of a communication infrastructure to exchange data between the entities connected to the grid. This thesis is positioned in the context of wireless sensor networks (WSN) in SGs. Through this work, we have proposed a data routing protocol for the communication network at the distribution level. First, we proposed GRACO, a new geographical routing protocol based on swarm intelligence for WSNs. GRACO uses the geographic routing as a main data routing mechanism, and a recovery process based on ant colony optimization to bypass communication voids. The protocol performances were validated through simulations. By comparing the results to the state of the art, the proposed protocol improves the network performances in terms of data delivery rate, end-to-end delay and delivery cost. Second, we proposed GRACO as the routing protocol for wireless neighborhood area networks (NANs) in SG. GRACO ensures all communication schemes, especially Point-to-Point communication while providing scalability and self-healing capabilities. The feasibility of the protocol in NANs was confirmed through simulations using parameters defined by NIST.Finally, we focused on the qualities of service (QoS) required by NAN's applications. We have added a QoS model to the proposed routing protocol to take account of NAN's communication requirements. The performances of the new protocol were validated through simulations. The results showed that the protocol can satisfy the most severe requirements in terms of reliability and end-to-end delay
Gasnier, Swann. "Environnement d’aide à la décision pour les réseaux électriques de raccordement des fermes éoliennes en mer : conception et évaluation robuste sous incertitudes." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0013.
Full textOffshore wind power is quickly developing. Its cost-effectiveness, measured with the LCOE (Levelized cost of Energy) has not reached the one of onshore wind power yet. The cost of electrical connection impacts this cost-effectiveness. Depending on the distance to the onshore grid, many possibilities of architectures and associated technologies can be considered for this connection network (AC, DC etc.). The goal of this research is to provide a decision support framework for the assessment and the planning of architectures for electrical connecting networks.The architecture assessment relies on the calculations of the annual energy dissipated through the network, of the investment costs and of the annual energy curtailed due to the network unavailability. To compute these quantities, models and methods are proposed.It appears that to compare architectures, these must be have near optimal designs? Thus, a formulation of the electrical network design optimization is proposed. The formulation is generic in regard to the various architectures which are considered. A quick heuristic solving approach which gives near optimal solutions is proposed and implemented.The decision support framework makes it possible the design and the assessment of an architecture and is applied to two very different architectures. Finally, a probabilistic analytical method is proposed to take into account the models uncertainties and to study their propagation to the decision criteria
Amaripadath, Deepak. "Development of Tools for Accurate Study of Supraharmonic Emissions in Smart Grids." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA016.
Full textAs the worldwide concern for the climate change and its effects are growing, the governments are forced to make strong decisions in favour of the implementation of the smart electrical grids. However, the success of these actions strongly depends on meeting the certain requirements of the electricity system raised by the quality of the energy supplied and the means to assess it. The smart electrical networks have to tackle the challenges raised by the increasing uptake of the renewable energy sources, such as the photovoltaic (PV), wind, etc. and the equipment, such as photovoltaic inverters (PVI), electric vehicle chargers (EVC), etc. This introduces a complex dynamic operating environment for the distribution system. The distortions coming from the new generation and load equipment are generally larger and less regular than those due to the traditional generation and load equipment, making the power and energy measurements difficult to perform.In this context, the thesis aims to quantify and reproduce the supraharmonic emissions in the frequency range of 2 to 150 kHz. Therefore, the existing literature on the supraharmonic emissions in the frequency range of 2 to 150 kHz is studied. The 4-channel measurement system is designed and implemented for the measurement of the fundamental and supraharmonic components of the voltage and current waveforms in the frequency range of 2 to 150 kHz in the electrical network. The measurements are carried out in the Concept Grid platform. The individual equipment characterization and electrical network tests are carried out here. The waveforms acquired during the measurement campaigns are processed mathematically using the fast Fourier transform (FFT) algorithm and statistically using the analysis of variance (ANOVA) algorithm. The mathematical and statistical processing of the acquired waveforms helps to determine the individual effects and interactions of the different parameters in the generation of the supraharmonic emissions in the electrical network. The various parameters, such as the primary and secondary emissions, effects of the cable length, effects of the sudden addition and removal of the load equipment are also studied.The thesis describes the design of the complex waveform platform, which can be used for the laboratory testing and the characterization of the power quality analyzers (PQA) in the frequency range of 2 to 150 kHz. In the electrical networks, the waveform platform can be used to measure the supraharmonic emissions in the frequency range of 2 to 150 kHz. The software architecture of the waveform platform is described here. In addition, the paper explains the hardware design of the waveform platform. It also includes the laboratory and electrical network applications of the waveform platform. The laboratory setup for the characterization of the PQA and the measurement schema for the electrical network waveforms are also depicted here. The uncertainty budget for the waveform platform is calculated considering the various factors, such as the cable length, noise, etc. are discussed in the thesis. Finally, the PQA is characterized in the frequency range of 2 to 150 kHz with respect to the waveform platform for varying emission amplitudes
Tang, Daogui. "A simulation-based modeling framework for the analysis and protection of smart grids against false pricing attacks." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST017.
