Academic literature on the topic 'Réseaux de neuronnes à convolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseaux de neuronnes à convolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Réseaux de neuronnes à convolution"
Postadjian, Tristan, Arnaud Le Bris, Hichem Sahbi, and Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.
Full textMonnier, J., J. Collenne, R. Iguernaissi, S. Dubuisson, M. Nawaf, M. A. Richard, J. J. Grob, C. Gaudy-Marqueste, and D. Merad. "Détection automatisée du mélanome. Développement d’un algorithme combinant une approche inspirée de l’analyse du dermatologue fondée sur la caractérisation de l’asymétrie du mélanome et un ensemble de réseaux de neurones à convolution." Annales de Dermatologie et de Vénéréologie - FMC 3, no. 8 (December 2023): A54. http://dx.doi.org/10.1016/j.fander.2023.09.032.
Full textJovanović, S., and S. Weber. "Modélisation et accélération de réseaux de neurones profonds (CNN) en Python/VHDL/C++ et leur vérification et test à l’aide de l’environnement Pynq sur les FPGA Xilinx." J3eA 21 (2022): 1028. http://dx.doi.org/10.1051/j3ea/20220028.
Full textMARTIGNAC, François, Guglielmo FERNANDEZ-GARCIA, Thomas CORPETTI, Marie NEVOUX, and Laurent BEAULATON. "Automatisation de l’analyse de données des caméras acoustiques par un réseau de neurones convolutifs." Sciences Eaux & Territoires, no. 47 (March 4, 2025): 7983. https://doi.org/10.20870/revue-set.2025.47.7983.
Full textAit Si Selmi, T., F. Müller Fouarge, T. Estienne, S. Bekadar, Y. Carrillon, C. Pouchy, and M. Bonnin. "Analyse automatique de la sévérité de l’arthrose sur des radiographies du genou à l’aide de réseaux de neurones convolutifs." Revue du Rhumatisme 89 (December 2022): A128. http://dx.doi.org/10.1016/j.rhum.2022.10.186.
Full textLe Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant, and Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.
Full textMonnier, J., A. Le Nilias Houmeau, R. Iguernaissi, M. A. Richard, C. Gaudy-Marqueste, J. J. Grob, and D. Merad. "Développement d’une « boosted fusion » entre un réseau de neurones à convolution (CNN) et un algorithme intégrant l’aspect chaotique de lésions mélanocytaires pour la détection automatisée du mélanome." Annales de Dermatologie et de Vénéréologie - FMC 2, no. 8 (November 2022): A51—A52. http://dx.doi.org/10.1016/j.fander.2022.09.040.
Full textNguyen, K. L., A. Almhdie-Imjabbar, H. Toumi, R. Jennane, and E. Lespessailles. "Combinaison de la texture trabéculaire osseuse et des réseaux de neurones convolutifs pour la prédiction de la progression de la gonarthrose : données des cohortes de l’OsteoArthritis Initiative (OAI) et de la Multicenter Osteoarthritis Study (MOST)." Revue du Rhumatisme 87 (December 2020): A90. http://dx.doi.org/10.1016/j.rhum.2020.10.153.
Full textMaulin, Maëva, Nicolas Estre, David Tisseur, Grégoire Kessedjian, Alix Sardet, Emmanuel Payan, and Daniel Eck. "Défloutage de projections tomographiques industrielles hautes énergies à l’aide d’un réseau de neurones convolutifs." e-journal of nondestructive testing 28, no. 9 (September 2023). http://dx.doi.org/10.58286/28481.
Full textQian, Yuqin, Xinlu Tang, Ruinan Shen, Yong Lu, Jianqing Ding, Xiaohua Qian, and Chencheng Zhang. "Graph Convolutional Network for AD and MCI Diagnosis Utilizing Peripheral DNA Methylation: Réseau de neurones en graphes pour le diagnostic de la MA et du TCL à l’aide de la méthylation de l’ADN périphérique." Canadian Journal of Psychiatry, November 25, 2024. http://dx.doi.org/10.1177/07067437241300947.
Full textDissertations / Theses on the topic "Réseaux de neuronnes à convolution"
Khalfaoui, Hassani Ismail. "Convolution dilatée avec espacements apprenables." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES017.
