Academic literature on the topic 'Réseaux de Neurones à Impulsions SNN'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseaux de Neurones à Impulsions SNN.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Réseaux de Neurones à Impulsions SNN"

1

Spyrou, Theofilos. "Functional safety and reliability of neuromorphic computing systems." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS118.

Full text
Abstract:
L'essor récent de l'intelligence artificielle (IA) a trouvé un large éventail d'applications qui l'intègrent essentiellement dans presque tous les domaines de notre vie. Avec une telle intégration, il est raisonnable que des préoccupations surgissent. Celles-ci doivent être éliminées avant l'utilisation de l'IA sur le terrain, en particulier dans les applications critiques en termes de mission et de sécurité, comme les véhicules autonomes. Les réseaux neuronaux à impulsions (Spiking Neural Networks, SNNs), bien que d'inspiration biologique, n'héritent que partiellement des remarquables capacités de résistance aux pannes de leurs homologues biologiques, car ils sont vulnérables aux défauts électroniques et aux pannes survenant au niveau du matériel. Par conséquent, une exploration méthodologique des caractéristiques de fiabilité des accélérateurs matériels d'IA et des plateformes neuromorphiques est de la plus haute importance. Cette thèse aborde les sujets du test et de la tolérance aux fautes dans les SNNs et leurs implémentations neuromorphiques sur le matériel
The recent rise of Artificial Intelligence (AI) has found a wide range of applications essentially integrating it gaining more and more ground in almost every field of our lives. With this steep integration of AI, it is reasonable for concerns to arise, which need to be eliminated before the employment of AI in the field, especially in mission- and safety-critical applications like autonomous vehicles. Spiking Neural Networks (SNNs), although biologically inspired, inherit only partially the remarkable fault resilience capabilities of their biological counterparts, being vulnerable to electronic defects and faults occurring at hardware level. Hence, a methodological exploration of the dependability characteristics of AI hardware accelerators and neuromorphic platforms is of utmost importance. This thesis tackles the subjects of testing and fault tolerance in SNNs and their neuromorphic implementations on hardware
APA, Harvard, Vancouver, ISO, and other styles
2

Godin, Christelle. "Contributions à l'embarquabilité et à la robustesse des réseaux de neurones en environnement radiatif : apprentissage constructif : neurones à impulsions." École nationale supérieure de l'aéronautique et de l'espace (Toulouse ; 1972-2007), 2000. http://www.theses.fr/2000ESAE0013.

Full text
Abstract:
Les réseaux de neurones et plus particulièrement les perceptrons multi-couches sont aujourd'hui largement utilisés pour des tâches de classification. L'environnement radiatif, hostile pour les équipements électroniques, provoque des modifications de leur fonctionnement. Cette thèse explore deux voies dans le but d'obtenir des réseaux de neurones robustes destinés à être embarqués dans des systèmes fonctionnant en environnement radiatif. La première approche est basée sur un nouvel algorithme d'apprentissage constructif, appelé NetLS, qui est une généralisation des algorithmes NetLines et Net Spheres. Nous montrons sur des problèmes étalons qu'il permet d'aboutir à des réseaux de neurones binaires de très petite taille alors que d'autres algorithmes conduisent à des classifieurs bien plus complexes pour des performances équivalentes. La seconde approche consiste à utiliser un nouveau modèle de neurone à impulsions pour l'implantation de neurones à fonction de réponse continue. Ainsi, n'importe quel algorithme d'apprentissage classique (rétropropagation et ses variantes) peut être utilisé et le réseau de neurones obtenu peut fonctionner avec ces neurones à impulsions. Dans ces conditions, nous montrons que lors de la relaxation du réseau les performances augmentent au cours du temps jusqu'à atteindre celles du réseau de neurones continus. Ainsi, si une erreur se produit au cours du calcul, l'information disponible peut représenter une partie du résultat. Une architecture numérique pour ce neurone est proposée et évaluée. La surface occupée sur le silicium est 10 fois inférieure à celle nécessaire pour implanter une neurone continu. Ces deux approches conduisent à des réseaux de neurones de faible surface : la probabilité d'une erreur due aux radiations est minimisée. Ils ont été confrontés à des problèmes de détection de signaux radar de deux types, les premiers étant générés par un modèle, et les seconds des échos ionosphériques mesurés par le radar du projet EISCAT (European Incoherent SCATter).
APA, Harvard, Vancouver, ISO, and other styles
3

Soula, Hédi. "Dynamique et plasticité dans les réseaux de neurones à impulsions : étude du couplage temporel réseau / agent / environnement." Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0056/these.pdf.