Full textThe integration of information and communication technology (ICT) systems with power systems enables a two-way communication exchange between customers and utilities, which helps engaging customers in various demand-response (DR) programs of smart grids (SGs), such as time-of-use (TOU) pricing and real-time pricing (RTP). However, this makes SG cyber-physical system exposed to additional threats coming from the ICT layer. For this reason, the threat of cyber attacks of various types has become a major concern. In this context, the focus of the thesis is on the modeling of , detection of and defense from a specific type of cyber attacks to DR schemes, namely, false pricing attacks (FPAs). The study approaches the problem firstly by modeling FPAs initiated in social networks (SNs). The false electricity prices spreading process is described by a multi-level influence propagation model considering customers’ personality characteristics and information value. Monte Carlo simulation is utilized to account for the stochastic nature of the influence propagation process. Then, considering the integration of distributed renewable energy resources (DRERs) in the RTP context, we study FPAs where attackers manipulate realtime electricity prices by injecting false consumption and renewable generation information. A convolutional neural network (CNN)-based online detector is developed to detect the considered FPAs. Finally, to mitigate the impact of FPAs, an optimal defense strategy is defined, under limited resources. The dynamic interaction between attackers and defenders is modeled as a zero-sum Markov game where neither player has full information of the game model. A modelfree multi-agent reinforcement learning method is proposed to solve the game and find the Nash Equilibrium policies for both players. The thesis provides a simulationbased framework for modelling FPAs to smart grids. The findings of the thesis give insights into how FPAs can impact cyber-physical power systems by misleading a portion of customers in the electricity market and provide implications on how to mitigate such impact by detecting and defending the attacks
Klaimi, Joelle. "Gestion multi-agents des smart grids intégrant un système de stockage : cas résidentiel." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0006/document.
Full textThis thesis focuses on the decentralized management using multi-agent systems of energy, including renewable energy sources, in the smart grid context. Our research aims to minimize consumers’ energy bills by answering two key challenges: (1) handle the problem of intermittency of renewable energy sources; (2) reduce energy losses. To overcome the problem of renewable resources intermittency and in order to minimize energy costs even during peak hours, we integrated an intelligent storage system. To this end, we propose many algorithms in order to use intelligent storage systems and multi-agent negotiation algorithm to reduce energy cost while maintaining a minimal discharge rate of the battery and minimal energy loss. The validation of our contributions has shown that our proposals respond to the identified challenges, including reducing the cost of energy for consumers, in comparison to the state of the art
Ali, Zazou Abdelkrim. "Conception d'un outil d'optimisation dynamique du schéma d'exploitation du réseau de distribution d'électricité de SRD." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2017. http://www.theses.fr/2017ESMA0010.