Full textIn this thesis, we develop and study the Dilated Convolution with Learnable Spacings (DCLS) method. The DCLS method can be considered as an extension of the standard dilated convolution method, but in which the positions of the weights of a neural network are learned during training by the gradient backpropagation algorithm, thanks to an interpolation technique. We empirically demonstrate the effectiveness of the DCLS method by providing concrete evidence from numerous supervised learning experiments. These experiments are drawn from the fields of computer vision, audio, and speech processing, and all show that the DCLS method has a competitive advantage over standard convolution techniques, as well as over several advanced convolution methods. Our approach is structured in several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. The DCLS method is particularly noteworthy for its capabilities in supervised computer vision tasks such as classification, semantic segmentation, and object detection, all of which are essential tasks in the field. Having originally developed the DCLS method with bilinear interpolation, we explored other interpolation methods that could replace the bilinear interpolation conventionally used in DCLS, and which aim to make the position parameters of the weights in the convolution kernel differentiable. Gaussian interpolation proved to be slightly better in terms of performance. Our research then led us to apply the DCLS method in the field of spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task, a key achievement in one of the most important audio classification benchmarks. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results
Mamalet, Franck. "Adéquation algorithme-architecture pour les réseaux de neurones à convolution : application à l'analyse de visages embarquée." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0068.
Full textProliferation of image sensors in many electronic devices, and increasing processing capabilities of such sensors, open a field of exploration for the implementation and optimization of complex image processing algorithms in order to provide embedded vision systems. This work is a contribution in the research domain of algorithm-architecture matching. It focuses on a class of algorithms called convolution neural network (ConvNet) and its applications in embedded facial analysis. The facial analysis framework, introduced by Garcia et al., was chosen for its state of the art performances in detection/recognition, and also for its homogeneity based on ConvNets. The first contribution of this work deals with an adequacy study of this facial analysis framework with embedded processors. We propose several algorithmic adaptations of ConvNets, and show that they can lead to significant speedup factors (up to 700) on an embedded processor for mobile phone, without performance degradation. We then present a study of ConvNets parallelization capabilities, through N. Farrugia's PhD work. A coarse-grain parallelism exploration of ConvNets, followed by study of internal scheduling of elementary processors, lead to a parameterized parallel architecture on FPGA, able to detect faces at more than 10 VGA frames per second. Finally, we propose an extension of these studies to the learning phase of neural networks. We analyze several hypothesis space restrictions for ConvNets, and show, on a case study, that classification rate performances are almost the same with a training time divided by up to five
Zossou, Vincent-Béni Sèna. "Détection du carcinome hépatocellulaire et des métastases hépatiques basée sur les images tomodensitométriques et l'apprentissage automatique." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASR034.
Full textRadiologists use a series of images from abdominal computed tomography (CT) scans to examine the liver and diagnose potential pathologies. However, this process is often lengthy, complex, and prone to human error. Recent studies have shown that artificial intelligence (AI) has opened new horizons in medical imaging, allowing for earlier detection of liver cancers and optimizing the entire diagnostic process. In Africa, particularly in Benin, few studies have been conducted on the use of these techniques, largely due to a lack of equipment and local data. This thesis addresses this gap by proposing AI techniques for automatically detecting and classifying liver lesions from CT scans. Specifically, it presents a tool that includes: (i) a liver and lesion segmentation model based on a neural network, (ii) a radiomic signature to better characterize liver conditions, (iii) a lesion classification model using convolutional neural networks, and (iv) a diagnostic assistance platform to improve patient care. The results demonstrate improvements over existing solutions, paving the way for broader adoption of these technologies, with the aim of improving healthcare quality and reducing medical errors
Martin, Pierre-Etienne. "Détection et classification fines d'actions à partir de vidéos par réseaux de neurones à convolutions spatio-temporelles : Application au tennis de table." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0313.
Full textAction recognition in videos is one of the key problems in visual data interpretation. Despite intensive research, differencing and recognizing similar actions remains a challenge. This thesis deals with fine-grained classification of sport gestures from videos, with an application to table tennis.In this manuscript, we propose a method based on deep learning for automatically segmenting and classifying table tennis strokes in videos. Our aim is to design a smart system for students and teachers for analyzing their performances. By profiling the players, a teacher can therefore tailor the training sessions more efficiently in order to improve their skills. Players can also have an instant feedback on their performances.For developing such a system with fine-grained classification, a very specific dataset is needed to supervise the learning process. To that aim, we built the “TTStroke-21” dataset, which is composed of 20 stroke classes plus a rejection class. The TTStroke-21 dataset comprises video clips of recorded table tennis exercises performed by students at the sport faculty of the University of Bordeaux - STAPS. These recorded sessions were annotated by professional players or teachers using a crowdsourced annotation platform. The annotations consist in a description of the handedness of the player and information for each stroke performed (starting and ending frames, class of the stroke).Fine-grained action recognition has some notable differences with coarse-grained action recognition. In general, datasets used for coarse-grained action recognition, the background context often provides discriminative information that methods can use to classify the action, rather than focusing on the action itself. In fine-grained classification, where the inter-class similarity is high, discriminative visual features are harder to extract and the motion plays a key role for characterizing an action.In this thesis, we introduce a Twin Spatio-Temporal Convolutional Neural Network. This deep learning network takes as inputs an RGB image sequence and its computed Optical Flow. The RGB image sequence allows our model to capture appearance features while the optical flow captures motion features. Those two streams are processed in parallel using 3D convolutions, and fused at the last stage of the network. Spatio-temporal features extracted in the network allow efficient classification of video clips from TTStroke-21. Our method gets an average classification performance of 87.3% with a best run of 93.2% accuracy on the test set. When applied on joint detection and classification task, the proposed method reaches an accuracy of 82.6%.A systematic study of the influence of each stream and fusion types on classification accuracy has been performed, giving clues on how to obtain the best performances. A comparison of different optical flow methods and the role of their normalization on the classification score is also done. The extracted features are also analyzed by back-tracing strong features from the last convolutional layer to understand the decision path of the trained model. Finally, we introduce an attention mechanism to help the model focusing on particular characteristic features and also to speed up the training process. For comparison purposes, we provide performances of other methods on TTStroke-21 and test our model on other datasets. We notice that models performing well on coarse-grained action datasets do not always perform well on our fine-grained action dataset.The research presented in this manuscript was validated with publications in one international journal, five international conference papers, two international workshop papers and a reconductible task in MediaEval workshop in which participants can apply their action recognition methods to TTStroke-21. Two additional international workshop papers are in process along with one book chapter
Pothier, Dominique. "Réseaux convolutifs à politiques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69184.
Full textDespite their excellent performances, artificial neural networks high demand of both data and computational power limit their adoption in many domains. Developing less demanding architecture thus remain an important endeavor. This thesis seeks to produce a more flexible and less resource-intensive architecture by using reinforcement learning theory. When considering a network as an agent instead of a function approximator, one realize that the implicit policy followed by popular feed forward networks is extremely simple. We hypothesize that an architecture able to learn a more flexible policy could reach similar performances while reducing its resource footprint. The architecture we propose is inspired by research done in weight prediction, particularly by the hypernetwork architecture, which we use as a baseline model.Our results show that learning a dynamic policy achieving similar results to the static policies of conventional networks is not a trivial task. Our proposed architecture succeeds in limiting its parameter space by 20%, but does so at the cost of a 24% computation increase and loss of5% accuracy. Despite those results, we believe that this architecture provides a baseline that can be improved in multiple ways that we describe in the conclusion.
Li, Xuhong. "Regularization schemes for transfer learning with convolutional networks." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2497/document.
Full textTransfer learning with deep convolutional neural networks significantly reduces the computation and data overhead of the training process and boosts the performance on the target task, compared to training from scratch. However, transfer learning with a deep network may cause the model to forget the knowledge acquired when learning the source task, leading to the so-called catastrophic forgetting. Since the efficiency of transfer learning derives from the knowledge acquired on the source task, this knowledge should be preserved during transfer. This thesis solves this problem of forgetting by proposing two regularization schemes that preserve the knowledge during transfer. First we investigate several forms of parameter regularization, all of which explicitly promote the similarity of the final solution with the initial model, based on the L1, L2, and Group-Lasso penalties. We also propose the variants that use Fisher information as a metric for measuring the importance of parameters. We validate these parameter regularization approaches on various tasks. The second regularization scheme is based on the theory of optimal transport, which enables to estimate the dissimilarity between two distributions. We benefit from optimal transport to penalize the deviations of high-level representations between the source and target task, with the same objective of preserving knowledge during transfer learning. With a mild increase in computation time during training, this novel regularization approach improves the performance of the target tasks, and yields higher accuracy on image classification tasks compared to parameter regularization approaches
Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.