Full text
Abstract:
Dans ce travail, une approche de "vie artificielle" est utilisée pour étudier le support neural des comportements. Un comportement est issu d'une bonne adéquation entre le système de contrôle, les capacités sensori-motrices de l'agent et de l'environnement. Dans un paradigme dynamique, un comportement est ainsi un attracteur dans l'espace perception/action - composé de la dynamique interne du contrôleur et de celle obtenue par l'évolution de l'agent. La dynamique neurale est à l'origine de la dynamique interne. L'apprentissage de comportement revient donc à coupler ces deux dynamiques. Nous introduisons, dans un premier temps, une étude détaillée de la dynamique nerveuse dans le cas de réseaux de neurones à impulsions. En mode spontané (c'est-à-dire sans entrées), ces réseaux opèrent de manière non triviale. Selon les paramètres de la distribution de poids synaptiques, nous sommes en mesure d'estimer complètement l'activité de décharge. On montre l'existence d'une bifurcation pour le paramètre de couplage : la variance de la distribution. Nous montrons aussi que ce facteur de couplage mesure le charactère chaotique du fonctionnement du réseau. Pour apprendre des comportement, nous utilisons un algorithme biologiquement plausible la Spike-Time Dependent Plasticity qui permet de coupler la dynamique neurale. Nous montrons en dynamique spontanée l'influence des paramètres d'apprentissage sur le fonctionnement du réseau. Nous montrons que la STDP permet de rester dans un régime "au bord du chaos". Dans le but de valider cette approche, nous utilisons le réseau pour controler un robot qui doit apprendre à éviter les obstacles en servant uniquement du flot visuel
An «artificial life » approach is conducted in order to assess the neural basis of behaviours. Behaviour is the consequence of a good concordance between the controller, the agent’s sensori-motors capabilities and the environment. Within a dynamical system paradigm, behaviours are viewed as attractors in the perception/action space – derived from the composition of the internal and external dynamics. Since internal dynamics is originated by the neural dynamics, learning behaviours therefore consists on coupling external and internal dynamics by modifying network’s free parameters. We begin by introducing a detailed study of the dynamics of large networks of spiking neurons. In spontaneous mode (i. E. Without any input), these networks have a non trivial functioning. According to the parameters of the weight distribution and provided independence hypotheses, we are able to describe completely the spiking activity. Among other results, a bifurcation is predicted according to a coupling factor (the variance of the distribution). We also show the influence of this parameter on the chaotic dynamics of the network. To learn behaviours, we use a biologically plausible learning paradigm – the Spike-Timing Dependent Plasticity (STDP) that allows us to couple neural and external dynamics. Applying shrewdly this learning law enables the network to remain “at the edge of chaos” which corresponds to an interesting state of activity for learning. In order to validate our approach, we use these networks to control an agent whose task is to avoid obstacles using only the visual flow coming from its linear camera. We detail the results of the learning process for both simulated and real robotics platform
APA, Harvard, Vancouver, ISO, and other styles
4

Buhry, Laure. "Estimation de paramètres de modèles de neurones biologiques sur une plate-forme de SNN (Spiking Neural Network) implantés "insilico"." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14057/document.