Full textThe French electrical distribution network was originally built to bring electricity from very large producers to consumers, but it has now become a place of multi-directional energy flows that rely on local production and consumption. Because of this new situation, the way of operating electrical networks needs to be renewed. In light of this, the local Distribution System Operator (SRO) of the French department Vienne and the different teams of the LIAS laboratory have worked together on the development of a distribution network configuration optimization tool. In this thesis the majority of the work was focused on the modeling part of the problem rather than on the development of new optimization methods. The industrial root of this project gave the opportunity to be very close to the reality of the available network data. Based on those observations,it was more consistent to use exact and precise optimization methods to solved simplified versions of the complex electrical network models.Thus a simple optimization model based on the minimum cost flow problem was developed, and a comparative study between the developed model and state of the art more complex one was led. This simple model was reformulated to become convex and quadratic and to reach better resolution time performances with the same solutions. This optimization problem was developed to take into account a time horizon factor into the optimization of the operation planning of the distribution network. The time horizon factor aim to represent the production and consumption variation over a selected period. Finally. because this model has to be integrated into a decision making helping tool that will be used by the DSO SRD several operational constraints were added into the optimization model. Several state of the art case studies arc presented to validate the model accuracy regarding existing methods. Simulation experiments were done on real networks data to show the applicability of the proposed optimization model over large scale case studies which correspond to the DSO SRO reality
Cailliere, Romain. "Mécanismes de négociation distribuée pour la gestion intelligente de l’énergie." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1141/document.
Full textIncreasing needs in energy, and earth pollution, coming from the use of polluting and non-renewable energy, make it indispensable the design of new energetic models, sustainable and reliable. Today, these new models are based on a massive integration of renewable generators in the grid. The renewable integration issues come from their stochastic features, depending on the weather conditions, most of the time. The coming of new information and communication technologies allows the integration of an information layer to the energy grid allowing it to be smarter and allow to have a glimpse of the possibility of a decentralised management of renewable energy. These energy being mainly decentralised, unlike imposing nuclear, coal and gas power plants, are produced directly at the customer's location. Consumers become, then, a prosumer able to answer to its own energetic needs,and maybe to act as a producer if it produces more energy than it consumes. But, the coming of a plethora of small actors, able to buy and sell energy, in real time, in a market containing the more powerful actors, traditional in the market, can be a source of volatility for energy prices. Considerable variations of the price can lead to detrimental situations by disturbing the grid. To face this problem, we developed a first mechanism for automatic negotiations, on three time scales, which decrees constraints on demand and on prices in order to guarantee their stability. This mechanism rely on representative entities (producers, prosumers and aggregators) to manage demand and supply without taking into account the impact on the grid of the negotiated contracts between these entities. The second mechanism, based on blockchain technology, allows bilateral decentralised negotiations and take into account the physical impacts on the grid of each energy exchange between prosumers, guaranteing then, the grid integrity. The proposed mechanism exempt itself from a management of the grid stability from a centralised third part
Trigueiro, dos Santos Leonardo. "Contribution on the day-ahead and operational optimization for DC microgrid building-integrated." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2352/document.
Full textThis thesis study focuses on a DC microgrid building-integrated satisfying the power balance at the local level and supplying DC loads during both, grid-connected and isolated operation modes. Considering that energy management can be defined as a group of different control strategies and operational practices that together with the new physical equipment and software solutions aims to accomplish the objectives of energy management, the main objective of this thesis is to define the energy management strategies for the building-integrated DC microgrid, aiming to keep the bus voltage stable as well as to reduce the energy cost to the end users and the negative impact to the main grid. Therefore, this research work focuses to optimize and develop the implementation of the designed controller of building-integrated DC microgrid. The proposed DC microgrid consists of PV building-integrated sources, a storage system, a main grid connection for the grid-connected mode and a micro turbine for the off-grid or isolated mode, and a DC load (electric appliances of a tertiary building). The bidirectional connections with the main grid and the storage aim to supply the building’s DC appliances, and sell or store the energy surplus. The results validate the operation of the whole system, ensuring the capability of the proposed supervisory control to manage the energy power flow while ensuring voltage stability. Other goals concern the analyze of the proposed separation between optimization and real time power balance and the usage of the proposed load shedding/restoration algorithm in the microgrid environment are also validate. Regarding the technical contributions, the work of this thesis allowed the creation and the practical development of a test bench for microgrid based on PV sources emulator, which allows the repeatability conditions (closeness of the agreement between the results of successive measurements of the same solar irradiance and air temperature carried out under the same conditions of measurement) and reproducibility (closeness of the agreement between the results of measurements of the same solar irradiation and air temperature carried out under changed conditions of measurement). Numerous experimental tests were carried out and allowed the validation of the proposed concepts
Said, Dhaou. "Modèles et protocoles pour les interactions des véhicules électriques mobiles avec la grille." Thèse, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/6055.
Full textDo, Minh Thang. "Approche probabiliste pour l'évaluation de la fiabilité du système électrique intégrant des énergies renouvelables peu prévisibles." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10071/document.
Full textFollowing the environmental constraints to conventional power generation, renewable energy character grows very quickly thanks to government policies. In practice, the nature of primary sources is random, the introduction of renewable energy in an electrical network may impact the operation of the power system and the quality of the power. The use of probabilistic methods in planning the power system becomes necessary for a power system consisting of a large amount of less predictable sources. However, these probabilistic methods are currently limited to long-term planning due to their high computation time. In this thesis, a new probabilistic approach based on a coupling between the law of total probability and the first order reliability method is proposed to evaluate the reliability of the power system in short-term. It takes into account the probability of unanticipated failure of system components, the uncertainty in forecasts of renewable generation and consumption. With this method, the indicators used to quantify the reliability of the power system and the use of renewable resources can be determined. Therefore, the reliability of the power system incorporating less predictable renewable energy can be evaluated. The low computation time of the method allows it to be used to validate the short term planning, which is made one day in advance to the considered day (J)
Houssamo, Issam. "Contribution à l'étude théorique, à la modélisation et à la mise en oeuvre d'un système multisource appartenant à un micro-réseau électrique : considération sur la qualité de l'énergie." Compiègne, 2012. http://www.theses.fr/2012COMP2020.
Full textThe objective of this thesis is to study, analyze and develop a multisource system belonging to a DC micro-grid with consideration of some aspects of the power quality. Chapter I presents the interest of the smart grid to ensure better coordination between distributed generation and power consumption. Having in view the prediction, a purely experimental model of photovoltaic source is developed and presented inChapter II. Furthermore, in order to extract the maximum power of the photovoltaic source, a classical algorithm is improved and the extracted energy is compared with three other methods. In Chapter III, the security system elements, the electrochemical storage and the public grid, are characterized. In the case of a storage shortage, the public grid is used to supply power to the load, but also trade back excess energy. Chapter IV presents the control of multisource system and its experimental validation. The energy management strategy taken into account is based on switching between the elements which secure the multisource system. For this, the priority is given to storage characterized by its state of charge. Thanks to this strategy, the technical feasibility of the multisource system is experimentally validated. Chapter V gives some aspects related to the improvement of the power quality: for the public grid side, a resonant controller is proposed, for the DC bus side, the pulsating power is eliminated by injecting the opposite signal supplied by the electrochemical storage
Dobrowolski, Jean. "Modélisation, contrôle/commande et certification d'un micro-réseau électrique décentralisé avec entrées exogènes aléatoires et informations contraintes." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT111/document.
Full textSince many years, the energy sector is undergoing significant changes. Awareness of global warming, the objective to use reduce greenhouse gas but also the scarcity of fossil energy, encourage the world to promote the use of more and more renewable energies. Electric microgrid are one of the opportunities new market on which Schneider Electric wants to launch.Microgrid are a scaled-down version of a national grid with specific objectives such as energy security, lower greenhouse gas emissions and so on. They are composed of several renewable sources (photovoltaic, wind for example), generators set, but also storage and consumers. They can be connected to a main grid or islanded. Since islanded microgrid are intrinsically composed of renewable producers with static converters, the natural grid inertia is particularly low compared to that of a classic grid with rotating machine. With this consideration, a load impact or a sudden drop of production due to renewable intermittency can destabilize the network and create chain reactions leading to a total grid blackout.Among the microgrids target markets, island whose electricity production is mostly provided by generators set presents the objective of improving an existing grid by adding renewable sources to production. These grid face strong communication constraints which can be difficult to establish, unreliable or non-existent. Thus, conventional microgrid commands do not allow to answer the presented problem.Objective of this thesis is to design the control algorithms of islanded microgrid without communication to ensure both frequency stability and to maximize renewable energy use.The presented work can be summarized in four main stages. First, several simulation models of microgrid subsystem will be defined for islanded microgrid analysis.These models will then be used to define control laws of a decentralized microgrid without communication. They will be used, inter alia, to compare performances of this decentralized control with a conventional centralized control.The third stage of the thesis will present the probabilistic certification of the decentralized algorithms in order to guarantee the desired performance.Finally, the work will end with simulation results and a real experimentation phase with the test on a 100 kVA microgrid to validate operation of algorithms