Full textArtificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
Chabot, Florian. "Analyse fine 2D/3D de véhicules par réseaux de neurones profonds." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC018/document.
Full textIn this thesis, we are interested in fine-grained analysis of vehicle from an image. We define fine-grained analysis as the following concepts : vehicle detection in the image, vehicle viewpoint (or orientation) estimation, vehicle visibility characterization, vehicle 3D localization and make and model recognition. The design of reliable solutions for fine-grained analysis of vehicle open the door to multiple applications in particular for intelligent transport systems as well as video surveillance systems. In this work, we propose several contributions allowing to address partially or wholly this issue. Proposed approaches are based on joint deep learning technologies and 3D models. In a first section, we deal with make and model classification keeping in mind the difficulty to create training data. In a second section, we investigate a novel method for both vehicle detection and fine-grained viewpoint estimation based on local apparence features and geometric spatial coherence. It uses models learned only on synthetic data. Finally, in a third section, a complete system for fine-grained analysis is proposed. It is based on the multi-task concept. Throughout this report, we provide quantitative and qualitative results. On several aspects related to vehicle fine-grained analysis, this work allowed to outperform state of the art methods
Haj, Hassan Hawraa. "Détection et classification temps réel de biocellules anormales par technique de segmentation d’images." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0043.
Full textDevelopment of methods for help diagnosis of the real time detection of abnormal cells (which can be considered as cancer cells) through bio-image processing and detection are most important research directions in information science and technology. Our work has been concerned by developing automatic reading procedures of the normal and abnormal bio-images tissues. Therefore, the first step of our work is to detect a certain type of abnormal bio-images associated to many types evolution of cancer within a Microscopic multispectral image, which is an image, repeated in many wavelengths. And using a new segmentation method that reforms itself in an iterative adaptive way to localize and cover the real cell contour, using some segmentation techniques. It is based on color intensity and can be applied on sequences of objects in the image. This work presents a classification of the abnormal tissues using the Convolution neural network (CNN), where it was applied on the microscopic images segmented using the snake method, which gives a high performance result with respect to the other segmentation methods. This classification method reaches high performance values, where it reaches 100% for training and 99.168% for testing. This method was compared to different papers that uses different feature extraction, and proved its high performance with respect to other methods. As a future work, we will aim to validate our approach on a larger datasets, and to explore different CNN architectures and the optimization of the hyper-parameters, in order to increase its performance, and it will be applied to relevant medical imaging tasks including computer-aided diagnosis
Paillassa, Maxime. "Détection robuste de sources astronomiques par réseaux de neurones à convolutions." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0147.
Full textExtracting reliable source catalogs from images is crucial for a broad range of astronomical research topics.However, the efficiency of current source detection methods becomes severely limited in crowded fields, or when images are contaminated by optical, electronic and environmental defects.Performance in terms of reliability and completeness is now often insufficient with regard to the scientific requirements of large imaging surveys.In this thesis, we develop new methods to produce more robust and reliable source catalogs.We leverage recent advances in deep supervised learning to design generic and reliable models based on convolutional neural networks (CNNs).We present MaxiMask and MaxiTrack, two convolutional neural networks that we trained to automatically identify 13 different types of image defects in astronomical exposures.We also introduce a prototype of a multi-scale CNN-based source detector robust to image defects, which we show to significantly outperform existing algorithms.We discuss the current limitations and potential improvements of our approach in the scope of forthcoming large scale surveys such as Euclid
Book chapters on the topic "Réseaux de neuronnes à convolution"
ATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN, and Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives." In Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.
Full textMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Full textBYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Full textATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER, and Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images." In Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Full textConference papers on the topic "Réseaux de neuronnes à convolution"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Full textKim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Full textGendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Full text