Full text
Abstract:
Ces travaux de thèse, réalisés dans une équipe concevant des circuits analogiques neuromimétiques suivant le modèle d’Hodgkin-Huxley, concernent la modélisation de neurones biologiques, plus précisément, l’estimation des paramètres de modèles de neurones. Une première partie de ce manuscrit s’attache à faire le lien entre la modélisation neuronale et l’optimisation. L’accent est mis sur le modèle d’Hodgkin- Huxley pour lequel il existait déjà une méthode d’extraction des paramètres associée à une technique de mesures électrophysiologiques (le voltage-clamp) mais dont les approximations successives rendaient impossible la détermination précise de certains paramètres. Nous proposons dans une seconde partie une méthode alternative d’estimation des paramètres du modèle d’Hodgkin-Huxley s’appuyant sur l’algorithme d’évolution différentielle et qui pallie les limitations de la méthode classique. Cette alternative permet d’estimer conjointement tous les paramètres d’un même canal ionique. Le troisième chapitre est divisé en trois sections. Dans les deux premières, nous appliquons notre nouvelle technique à l’estimation des paramètres du même modèle à partir de données biologiques, puis développons un protocole automatisé de réglage de circuits neuromimétiques, canal ionique par canal ionique. La troisième section présente une méthode d’estimation des paramètres à partir d’enregistrements de la tension de membrane d’un neurone, données dont l’acquisition est plus aisée que celle des courants ioniques. Le quatrième et dernier chapitre, quant à lui, est une ouverture vers l’utilisation de petits réseaux d’une centaine de neurones électroniques : nous réalisons une étude logicielle de l’influence des propriétés intrinsèques de la cellule sur le comportement global du réseau dans le cadre des oscillations gamma
These works, which were conducted in a research group designing neuromimetic integrated circuits based on the Hodgkin-Huxley model, deal with the parameter estimation of biological neuron models. The first part of the manuscript tries to bridge the gap between neuron modeling and optimization. We focus our interest on the Hodgkin-Huxley model because it is used in the group. There already existed an estimation method associated to the voltage-clamp technique. Nevertheless, this classical estimation method does not allow to extract precisely all parameters of the model, so in the second part, we propose an alternative method to jointly estimate all parameters of one ionic channel avoiding the usual approximations. This method is based on the differential evolution algorithm. The third chaper is divided into three sections : the first two sections present the application of our new estimation method to two different problems, model fitting from biological data and development of an automated tuning of neuromimetic chips. In the third section, we propose an estimation technique using only membrane voltage recordings – easier to mesure than ionic currents. Finally, the fourth and last chapter is a theoretical study preparing the implementation of small neural networks on neuromimetic chips. More specifically, we try to study the influence of cellular intrinsic properties on the global behavior of a neural network in the context of gamma oscillations
APA, Harvard, Vancouver, ISO, and other styles
5

Buhry, Laure. "Estimation de paramètres de modèles de neurones biologiques sur une plate-forme de SNN (Spiking Neural Network) implantés "in silico"." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00561396.

Full text
Abstract:
Ces travaux de thèse, réalisés dans une équipe concevant des circuits analogiques neuromimétiques suivant le modèle d'Hodgkin-Huxley, concernent la modélisation de neurones biologiques, plus précisément, l'estimation des paramètres de modèles de neurones. Une première partie de ce manuscrit s'attache à faire le lien entre la modélisation neuronale et l'optimisation. L'accent est mis sur le modèle d'Hodgkin- Huxley pour lequel il existait déjà une méthode d'extraction des paramètres associée à une technique de mesures électrophysiologiques (le voltage-clamp) mais dont les approximations successives rendaient impossible la détermination précise de certains paramètres. Nous proposons dans une seconde partie une méthode alternative d'estimation des paramètres du modèle d'Hodgkin-Huxley s'appuyant sur l'algorithme d'évolution différentielle et qui pallie les limitations de la méthode classique. Cette alternative permet d'estimer conjointement tous les paramètres d'un même canal ionique. Le troisième chapitre est divisé en trois sections. Dans les deux premières, nous appliquons notre nouvelle technique à l'estimation des paramètres du même modèle à partir de données biologiques, puis développons un protocole automatisé de réglage de circuits neuromimétiques, canal ionique par canal ionique. La troisième section présente une méthode d'estimation des paramètres à partir d'enregistrements de la tension de membrane d'un neurone, données dont l'acquisition est plus aisée que celle des courants ioniques. Le quatrième et dernier chapitre, quant à lui, est une ouverture vers l'utilisation de petits réseaux d'une centaine de neurones électroniques : nous réalisons une étude logicielle de l'influence des propriétés intrinsèques de la cellule sur le comportement global du réseau dans le cadre des oscillations gamma.
APA, Harvard, Vancouver, ISO, and other styles
6

Faouzi, Johann. "Machine learning to predict impulse control disorders in Parkinson's disease." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS048.

Full text
Abstract:
Les troubles du contrôle de l'impulsivité sont une classe de troubles psychiatriques caractérisés par des difficultés dans la maîtrise de ses émotions, pensées et comportements. Ces troubles sont courants dans la maladie de Parkinson et associés à une baisse de la qualité de vie des patients ainsi qu'à une augmentation de la charge des aidants. Pouvoir prédire quels sont les sujets les plus à risque de développer ces troubles et quand ces troubles apparaissent est de grande importance. L'objectif de cette thèse est d'étudier les troubles du contrôle de l'impulsivité dans la maladie de Parkinson à partir des approches statistique et de l'apprentissage automatique, et se divise en deux parties. La première partie consiste à analyser la performance prédictive de l'ensemble des facteurs associés à ces troubles dans la littérature. La seconde partie consiste à étudier l'association et l'utilité d'autres facteurs, en particulier des données génétiques, pour améliorer la performance prédictive
Impulse control disorders are a class of psychiatric disorders characterized by impulsivity. These disorders are common during the course of Parkinson's disease, decrease the quality of life of subjects, and increase caregiver burden. Being able to predict which individuals are at higher risk of developing these disorders and when is of high importance. The objective of this thesis is to study impulse control disorders in Parkinson's disease from the statistical and machine learning points of view, and can be divided into two parts. The first part consists in investigating the predictive performance of the altogether factors associated with these disorders in the literature. The second part consists in studying the association and the usefulness of other factors, in particular genetic data, to improve the predictive performance
APA, Harvard, Vancouver, ISO, and other styles
7

Thiele, Johannes C. "Deep learning in event-based neuromorphic systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS403/document.

Full text
Abstract:
Inférence et apprentissage dans les réseaux de neurones profonds nécessitent une grande quantité de calculs qui, dans beaucoup de cas, limite leur intégration dans les environnements limités en ressources. Les réseaux de neurones évènementiels de type « spike » présentent une alternative aux réseaux de neurones artificiels classiques, et promettent une meilleure efficacité énergétique. Cependant, entraîner les réseaux spike demeure un défi important, particulièrement dans le cas où l’apprentissage doit être exécuté sur du matériel de calcul bio-inspiré, dit matériel neuromorphique. Cette thèse constitue une étude sur les algorithmes d’apprentissage et le codage de l’information dans les réseaux de neurones spike.A partir d’une règle d’apprentissage bio-inspirée, nous analysons quelles propriétés sont nécessaires dans les réseaux spike pour rendre possible un apprentissage embarqué dans un scénario d’apprentissage continu. Nous montrons qu’une règle basée sur le temps de déclenchement des neurones (type « spike-timing dependent plasticity ») est capable d’extraire des caractéristiques pertinentes pour permettre une classification d’objets simples comme ceux des bases de données MNIST et N-MNIST.Pour dépasser certaines limites de cette approche, nous élaborons un nouvel outil pour l’apprentissage dans les réseaux spike, SpikeGrad, qui représente une implémentation entièrement évènementielle de la rétro-propagation du gradient. Nous montrons comment cette approche peut être utilisée pour l’entrainement d’un réseau spike qui est capable d’inférer des relations entre valeurs numériques et des images MNIST. Nous démontrons que cet outil est capable d’entrainer un réseau convolutif profond, qui donne des taux de reconnaissance d’image compétitifs avec l’état de l’art sur les bases de données MNIST et CIFAR10. De plus, SpikeGrad permet de formaliser la réponse d’un réseau spike comme celle d’un réseau de neurones artificiels classique, permettant un entraînement plus rapide.Nos travaux introduisent ainsi plusieurs mécanismes d’apprentissage puissants pour les réseaux évènementiels, contribuant à rendre l’apprentissage des réseaux spike plus adaptés à des problèmes réels
Inference and training in deep neural networks require large amounts of computation, which in many cases prevents the integration of deep networks in resource constrained environments. Event-based spiking neural networks represent an alternative to standard artificial neural networks that holds the promise of being capable of more energy efficient processing. However, training spiking neural networks to achieve high inference performance is still challenging, in particular when learning is also required to be compatible with neuromorphic constraints. This thesis studies training algorithms and information encoding in such deep networks of spiking neurons. Starting from a biologically inspired learning rule, we analyze which properties of learning rules are necessary in deep spiking neural networks to enable embedded learning in a continuous learning scenario. We show that a time scale invariant learning rule based on spike-timing dependent plasticity is able to perform hierarchical feature extraction and classification of simple objects of the MNIST and N-MNIST dataset. To overcome certain limitations of this approach we design a novel framework for spike-based learning, SpikeGrad, which represents a fully event-based implementation of the gradient backpropagation algorithm. We show how this algorithm can be used to train a spiking network that performs inference of relations between numbers and MNIST images. Additionally, we demonstrate that the framework is able to train large-scale convolutional spiking networks to competitive recognition rates on the MNIST and CIFAR10 datasets. In addition to being an effective and precise learning mechanism, SpikeGrad allows the description of the response of the spiking neural network in terms of a standard artificial neural network, which allows a faster simulation of spiking neural network training. Our work therefore introduces several powerful training concepts for on-chip learning in neuromorphic devices, that could help to scale spiking neural networks to real-world problems
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography