To see the other types of publications on this topic, follow the link: Réseau de neurone convolutif.

Dissertations / Theses on the topic 'Réseau de neurone convolutif'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Réseau de neurone convolutif.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Messaoud, Kaouther. "Deep learning based trajectory prediction for autonomous vehicles." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS048.

Full text
Abstract:
La prédiction de trajectoire des agents avoisinants d'un véhicule autonome est essentielle pour la conduite autonome afin d'effectuer une planification de trajectoire d'une manière efficace. Dans cette thèse, nous abordons la problématique de prédiction de trajectoire d'un véhicule cible dans deux environnements différents ; une autoroute et une zone urbaine (intersection, rond-point, etc.). Dans ce but, nous développons des solutions basées sur l'apprentissage automatique profond en mettant en phase les interactions entre le véhicule cibles et les éléments statiques et dynamiques de la scène. De plus, afin de tenir compte de l'incertitude du futur, nous générons de multiples trajectoires plausibles et la probabilité d'occurrence de chacune. Nous nous assurons également que les trajectoires prédites sont réalistes et conformes à la structure de la scène. Les solutions développées sont évaluées à à l'aide de bases de données de conduite réelles
The trajectory prediction of neighboring agents of an autonomous vehicle is essential for autonomous driving in order to perform trajectory planning in an efficient manner. In this thesis, we tackle the problem of predicting the trajectory of a target vehicle in two different environments; a highway and an urban area (intersection, roundabout, etc.). To this end, we develop solutions based on deep machine learning by phasing the interactions between the target vehicle and the static and dynamic elements of the scene. In addition, in order to take into account the uncertainty of the future, we generate multiple plausible trajectories and the probability of occurrence of each. We also make sure that the predicted trajectories are realistic and conform to the structure of the scene. The solutions developed are evaluated using real driving datasets
APA, Harvard, Vancouver, ISO, and other styles
2

Fernandez, Brillet Lucas. "Réseaux de neurones CNN pour la vision embarquée." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM043.

Full text
Abstract:
Pour obtenir des hauts taux de détection, les CNNs requièrent d'un grand nombre de paramètres à stocker, et en fonction de l'application, aussi un grand nombre d'opérations. Cela complique gravement le déploiement de ce type de solutions dans les systèmes embarqués. Ce manuscrit propose plusieurs solutions à ce problème en visant une coadaptation entre l'algorithme, l'application et le matériel.Dans ce manuscrit, les principaux leviers permettant de fixer la complexité computationnelle d'un détecteur d'objets basé sur les CNNs sont identifiés et étudies. Lorsqu'un CNN est employé pour détecter des objets dans une scène, celui-ci doit être appliqué à travers toutes les positions et échelles possibles. Cela devient très coûteux lorsque des petits objets doivent être trouvés dans des images en haute résolution. Pour rendre la solution efficiente et ajustable, le processus est divisé en deux étapes. Un premier CNN s'especialise à trouver des régions d'intérêt de manière efficiente, ce qui permet d'obtenir des compromis flexibles entre le taux de détection et le nombre d’opérations. La deuxième étape comporte un CNN qui classifie l’ensemble des propositions, ce qui réduit la complexité de la tâche, et par conséquent la complexité computationnelle.De plus, les CNN exhibent plusieurs propriétés qui confirment leur surdimensionnement. Ce surdimensionnement est une des raisons du succès des CNN, puisque cela facilite le processus d’optimisation en permettant un ample nombre de solutions équivalentes. Cependant, cela complique leur implémentation dans des systèmes avec fortes contraintes computationnelles. Dans ce sens, une méthode de compression de CNN basé sur une Analyse en Composantes Principales (ACP) est proposé. L’ACP permet de trouver, pour chaque couche du réseau, une nouvelle représentation de l’ensemble de filtres appris par le réseau en les exprimant à travers d’une base ACP plus adéquate. Cette base ACP est hiérarchique, ce qui veut dire que les termes de la base sont ordonnés par importance, et en supprimant les termes moins importants, il est possible de trouver des compromis optimales entre l’erreur d’approximation et le nombre de paramètres. À travers de cette méthode il es possible d’obtenir, par exemple, une réduction x2 sur le nombre de paramètres et opérations d’un réseau du type ResNet-32, avec une perte en accuracy <2%. Il est aussi démontré que cette méthode est compatible avec d’autres méthodes connues de l’état de l’art, notamment le pruning, winograd et la quantification. En les combinant toutes, il est possible de réduire la taille d’un ResNet-110 de 6.88 Mbytes à 370kBytes (gain mémoire x19) avec une dégradation d’accuracy de 3.9%.Toutes ces techniques sont ensuite misses en pratique dans un cadre applicatif de détection de vissages. La solution obtenue comporte une taille de modèle de 29.3kBytes, ce qui représente une réduction x65 par rapport à l’état de l’art, à égal taux de détection. La solution est aussi comparé a une méthode classique telle que Viola-Jones, ce qui confirme autour d’un ordre de magnitude moins de calculs, au même temps que l’habilité d’obtenir des taux de détection plus hauts, sans des hauts surcoûts computationnels Les deux réseaux sont en suite évalues sur un multiprocesseur embarqué, ce qui permet de vérifier que les taux de compression théoriques obtenues restent cohérents avec les chiffres mesurées. Dans le cas de la détection de vissages, la parallélisation du réseau comprimé par ACP sûr 8 processeurs incrémente la vitesse de calcul d’un facteur x11.68 par rapport au réseau original sûr un seul processeur
Recently, Convolutional Neural Networks have become the state-of-the-art soluion(SOA) to most computer vision problems. In order to achieve high accuracy rates, CNNs require a high parameter count, as well as a high number of operations. This greatly complicates the deployment of such solutions in embedded systems, which strive to reduce memory size. Indeed, while most embedded systems are typically in the range of a few KBytes of memory, CNN models from the SOA usually account for multiple MBytes, or even GBytes in model size. Throughout this thesis, multiple novel ideas allowing to ease this issue are proposed. This requires to jointly design the solution across three main axes: Application, Algorithm and Hardware.In this manuscript, the main levers allowing to tailor computational complexity of a generic CNN-based object detector are identified and studied. Since object detection requires scanning every possible location and scale across an image through a fixed-input CNN classifier, the number of operations quickly grows for high-resolution images. In order to perform object detection in an efficient way, the detection process is divided into two stages. The first stage involves a region proposal network which allows to trade-off recall for the number of operations required to perform the search, as well as the number of regions passed on to the next stage. Techniques such as bounding box regression also greatly help reduce the dimension of the search space. This in turn simplifies the second stage, since it allows to reduce the task’s complexity to the set of possible proposals. Therefore, parameter counts can greatly be reduced.Furthermore, CNNs also exhibit properties that confirm their over-dimensionment. This over-dimensionement is one of the key success factors of CNNs in practice, since it eases the optimization process by allowing a large set of equivalent solutions. However, this also greatly increases computational complexity, and therefore complicates deploying the inference stage of these algorithms on embedded systems. In order to ease this problem, we propose a CNN compression method which is based on Principal Component Analysis (PCA). PCA allows to find, for each layer of the network independently, a new representation of the set of learned filters by expressing them in a more appropriate PCA basis. This PCA basis is hierarchical, meaning that basis terms are ordered by importance, and by removing the least important basis terms, it is possible to optimally trade-off approximation error for parameter count. Through this method, it is possible to compress, for example, a ResNet-32 network by a factor of ×2 both in the number of parameters and operations with a loss of accuracy <2%. It is also shown that the proposed method is compatible with other SOA methods which exploit other CNN properties in order to reduce computational complexity, mainly pruning, winograd and quantization. Through this method, we have been able to reduce the size of a ResNet-110 from 6.88Mbytes to 370kbytes, i.e. a x19 memory gain with a 3.9 % accuracy loss.All this knowledge, is applied in order to achieve an efficient CNN-based solution for a consumer face detection scenario. The proposed solution consists of just 29.3kBytes model size. This is x65 smaller than other SOA CNN face detectors, while providing equal detection performance and lower number of operations. Our face detector is also compared to a more traditional Viola-Jones face detector, exhibiting approximately an order of magnitude faster computation, as well as the ability to scale to higher detection rates by slightly increasing computational complexity.Both networks are finally implemented in a custom embedded multiprocessor, verifying that theorical and measured gains from PCA are consistent. Furthermore, parallelizing the PCA compressed network over 8 PEs achieves a x11.68 speed-up with respect to the original network running on a single PE
APA, Harvard, Vancouver, ISO, and other styles
3

Pothier, Dominique. "Réseaux convolutifs à politiques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69184.

Full text
Abstract:
Malgré leurs excellentes performances, les exigences élevées des réseaux de neurones artificiels en terme de volume de données et de puissance de calcul limitent leur adoption dans plusieurs domaines. C'est pourquoi il reste important de développer de nouvelles architectures moins voraces. Ce mémoire cherche à produire une architecture plus flexible et moins vorace en s'appuyant sur la théorie de l'apprentissage par renforcement. En considérant le réseau comme un agent suivant une politique, on réalise que cette politique est beaucoup plus rigide que celle suivie habituellement par les agents d'apprentissage par renforcement. Nous posons l'hypothèse qu'une architecture capable de formuler une politique plus flexible pourrait atteindre des performances similaires tout en limitant son utilisation de ressources. L'architecture que nous proposons s'inspire de la recherche faite en prédiction de paramètres, particulièrement de l'architecture hypernetwork, que nous utilisons comme base de référence. Nos résultats montrent que l'apprentissage d'une politique dynamique aussi performante que les politiques statiques suivies par les réseaux conventionnels n'est pas une tâche triviale. Nos meilleurs résultats indiquent une diminution du nombre de paramètres de 33%, une diminution des calculs de 12% au prix d'une baisse de l'exactitude des prédictions de 2%. Malgré ces résultats, nous croyons que notre architecture est un point de départ pouvant être amélioré de plusieurs manières que nous explorons rapidement en conclusion.
Despite their excellent performances, artificial neural networks high demand of both data and computational power limit their adoption in many domains. Developing less demanding architecture thus remain an important endeavor. This thesis seeks to produce a more flexible and less resource-intensive architecture by using reinforcement learning theory. When considering a network as an agent instead of a function approximator, one realize that the implicit policy followed by popular feed forward networks is extremely simple. We hypothesize that an architecture able to learn a more flexible policy could reach similar performances while reducing its resource footprint. The architecture we propose is inspired by research done in weight prediction, particularly by the hypernetwork architecture, which we use as a baseline model.Our results show that learning a dynamic policy achieving similar results to the static policies of conventional networks is not a trivial task. Our proposed architecture succeeds in limiting its parameter space by 20%, but does so at the cost of a 24% computation increase and loss of5% accuracy. Despite those results, we believe that this architecture provides a baseline that can be improved in multiple ways that we describe in the conclusion.
APA, Harvard, Vancouver, ISO, and other styles
4

Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066406.

Full text
Abstract:
Nous avons précédemment mené une étude comparative entre les descripteurs FV et CNN dans le cadre de la recherche par similarité d’instance. Cette étude montre notamment que les descripteurs issus de CNN manquent d’invariance aux transformations comme les rotations ou changements d’échelle. Nous montrons dans un premier temps comment des réductions de dimension (“pooling”) appliquées sur la base de données d’images permettent de réduire fortement l’impact de ces problèmes. Certaines variantes préservent la dimensionnalité des descripteurs associés à une image, alors que d’autres l’augmentent, au prix du temps d’exécution des requêtes. Dans un second temps, nous proposons la réduction de dimension emboitée pour l’invariance (NIP), une méthode originale pour la production, à partir de descripteurs issus de CNN, de descripteurs globaux invariants à de multiples transformations. La méthode NIP est inspirée de la théorie pour l’invariance “i-theory”, une théorie mathématique proposée il y a peu pour le calcul de transformations invariantes à des groupes au sein de réseaux de neurones acycliques. Nous montrons que NIP permet d’obtenir des descripteurs globaux compacts (mais non binaires) et robustes aux rotations et aux changements d’échelle, que NIP est plus performants que les autres méthodes à dimensionnalité équivalente sur la plupart des bases de données d’images. Enfin, nous montrons que la combinaison de NIP avec la méthode de hachage RBMH proposée précédemment permet de produire des codes binaires à la fois compacts et invariants à plusieurs types de transformations. La méthode NIP+RBMH, évaluée sur des bases de données d’images de moyennes et grandes échelles, se révèle plus performante que l’état de l’art, en particulier dans le cas de descripteurs binaires de très petite taille (de 32 à 256 bits)
Image instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
APA, Harvard, Vancouver, ISO, and other styles
5

Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.

Full text
Abstract:
L’intelligence artificielle est un domaine de recherche relativement récent. Grâce à lui, plusieurs percées ont été faites sur une série de problèmes qui étaient autrefois considérés comme très difficiles. La classification fine est l’un de ces problèmes. Cependant, même si résoudre cette tâche pourrait représenter des avancées tant au niveau scientifique qu’au niveau industriel, peu de recherche y a été effectué. Dans ce mémoire, nous abordons la problématique de l’application de la classification fine sur des problèmes concrets, soit la classification d’essence d’arbres uniquement grâce à des images de l’écorce et la classification visuelle des moisissures en culture. Nous commençons par présenter plusieurs concepts sur lesquels se basent l’apprentissage profond, à la base de notre solution ainsi que plusieurs expériences qui ont été menées afin de tenter de résoudre le problème de classification d’essence d’arbres à partir d’images de l’écorce. Par la suite, nous détaillons le jeu de données nommé BarkNet 1. 0 que nous avons construit dans le cadre de ce projet. Grâce à celui-ci, nous avons été en mesure de développer une méthode permettant d’obtenir une précision de 93,88% en utilisant une seule crop aléatoire dans une image et une précision de 97,81% en utilisant un vote de majorité sur toutes les images d’un arbre. Finalement, nous concluons en démontrant la faisabilité d’appliquer notre méthode dans d’autres contextes en montrant quelques applications concrètes sur lesquelles nous l’avons essayée, soit la classification d’essence d’arbres en industrie et la classification de moisissures.
Artificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
APA, Harvard, Vancouver, ISO, and other styles
6

Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066406.

Full text
Abstract:
Nous avons précédemment mené une étude comparative entre les descripteurs FV et CNN dans le cadre de la recherche par similarité d’instance. Cette étude montre notamment que les descripteurs issus de CNN manquent d’invariance aux transformations comme les rotations ou changements d’échelle. Nous montrons dans un premier temps comment des réductions de dimension (“pooling”) appliquées sur la base de données d’images permettent de réduire fortement l’impact de ces problèmes. Certaines variantes préservent la dimensionnalité des descripteurs associés à une image, alors que d’autres l’augmentent, au prix du temps d’exécution des requêtes. Dans un second temps, nous proposons la réduction de dimension emboitée pour l’invariance (NIP), une méthode originale pour la production, à partir de descripteurs issus de CNN, de descripteurs globaux invariants à de multiples transformations. La méthode NIP est inspirée de la théorie pour l’invariance “i-theory”, une théorie mathématique proposée il y a peu pour le calcul de transformations invariantes à des groupes au sein de réseaux de neurones acycliques. Nous montrons que NIP permet d’obtenir des descripteurs globaux compacts (mais non binaires) et robustes aux rotations et aux changements d’échelle, que NIP est plus performants que les autres méthodes à dimensionnalité équivalente sur la plupart des bases de données d’images. Enfin, nous montrons que la combinaison de NIP avec la méthode de hachage RBMH proposée précédemment permet de produire des codes binaires à la fois compacts et invariants à plusieurs types de transformations. La méthode NIP+RBMH, évaluée sur des bases de données d’images de moyennes et grandes échelles, se révèle plus performante que l’état de l’art, en particulier dans le cas de descripteurs binaires de très petite taille (de 32 à 256 bits)
Image instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
APA, Harvard, Vancouver, ISO, and other styles
7

Elloumi, Zied. "Prédiction de performances des systèmes de Reconnaissance Automatique de la Parole." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM005/document.

Full text
Abstract:
Nous abordons dans cette thèse la tâche de prédiction de performances des systèmes de reconnaissance automatique de la parole (SRAP).Il s'agit d'une tâche utile pour mesurer la fiabilité d'hypothèses de transcription issues d'une nouvelle collection de données, lorsque la transcription de référence est indisponible et que le SRAP utilisé est inconnu (boîte noire).Notre contribution porte sur plusieurs axes:d'abord, nous proposons un corpus français hétérogène pour apprendre et évaluer des systèmes de prédiction de performances ainsi que des systèmes de RAP.Nous comparons par la suite deux approches de prédiction: une approche à l'état de l'art basée sur l'extraction explicite de traitset une nouvelle approche basée sur des caractéristiques entraînées implicitement à l'aide des réseaux neuronaux convolutifs (CNN).L'utilisation jointe de traits textuels et acoustiques n'apporte pas de gains avec de l'approche état de l'art,tandis qu'elle permet d'obtenir de meilleures prédictions en utilisant les CNNs. Nous montrons également que les CNNs prédisent clairement la distribution des taux d'erreurs sur une collection d'enregistrements, contrairement à l'approche état de l'art qui génère une distribution éloignée de la réalité.Ensuite, nous analysons des facteurs impactant les deux approches de prédiction. Nous évaluons également l'impact de la quantité d'apprentissage des systèmes de prédiction ainsi que la robustesse des systèmes appris avec les sorties d'un système de RAP particulier et utilisés pour prédire la performance sur une nouvelle collection de données.Nos résultats expérimentaux montrent que les deux approches de prédiction sont robustes et que la tâche de prédiction est plus difficile sur des tours de parole courts ainsi que sur les tours de parole ayant un style de parole spontané.Enfin, nous essayons de comprendre quelles informations sont capturées par notre modèle neuronal et leurs liens avec différents facteurs.Nos expériences montrent que les représentations intermédiaires dans le réseau encodent implicitementdes informations sur le style de la parole, l'accent du locuteur ainsi que le type d'émission.Pour tirer profit de cette analyse, nous proposons un système multi-tâche qui se montre légèrement plus efficace sur la tâche de prédiction de performance
In this thesis, we focus on performance prediction of automatic speech recognition (ASR) systems.This is a very useful task to measure the reliability of transcription hypotheses for a new data collection, when the reference transcription is unavailable and the ASR system used is unknown (black box).Our contribution focuses on several areas: first, we propose a heterogeneous French corpus to learn and evaluate ASR prediction systems.We then compare two prediction approaches: a state-of-the-art (SOTA) performance prediction based on engineered features and a new strategy based on learnt features using convolutional neural networks (CNNs).While the joint use of textual and signal features did not work for the SOTA system, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably predicts the shape of the WER distribution on a collection of speech recordings.Then, we analyze factors impacting both prediction approaches. We also assess the impact of the training size of prediction systems as well as the robustness of systems learned with the outputs of a particular ASR system and used to predict performance on a new data collection.Our experimental results show that both prediction approaches are robust and that the prediction task is more difficult on short speech turns as well as spontaneous speech style.Finally, we try to understand which information is captured by our neural model and its relation with different factors.Our experiences show that intermediate representations in the network automatically encode information on the speech style, the speaker's accent as well as the broadcast program type.To take advantage of this analysis, we propose a multi-task system that is slightly more effective on the performance prediction task
APA, Harvard, Vancouver, ISO, and other styles
8

Foroughmand, Aarabi Hadrien. "Towards global tempo estimation and rhythm-oriented genre classification based on harmonic characteristics of rhythm." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS018.

Full text
Abstract:
La détection automatique de la structure rythmique au sein de la musique est l'un des défis du domaine de recherche "Music Information Retrieval". L'avènement de la technologie dédiées aux arts a permis l'émergence de nouvelles tendances musicales généralement décrites par le terme d'"Electronic/Dance Music" (EDM) qui englobe une pléthore de sous-genres. Ce type de musique souvent dédiée à la danse se caractérise par sa structure rythmique. Nous proposons une analyse rythmique de ce qui définit certains genres musicaux dont ceux de l'EDM. Pour ce faire, nous souhaitons réaliser une tâche d'estimation automatique du tempo global et une tâche de classification des genres axée sur le rythme. Le tempo et le genre sont deux aspects entremêlés puisque les genres sont souvent associés à des motifs rythmiques qui sont joués dans des plages de tempo spécifiques. Certains systèmes d'estimation du tempo dit "handcrafted" ont montré leur efficacité en se basant sur l'extraction de caractéristiques liées au rythme. Récemment, avec l'apparition de base de données annotées, les systèmes dit "data-driven" et les approches d'apprentissage profond ont montré des progrès dans l'estimation automatique de ces tâches.Dans cette thèse, nous proposons des méthodes à la croisée des chemins entre les systèmes "handcrafted" et "data-driven". Le développement d'une nouvelle représentation du rythme combiné à un apprentissage profond par réseau de neurone convolutif est à la base de tous nos travaux. Nous présentons en détails notre méthode dites Deep Rhythm dans cette thèse et nous présentons également plusieurs extensions basées sur des intuitions musicales qui nous permettent d'améliorer nos résultats
Automatic detection of the rhythmic structure within music is one of the challenges of the "Music Information Retrieval" research area. The advent of technology dedicated to the arts has allowed the emergence of new musical trends generally described by the term "Electronic/Dance Music" (EDM) which encompasses a plethora of sub-genres. This type of music often dedicated to dance is characterized by its rhythmic structure. We propose a rhythmic analysis of what defines certain musical genres including those of EDM. To do so, we want to perform an automatic global tempo estimation task and a genre classification task based on rhythm. Tempo and genre are two intertwined aspects since genres are often associated with rhythmic patterns that are played in specific tempo ranges. Some so-called "handcrafted" tempo estimation systems have been shown to be effective based on the extraction of rhythm-related characteristics. Recently, with the appearance of annotated databases, so-called "data-driven" systems and deep learning approaches have shown progress in the automatic estimation of these tasks. In this thesis, we propose methods at the crossroads between " handcrafted " and " data-driven " systems. The development of a new representation of rhythm combined with deep learning by convolutional neural network is at the basis of all our work. We present in detail our Deep Rhythm method in this thesis and we also present several extensions based on musical intuitions that allow us to improve our results
APA, Harvard, Vancouver, ISO, and other styles
9

Pourchot, Aloïs. "Improving Radiographic Diagnosis with Deep Learning in Clinical Settings." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS421.

Full text
Abstract:
Les succès impressionnants de l'apprentissage profond au cours de la dernière décennie ont renforcé son statut de norme pour résoudre les problèmes difficiles d'apprentissage automatique, et ont permis sa diffusion rapide dans de nombreux domaines d'application. L'un de ces domaines, qui est au cœur de ce doctorat, est l'imagerie médicale. L'apprentissage profond a fait de la perspective exaltante de soulager les experts médicaux d'une fraction de leur charge de travail grâce au diagnostic automatisé une réalité. Au cours de cette thèse, nous avons été amenés à considérer deux problèmes médicaux : la tâche de détection des fractures, et la tâche d'évaluation de l'âge osseux. Pour chacune de ces deux tâches, nous avons cherché à explorer les possibilités d'amélioration des outils d'apprentissage profond visant à faciliter leur diagnostic. Avec cet objectif en tête, nous avons exploré deux stratégies différentes. La première, ambitieuse mais arrogante, nous a conduit à étudier le paradigme de la recherche d'architecture neuronale, une succession logique de l'apprentissage profond qui vise à apprendre la structure même du modèle de réseau neuronal utilisé pour résoudre une tâche. Dans une seconde stratégie, plus simple mais aussi plus sage, nous avons tenté d'améliorer un modèle par l'analyse méticuleuse des sources de données à disposition. Dans les deux cas, un soin particulier a été apporté à la pertinence clinique de nos différentes contributions, car nous pensons que l'ancrage pratique de nos différents résultats est tout aussi important que leur obtention théorique
The impressive successes of deep learning over the course of the past decade have reinforced its establishment as the standard modus operandi to solve difficult machine learning problems, as well as enabled its swift spread to manifold domains of application. One such domain, which is at the heart of this PhD, is medical imaging. Deep learning has made the thrilling perspective of relieving medical experts from a fraction of their burden through automated diagnosis a reality. Over the course of this thesis, we were led to consider two medical problems: the task of fracture detection, and the task of bone age assessment. For both of them, we strove to explore possibilities to improve deep learning tools aimed at facilitating their diagnosis. With this objective in mind, we have explored two different strategies. The first one, ambitious yet arrogant, has led us to investigate the paradigm of neural architecture search, a logical succession to deep learning which aims at learning the very structure of the neural network model used to solve a task. In a second, bleaker but wiser strategy, we have tried to improve a model through the meticulous analysis of the data sources at hands. In both scenarios, a particular care was given to the clinical relevance of our different results and contributions, as we believed that the practical anchoring of our different contrivances was just as important as their theoretical design
APA, Harvard, Vancouver, ISO, and other styles
10

Abbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.

Full text
Abstract:
Dans cette thèse, notre objectif est de développer des modèles d’apprentissage robustes et fiables mais précis, en particulier les Convolutional Neural Network (CNN), en présence des exemples anomalies, comme des exemples adversaires et d’échantillons hors distribution –Out-of-Distribution (OOD). Comme la première contribution, nous proposons d’estimer la confiance calibrée pour les exemples adversaires en encourageant la diversité dans un ensemble des CNNs. À cette fin, nous concevons un ensemble de spécialistes diversifiés avec un mécanisme de vote simple et efficace en termes de calcul pour prédire les exemples adversaires avec une faible confiance tout en maintenant la confiance prédicative des échantillons propres élevée. En présence de désaccord dans notre ensemble, nous prouvons qu’une borne supérieure de 0:5 + _0 peut être établie pour la confiance, conduisant à un seuil de détection global fixe de tau = 0; 5. Nous justifions analytiquement le rôle de la diversité dans notre ensemble sur l’atténuation du risque des exemples adversaires à la fois en boîte noire et en boîte blanche. Enfin, nous évaluons empiriquement la robustesse de notre ensemble aux attaques de la boîte noire et de la boîte blanche sur plusieurs données standards. La deuxième contribution vise à aborder la détection d’échantillons OOD à travers un modèle de bout en bout entraîné sur un ensemble OOD approprié. À cette fin, nous abordons la question centrale suivante : comment différencier des différents ensembles de données OOD disponibles par rapport à une tâche de distribution donnée pour sélectionner la plus appropriée, ce qui induit à son tour un modèle calibré avec un taux de détection des ensembles inaperçus de données OOD? Pour répondre à cette question, nous proposons de différencier les ensembles OOD par leur niveau de "protection" des sub-manifolds. Pour mesurer le niveau de protection, nous concevons ensuite trois nouvelles mesures efficaces en termes de calcul à l’aide d’un CNN vanille préformé. Dans une vaste série d’expériences sur les tâches de classification d’image et d’audio, nous démontrons empiriquement la capacité d’un CNN augmenté (A-CNN) et d’un CNN explicitement calibré pour détecter une portion significativement plus grande des exemples OOD. Fait intéressant, nous observons également qu’un tel A-CNN (nommé A-CNN) peut également détecter les adversaires exemples FGS en boîte noire avec des perturbations significatives. En tant que troisième contribution, nous étudions de plus près de la capacité de l’A-CNN sur la détection de types plus larges d’adversaires boîte noire (pas seulement ceux de type FGS). Pour augmenter la capacité d’A-CNN à détecter un plus grand nombre d’adversaires,nous augmentons l’ensemble d’entraînement OOD avec des échantillons interpolés inter-classes. Ensuite, nous démontrons que l’A-CNN, entraîné sur tous ces données, a un taux de détection cohérent sur tous les types des adversaires exemples invisibles. Alors que la entraînement d’un A-CNN sur des adversaires PGD ne conduit pas à un taux de détection stable sur tous les types d’adversaires, en particulier les types inaperçus. Nous évaluons également visuellement l’espace des fonctionnalités et les limites de décision dans l’espace d’entrée d’un CNN vanille et de son homologue augmenté en présence d’adversaires et de ceux qui sont propres. Par un A-CNN correctement formé, nous visons à faire un pas vers un modèle d’apprentissage debout en bout unifié et fiable avec de faibles taux de risque sur les échantillons propres et les échantillons inhabituels, par exemple, les échantillons adversaires et OOD. La dernière contribution est de présenter une application de A-CNN pour l’entraînement d’un détecteur d’objet robuste sur un ensemble de données partiellement étiquetées, en particulier un ensemble de données fusionné. La fusion de divers ensembles de données provenant de contextes similaires mais avec différents ensembles d’objets d’intérêt (OoI) est un moyen peu coûteux de créer un ensemble de données à grande échelle qui couvre un plus large spectre d’OoI. De plus, la fusion d’ensembles de données permet de réaliser un détecteur d’objet unifié, au lieu d’en avoir plusieurs séparés, ce qui entraîne une réduction des coûts de calcul et de temps. Cependant, la fusion d’ensembles de données, en particulier à partir d’un contexte similaire, entraîne de nombreuses instances d’étiquetées manquantes. Dans le but d’entraîner un détecteur d’objet robuste intégré sur un ensemble de données partiellement étiquetées mais à grande échelle, nous proposons un cadre d’entraînement auto-supervisé pour surmonter le problème des instances d’étiquettes manquantes dans les ensembles des données fusionnés. Notre cadre est évalué sur un ensemble de données fusionné avec un taux élevé d’étiquettes manquantes. Les résultats empiriques confirment la viabilité de nos pseudo-étiquettes générées pour améliorer les performances de YOLO, en tant que détecteur d’objet à la pointe de la technologie.
In this thesis, our goal is to develop robust and reliable yet accurate learning models, particularly Convolutional Neural Networks (CNNs), in the presence of adversarial examples and Out-of-Distribution (OOD) samples. As the first contribution, we propose to predict adversarial instances with high uncertainty through encouraging diversity in an ensemble of CNNs. To this end, we devise an ensemble of diverse specialists along with a simple and computationally efficient voting mechanism to predict the adversarial examples with low confidence while keeping the predictive confidence of the clean samples high. In the presence of high entropy in our ensemble, we prove that the predictive confidence can be upper-bounded, leading to have a globally fixed threshold over the predictive confidence for identifying adversaries. We analytically justify the role of diversity in our ensemble on mitigating the risk of both black-box and white-box adversarial examples. Finally, we empirically assess the robustness of our ensemble to the black-box and the white-box attacks on several benchmark datasets.The second contribution aims to address the detection of OOD samples through an end-to-end model trained on an appropriate OOD set. To this end, we address the following central question: how to differentiate many available OOD sets w.r.t. a given in distribution task to select the most appropriate one, which in turn induces a model with a high detection rate of unseen OOD sets? To answer this question, we hypothesize that the “protection” level of in-distribution sub-manifolds by each OOD set can be a good possible property to differentiate OOD sets. To measure the protection level, we then design three novel, simple, and cost-effective metrics using a pre-trained vanilla CNN. In an extensive series of experiments on image and audio classification tasks, we empirically demonstrate the abilityof an Augmented-CNN (A-CNN) and an explicitly-calibrated CNN for detecting a significantly larger portion of unseen OOD samples, if they are trained on the most protective OOD set. Interestingly, we also observe that the A-CNN trained on the most protective OOD set (calledA-CNN) can also detect the black-box Fast Gradient Sign (FGS) adversarial examples. As the third contribution, we investigate more closely the capacity of the A-CNN on the detection of wider types of black-box adversaries. To increase the capability of A-CNN to detect a larger number of adversaries, we augment its OOD training set with some inter-class interpolated samples. Then, we demonstrate that the A-CNN trained on the most protective OOD set along with the interpolated samples has a consistent detection rate on all types of unseen adversarial examples. Where as training an A-CNN on Projected Gradient Descent (PGD) adversaries does not lead to a stable detection rate on all types of adversaries, particularly the unseen types. We also visually assess the feature space and the decision boundaries in the input space of a vanilla CNN and its augmented counterpart in the presence of adversaries and the clean ones. By a properly trained A-CNN, we aim to take a step toward a unified and reliable end-to-end learning model with small risk rates on both clean samples and the unusual ones, e.g. adversarial and OOD samples.The last contribution is to show a use-case of A-CNN for training a robust object detector on a partially-labeled dataset, particularly a merged dataset. Merging various datasets from similar contexts but with different sets of Object of Interest (OoI) is an inexpensive way to craft a large-scale dataset which covers a larger spectrum of OoIs. Moreover, merging datasets allows achieving a unified object detector, instead of having several separate ones, resultingin the reduction of computational and time costs. However, merging datasets, especially from a similar context, causes many missing-label instances. With the goal of training an integrated robust object detector on a partially-labeled but large-scale dataset, we propose a self-supervised training framework to overcome the issue of missing-label instances in the merged datasets. Our framework is evaluated on a merged dataset with a high missing-label rate. The empirical results confirm the viability of our generated pseudo-labels to enhance the performance of YOLO, as the current (to date) state-of-the-art object detector.
APA, Harvard, Vancouver, ISO, and other styles
11

Antipov, Grigory. "Apprentissage profond pour la description sémantique des traits visuels humains." Thesis, Paris, ENST, 2017. http://www.theses.fr/2017ENST0071/document.

Full text
Abstract:
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la conception et l’apprentissage des réseaux de neurones convolutifs (CNNs) pour la classification du genre et l’estimation de l’âge. Ainsi, nous obtenons les CNNs les plus performants de l’état de l’art. De plus, ces modèles nous ont permis de remporter une compétition internationale sur l’estimation de l’âge apparent. Nos meilleurs CNNs obtiennent une précision moyenne de 98.7% pour la classification du genre et une erreur moyenne de 4.26 ans pour l’estimation de l’âge sur un corpus interne particulièrement difficile.Ensuite, afin d’adresser le problème de la synthèse et de l’édition d’images de visages, nous concevons un modèle nommé GA-cGAN : le premier réseau de neurones génératif adversaire (GAN) qui produit des visages synthétiques réalistes avec le genre et l’âge souhaités. Enfin, nous proposons une nouvelle méthode permettant d’employer GA-cGAN pour le changement du genre et de l’âge tout en préservant l’identité dans les images synthétiques. Cette méthode permet d'améliorer la précision d’un logiciel sur étagère de vérification faciale en présence d’écarts d’âges importants
The recent progress in artificial neural networks (rebranded as deep learning) has significantly boosted the state-of-the-art in numerous domains of computer vision. In this PhD study, we explore how deep learning techniques can help in the analysis of gender and age from a human face. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes.Firstly, we conduct a comprehensive study which results in an empirical formulation of a set of principles for optimal design and training of gender recognition and age estimation Convolutional Neural Networks (CNNs). As a result, we obtain the state-of-the-art CNNs for gender/age prediction according to the three most popular benchmarks, and win an international competition on apparent age estimation. On a very challenging internal dataset, our best models reach 98.7% of gender classification accuracy and an average age estimation error of 4.26 years.In order to address the problem of synthesis and editing of human faces, we design and train GA-cGAN, the first Generative Adversarial Network (GAN) which can generate synthetic faces of high visual fidelity within required gender and age categories. Moreover, we propose a novel method which allows employing GA-cGAN for gender swapping and aging/rejuvenation without losing the original identity in synthetic faces. Finally, in order to show the practical interest of the designed face editing method, we apply it to improve the accuracy of an off-the-shelf face verification software in a cross-age evaluation scenario
APA, Harvard, Vancouver, ISO, and other styles
12

Fourure, Damien. "Réseaux de neurones convolutifs pour la segmentation sémantique et l'apprentissage d'invariants de couleur." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSES056/document.

Full text
Abstract:
La vision par ordinateur est un domaine interdisciplinaire étudiant la manière dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d’images ou de vidéos numériques. En intelligence artificielle, et plus précisément en apprentissage automatique, domaine dans lequel se positionne cette thèse, la vision par ordinateur passe par l’extraction de caractéristiques présentes dans les images puis par la généralisation de concepts liés à ces caractéristiques. Ce domaine de recherche est devenu très populaire ces dernières années, notamment grâce aux résultats des réseaux de neurones convolutifs à la base des méthodes dites d’apprentissage profond. Aujourd’hui les réseaux de neurones permettent, entre autres, de reconnaître les différents objets présents dans une image, de générer des images très réalistes ou même de battre les champions au jeu de Go. Leurs performances ne s’arrêtent d’ailleurs pas au domaine de l’image puisqu’ils sont aussi utilisés dans d’autres domaines tels que le traitement du langage naturel (par exemple en traduction automatique) ou la reconnaissance de son. Dans cette thèse, nous étudions les réseaux de neurones convolutifs afin de développer des architectures et des fonctions de coûts spécialisées à des tâches aussi bien de bas niveau (la constance chromatique) que de haut niveau (la segmentation sémantique d’image). Une première contribution s’intéresse à la tâche de constance chromatique. En vision par ordinateur, l’approche principale consiste à estimer la couleur de l’illuminant puis à supprimer son impact sur la couleur perçue des objets. Les expériences que nous avons menées montrent que notre méthode permet d’obtenir des performances compétitives avec l’état de l’art. Néanmoins, notre architecture requiert une grande quantité de données d’entraînement. Afin de corriger en parti ce problème et d’améliorer l’entraînement des réseaux de neurones, nous présentons plusieurs techniques d’augmentation artificielle de données. Nous apportons également deux contributions sur une problématique de haut niveau : la segmentation sémantique d’image. Cette tâche, qui consiste à attribuer une classe sémantique à chacun des pixels d’une image, constitue un défi en vision par ordinateur de par sa complexité. D’une part, elle requiert de nombreux exemples d’entraînement dont les vérités terrains sont coûteuses à obtenir. D’autre part, elle nécessite l’adaptation des réseaux de neurones convolutifs traditionnels afin d’obtenir une prédiction dite dense, c’est-à-dire, une prédiction pour chacun pixel présent dans l’image d’entrée. Pour résoudre la difficulté liée à l’acquisition de données d’entrainements, nous proposons une approche qui exploite simultanément plusieurs bases de données annotées avec différentes étiquettes. Pour cela, nous définissons une fonction de coût sélective. Nous développons aussi une approche dites d’auto-contexte capturant d’avantage les corrélations existantes entre les étiquettes des différentes bases de données. Finalement, nous présentons notre troisième contribution : une nouvelle architecture de réseau de neurones convolutifs appelée GridNet spécialisée pour la segmentation sémantique d’image. Contrairement aux réseaux traditionnels, notre architecture est implémentée sous forme de grille 2D permettant à plusieurs flux interconnectés de fonctionner à différentes résolutions. Afin d’exploiter la totalité des chemins de la grille, nous proposons une technique d’entraînement inspirée du dropout. En outre, nous montrons empiriquement que notre architecture généralise de nombreux réseaux bien connus de l’état de l’art. Nous terminons par une analyse des résultats empiriques obtenus avec notre architecture qui, bien qu’entraînée avec une initialisation aléatoire des poids, révèle de très bonnes performances, dépassant les approches populaires souvent pré-entraînés
Computer vision is an interdisciplinary field that investigates how computers can gain a high level of understanding from digital images or videos. In artificial intelligence, and more precisely in machine learning, the field in which this thesis is positioned,computer vision involves extracting characteristics from images and then generalizing concepts related to these characteristics. This field of research has become very popular in recent years, particularly thanks to the results of the convolutional neural networks that form the basis of so-called deep learning methods. Today, neural networks make it possible, among other things, to recognize different objects present in an image, to generate very realistic images or even to beat the champions at the Go game. Their performance is not limited to the image domain, since they are also used in other fields such as natural language processing (e. g. machine translation) or sound recognition. In this thesis, we study convolutional neural networks in order to develop specialized architectures and loss functions for low-level tasks (color constancy) as well as high-level tasks (semantic segmentation). Color constancy, is the ability of the human visual system to perceive constant colours for a surface despite changes in the spectrum of illumination (lighting change). In computer vision, the main approach consists in estimating the color of the illuminant and then suppressing its impact on the perceived color of objects. We approach the task of color constancy with the use of neural networks by developing a new architecture composed of a subsampling operator inspired by traditional methods. Our experience shows that our method makes it possible to obtain competitive performances with the state of the art. Nevertheless, our architecture requires a large amount of training data. In order to partially correct this problem and improve the training of neural networks, we present several techniques for artificial data augmentation. We are also making two contributions on a high-level issue : semantic segmentation. This task, which consists of assigning a semantic class to each pixel of an image, is a challenge in computer vision because of its complexity. On the one hand, it requires many examples of training that are costly to obtain. On the other hand, it requires the adaptation of traditional convolutional neural networks in order to obtain a so-called dense prediction, i. e., a prediction for each pixel present in the input image. To solve the difficulty of acquiring training data, we propose an approach that uses several databases annotated with different labels at the same time. To do this, we define a selective loss function that has the advantage of allowing the training of a convolutional neural network from data from multiple databases. We also developed self-context approach that captures the correlations between labels in different databases. Finally, we present our third contribution : a new convolutional neural network architecture called GridNet specialized for semantic segmentation. Unlike traditional networks, implemented with a single path from the input (image) to the output (prediction), our architecture is implemented as a 2D grid allowing several interconnected streams to operate at different resolutions. In order to exploit all the paths of the grid, we propose a technique inspired by dropout. In addition, we empirically demonstrate that our architecture generalize many of well-known stateof- the-art networks. We conclude with an analysis of the empirical results obtained with our architecture which, although trained from scratch, reveals very good performances, exceeding popular approaches often pre-trained
APA, Harvard, Vancouver, ISO, and other styles
13

Suzano, Massa Francisco Vitor. "Mise en relation d'images et de modèles 3D avec des réseaux de neurones convolutifs." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1198/document.

Full text
Abstract:
La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibilités pour un raisonnement à un niveau 3D sur les photographies. Cette thèse étudie l'utilisation des réseaux de neurones convolutifs (CNN) pour mettre en relation les modèles 3D et les images.Nous présentons tout d'abord deux contributions qui sont utilisées tout au long de cette thèse : une bibliothèque pour la réduction automatique de la mémoire pour les CNN profonds, et une étude des représentations internes apprises par les CNN pour la mise en correspondance d'images appartenant à des domaines différents. Dans un premier temps, nous présentons une bibliothèque basée sur Torch7 qui réduit automatiquement jusqu'à 91% des besoins en mémoire pour déployer un CNN profond. Dans un second temps, nous étudions l'efficacité des représentations internes des CNN extraites d'un réseau pré-entraîné lorsqu'il est appliqué à des images de modalités différentes (réelles ou synthétiques). Nous montrons que malgré la grande différence entre les images synthétiques et les images naturelles, il est possible d'utiliser certaines des représentations des CNN pour l'identification du modèle de l'objet, avec des applications possibles pour le rendu basé sur l'image.Récemment, les CNNs ont été utilisés pour l'estimation de point de vue des objets dans les images, parfois avec des choix de modélisation très différents. Nous présentons ces approches dans un cadre unifié et nous analysons les facteur clés qui ont une influence sur la performance. Nous proposons une méthode d'apprentissage jointe qui combine à la fois la détection et l'estimation du point de vue, qui fonctionne mieux que de considérer l'estimation de point de vue de manière indépendante.Nous étudions également l'impact de la formulation de l'estimation du point de vue comme une tâche discrète ou continue, nous quantifions les avantages des architectures de CNN plus profondes et nous montrons que l'utilisation des données synthétiques est bénéfique. Avec tous ces éléments combinés, nous améliorons l'état de l'art d'environ 5% pour la précision de point de vue moyenne sur l'ensemble des données Pascal3D+.Dans l'étude de recherche de modèle d'objet 3D dans une base de données, l'image de l'objet est fournie et l'objectif est d'identifier parmi un certain nombre d'objets 3D lequel correspond à l'image. Nous étendons ce travail à la détection d'objet, où cette fois-ci un modèle 3D est donné, et l'objectif consiste à localiser et à aligner le modèle 3D dans image. Nous montrons que l'application directe des représentations obtenues par un CNN ne suffit pas, et nous proposons d'apprendre une transformation qui rapproche les répresentations internes des images réelles vers les représentations des images synthétiques. Nous évaluons notre approche à la fois qualitativement et quantitativement sur deux jeux de données standard: le jeu de données IKEAobject, et le sous-ensemble du jeu de données Pascal VOC 2012 contenant des instances de chaises, et nous montrons des améliorations sur chacun des deux
The recent availability of large catalogs of 3D models enables new possibilities for a 3D reasoning on photographs. This thesis investigates the use of convolutional neural networks (CNNs) for relating 3D objects to 2D images.We first introduce two contributions that are used throughout this thesis: an automatic memory reduction library for deep CNNs, and a study of CNN features for cross-domain matching. In the first one, we develop a library built on top of Torch7 which automatically reduces up to 91% of the memory requirements for deploying a deep CNN. As a second point, we study the effectiveness of various CNN features extracted from a pre-trained network in the case of images from different modalities (real or synthetic images). We show that despite the large cross-domain difference between rendered views and photographs, it is possible to use some of these features for instance retrieval, with possible applications to image-based rendering.There has been a recent use of CNNs for the task of object viewpoint estimation, sometimes with very different design choices. We present these approaches in an unified framework and we analyse the key factors that affect performance. We propose a joint training method that combines both detection and viewpoint estimation, which performs better than considering the viewpoint estimation separately. We also study the impact of the formulation of viewpoint estimation either as a discrete or a continuous task, we quantify the benefits of deeper architectures and we demonstrate that using synthetic data is beneficial. With all these elements combined, we improve over previous state-of-the-art results on the Pascal3D+ dataset by a approximately 5% of mean average viewpoint precision.In the instance retrieval study, the image of the object is given and the goal is to identify among a number of 3D models which object it is. We extend this work to object detection, where instead we are given a 3D model (or a set of 3D models) and we are asked to locate and align the model in the image. We show that simply using CNN features are not enough for this task, and we propose to learn a transformation that brings the features from the real images close to the features from the rendered views. We evaluate our approach both qualitatively and quantitatively on two standard datasets: the IKEAobject dataset, and a subset of the Pascal VOC 2012 dataset of the chair category, and we show state-of-the-art results on both of them
APA, Harvard, Vancouver, ISO, and other styles
14

Antipov, Grigory. "Apprentissage profond pour la description sémantique des traits visuels humains." Electronic Thesis or Diss., Paris, ENST, 2017. http://www.theses.fr/2017ENST0071.

Full text
Abstract:
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la conception et l’apprentissage des réseaux de neurones convolutifs (CNNs) pour la classification du genre et l’estimation de l’âge. Ainsi, nous obtenons les CNNs les plus performants de l’état de l’art. De plus, ces modèles nous ont permis de remporter une compétition internationale sur l’estimation de l’âge apparent. Nos meilleurs CNNs obtiennent une précision moyenne de 98.7% pour la classification du genre et une erreur moyenne de 4.26 ans pour l’estimation de l’âge sur un corpus interne particulièrement difficile.Ensuite, afin d’adresser le problème de la synthèse et de l’édition d’images de visages, nous concevons un modèle nommé GA-cGAN : le premier réseau de neurones génératif adversaire (GAN) qui produit des visages synthétiques réalistes avec le genre et l’âge souhaités. Enfin, nous proposons une nouvelle méthode permettant d’employer GA-cGAN pour le changement du genre et de l’âge tout en préservant l’identité dans les images synthétiques. Cette méthode permet d'améliorer la précision d’un logiciel sur étagère de vérification faciale en présence d’écarts d’âges importants
The recent progress in artificial neural networks (rebranded as deep learning) has significantly boosted the state-of-the-art in numerous domains of computer vision. In this PhD study, we explore how deep learning techniques can help in the analysis of gender and age from a human face. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes.Firstly, we conduct a comprehensive study which results in an empirical formulation of a set of principles for optimal design and training of gender recognition and age estimation Convolutional Neural Networks (CNNs). As a result, we obtain the state-of-the-art CNNs for gender/age prediction according to the three most popular benchmarks, and win an international competition on apparent age estimation. On a very challenging internal dataset, our best models reach 98.7% of gender classification accuracy and an average age estimation error of 4.26 years.In order to address the problem of synthesis and editing of human faces, we design and train GA-cGAN, the first Generative Adversarial Network (GAN) which can generate synthetic faces of high visual fidelity within required gender and age categories. Moreover, we propose a novel method which allows employing GA-cGAN for gender swapping and aging/rejuvenation without losing the original identity in synthetic faces. Finally, in order to show the practical interest of the designed face editing method, we apply it to improve the accuracy of an off-the-shelf face verification software in a cross-age evaluation scenario
APA, Harvard, Vancouver, ISO, and other styles
15

Yang, Lixuan. "Structuring of image databases for the suggestion of products for online advertising." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1102/document.

Full text
Abstract:
Le sujet de la thèse est l'extraction et la segmentation des vêtements à partir d'images en utilisant des techniques de la vision par ordinateur, de l'apprentissage par ordinateur et de la description d'image, pour la recommandation de manière non intrusive aux utilisateurs des produits similaires provenant d'une base de données de vente. Nous proposons tout d'abord un extracteur d'objets dédié à la segmentation de la robe en combinant les informations locales avec un apprentissage préalable. Un détecteur de personne localises des sites dans l'image qui est probable de contenir l'objet. Ensuite, un processus d'apprentissage intra-image en deux étapes est est développé pour séparer les pixels de l'objet de fond. L'objet est finalement segmenté en utilisant un algorithme de contour actif qui prend en compte la segmentation précédente et injecte des connaissances spécifiques sur la courbure locale dans la fonction énergie. Nous proposons ensuite un nouveau framework pour l'extraction des vêtements généraux en utilisant une procédure d'ajustement globale et locale à trois étapes. Un ensemble de modèles initialises un processus d'extraction d'objet par un alignement global du modèle, suivi d'une recherche locale en minimisant une mesure de l'inadéquation par rapport aux limites potentielles dans le voisinage. Les résultats fournis par chaque modèle sont agrégés, mesuré par un critère d'ajustement globale, pour choisir la segmentation finale. Dans notre dernier travail, nous étendons la sortie d'un réseau de neurones Fully Convolutional Network pour inférer le contexte à partir d'unités locales (superpixels). Pour ce faire, nous optimisons une fonction énergie, qui combine la structure à grande échelle de l'image avec le local structure superpixels, en recherchant dans l'espace de toutes les possibilité d'étiquetage. De plus, nous introduisons une nouvelle base de données RichPicture, constituée de 1000 images pour l'extraction de vêtements à partir d'images de mode. Les méthodes sont validées sur la base de données publiques et se comparent favorablement aux autres méthodes selon toutes les mesures de performance considérées
The topic of the thesis is the extraction and segmentation of clothing items from still images using techniques from computer vision, machine learning and image description, in view of suggesting non intrusively to the users similar items from a database of retail products. We firstly propose a dedicated object extractor for dress segmentation by combining local information with a prior learning. A person detector is applied to localize sites in the image that are likely to contain the object. Then, an intra-image two-stage learning process is developed to roughly separate foreground pixels from the background. Finally, the object is finely segmented by employing an active contour algorithm that takes into account the previous segmentation and injects specific knowledge about local curvature in the energy function.We then propose a new framework for extracting general deformable clothing items by using a three stage global-local fitting procedure. A set of template initiates an object extraction process by a global alignment of the model, followed by a local search minimizing a measure of the misfit with respect to the potential boundaries in the neighborhood. The results provided by each template are aggregated, with a global fitting criterion, to obtain the final segmentation.In our latest work, we extend the output of a Fully Convolution Neural Network to infer context from local units(superpixels). To achieve this we optimize an energy function,that combines the large scale structure of the image with the locallow-level visual descriptions of superpixels, over the space of all possiblepixel labellings. In addition, we introduce a novel dataset called RichPicture, consisting of 1000 images for clothing extraction from fashion images.The methods are validated on the public database and compares favorably to the other methods according to all the performance measures considered
APA, Harvard, Vancouver, ISO, and other styles
16

Farabet, Clément. "Analyse sémantique des images en temps-réel avec des réseaux convolutifs." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00965622.

Full text
Abstract:
Une des questions centrales de la vision informatique est celle de la conception et apprentissage de représentations du monde visuel. Quel type de représentation peut permettre à un système de vision artificielle de détecter et classifier les objects en catégories, indépendamment de leur pose, échelle, illumination, et obstruction. Plus intéressant encore, comment est-ce qu'un tel système peut apprendre cette représentation de façon automatisée, de la même manière que les animaux et humains parviennent à émerger une représentation du monde qui les entoure. Une question liée est celle de la faisabilité calculatoire, et plus précisément celle de l'efficacité calculatoire. Étant donné un modèle visuel, avec quelle efficacité peut-il être entrainé, et appliqué à de nouvelles données sensorielles. Cette efficacité a plusieurs dimensions: l'énergie consommée, la vitesse de calcul, et l'utilisation mémoire. Dans cette thèse je présente trois contributions à la vision informatique: (1) une nouvelle architecture de réseau convolutif profond multi-échelle, permettant de capturer des relations longue distance entre variables d'entrée dans des données type image, (2) un algorithme à base d'arbres permettant d'explorer de multiples candidats de segmentation, pour produire une segmentation sémantique avec confiance maximale, (3) une architecture de processeur dataflow optimisée pour le calcul de réseaux convolutifs profonds. Ces trois contributions ont été produites dans le but d'améliorer l'état de l'art dans le domain de l'analyse sémantique des images, avec une emphase sur l'efficacité calculatoire. L'analyse de scènes (scene parsing) consiste à étiqueter chaque pixel d'une image avec la catégorie de l'objet auquel il appartient. Dans la première partie de cette thèse, je propose une méthode qui utilise un réseau convolutif profond, entrainé à même les pixels, pour extraire des vecteurs de caractéristiques (features) qui encodent des régions de plusieurs résolutions, centrées sur chaque pixel. Cette méthode permet d'éviter l'usage de caractéristiques créées manuellement. Ces caractéristiques étant multi-échelle, elles permettent au modèle de capturer des relations locales et globales à la scène. En parallèle, un arbre de composants de segmentation est calculé à partir de graphe de dis-similarité des pixels. Les vecteurs de caractéristiques associés à chaque noeud de l'arbre sont agrégés, et utilisés pour entrainé un estimateur de la distribution des catégories d'objets présents dans ce segment. Un sous-ensemble des noeuds de l'arbre, couvrant l'image, est ensuite sélectionné de façon à maximiser la pureté moyenne des distributions de classes. En maximisant cette pureté, la probabilité que chaque composant ne contienne qu'un objet est maximisée. Le système global produit une précision record sur plusieurs benchmarks publics. Le calcul de réseaux convolutifs profonds ne dépend que de quelques opérateurs de base, qui sont particulièrement adaptés à une implémentation hardware dédiée. Dans la deuxième partie de cette thèse, je présente une architecture de processeur dataflow dédiée et optimisée pour le calcul de systèmes de vision à base de réseaux convolutifs--neuFlow--et un compilateur--luaFlow--dont le rôle est de compiler une description haut-niveau (type graphe) de réseaux convolutifs pour produire un flot de données et calculs optimal pour l'architecture. Ce système a été développé pour faire de la détection, catégorisation et localisation d'objets en temps réel, dans des scènes complexes, en ne consommant que 10 Watts, avec une implémentation FPGA standard.
APA, Harvard, Vancouver, ISO, and other styles
17

Chabot, Florian. "Analyse fine 2D/3D de véhicules par réseaux de neurones profonds." Thesis, Université Clermont Auvergne‎ (2017-2020), 2017. http://www.theses.fr/2017CLFAC018/document.

Full text
Abstract:
Les travaux développés dans cette thèse s’intéressent à l’analyse fine des véhicules à partir d’une image. Nous définissons le terme d’analyse fine comme un regroupement des concepts suivants : la détection des véhicules dans l’image, l’estimation de leur point de vue (ou orientation), la caractérisation de leur visibilité, leur localisation 3D dans la scène et la reconnaissance de leur marque et de leur modèle. La construction de solutions fiables d’analyse fine de véhicules laisse place à de nombreuses applications notamment dans le domaine du transport intelligent et de la vidéo surveillance.Dans ces travaux, nous proposons plusieurs contributions permettant de traiter partiellement ou complètement cette problématique. Les approches mises en oeuvre se basent sur l’utilisation conjointe de l’apprentissage profond et de modèles 3D de véhicule. Dans une première partie, nous traitons le problème de reconnaissance de marques et modèles en prenant en compte la difficulté de la création de bases d’apprentissage. Dans une seconde partie, nous investiguons une méthode de détection et d’estimation du point de vue précis en nous basant sur l’extraction de caractéristiques visuelles locales et de la cohérence géométrique. La méthode utilise des modèles mathématiques uniquement appris sur des données synthétiques. Enfin, dans une troisième partie, un système complet d’analyse fine de véhicules dans le contexte de la conduite autonome est proposé. Celui-ci se base sur le concept d’apprentissage profond multi-tâches. Des résultats quantitatifs et qualitatifs sont présentés tout au long de ce manuscrit. Sur certains aspects de l’analyse fine de véhicules à partir d’une image, ces recherches nous ont permis de dépasser l’état de l’art
In this thesis, we are interested in fine-grained analysis of vehicle from an image. We define fine-grained analysis as the following concepts : vehicle detection in the image, vehicle viewpoint (or orientation) estimation, vehicle visibility characterization, vehicle 3D localization and make and model recognition. The design of reliable solutions for fine-grained analysis of vehicle open the door to multiple applications in particular for intelligent transport systems as well as video surveillance systems. In this work, we propose several contributions allowing to address partially or wholly this issue. Proposed approaches are based on joint deep learning technologies and 3D models. In a first section, we deal with make and model classification keeping in mind the difficulty to create training data. In a second section, we investigate a novel method for both vehicle detection and fine-grained viewpoint estimation based on local apparence features and geometric spatial coherence. It uses models learned only on synthetic data. Finally, in a third section, a complete system for fine-grained analysis is proposed. It is based on the multi-task concept. Throughout this report, we provide quantitative and qualitative results. On several aspects related to vehicle fine-grained analysis, this work allowed to outperform state of the art methods
APA, Harvard, Vancouver, ISO, and other styles
18

Mamalet, Franck. "Adéquation algorithme-architecture pour les réseaux de neurones à convolution : application à l'analyse de visages embarquée." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0068.

Full text
Abstract:
La prolifération des capteurs d'images dans de nombreux appareils électroniques, et l'évolution des capacités de traitements à proximité de ces capteurs ouvrent un champ d'exploration pour l'implantation et l'optimisation d'algorithmes complexes de traitement d'images afin de proposer des systèmes de vision artificielle embarquée. Ces travaux s'inscrivent dans la problématique dite d'adéquation algorithme-architecture (A3). Ils portent sur une classe d'algorithmes appelée réseau de neurones à convolutions (ConvNet) et ses applications en analyse de visages embarquée. La chaîne d'analyse de visages, introduite par Garcia et al., a été choisie d'une part pour ses performances en taux de détection/reconnaissance au niveau de l'état de l'art, et d'autre part pour son caractère homogène reposant sur des ConvNets. La première contribution de ces travaux porte sur une étude d'adéquation de cette chaîne d'analyse de visages aux processeurs embarqués. Nous proposons plusieurs adaptations algorithmiques des ConvNets, et montrons que celles-ci permettent d'obtenir des facteurs d'accélération importants (jusqu'à 700) sur un processeur embarqué pour mobile, sans dégradation des performances en taux de détection/reconnaissance. Nous présentons ensuite une étude des capacités de parallélisation des ConvNets, au travers des travaux de thèse de N. Farrugia. Une exploration "gros-grain" du parallélisme des ConvNets, suivie d'une étude de l'ordonnancement interne des processeurs élémentaires, conduisent à une architecture parallèle paramétrable, capable de détecter des visages à plus de 10 images VGA par seconde sur FPGA. Nous proposons enfin une extension de ces études à la phase d'apprentissage de ces réseaux de neurones. Nous étudions des restrictions de l'espace des hypothèses d'apprentissage, et montrons, sur un cas d'application, que les capacités d'apprentissage des ConvNets ne sont pas dégradées, et que le temps d'apprentissage peut être réduit jusqu'à un facteur cinq
Proliferation of image sensors in many electronic devices, and increasing processing capabilities of such sensors, open a field of exploration for the implementation and optimization of complex image processing algorithms in order to provide embedded vision systems. This work is a contribution in the research domain of algorithm-architecture matching. It focuses on a class of algorithms called convolution neural network (ConvNet) and its applications in embedded facial analysis. The facial analysis framework, introduced by Garcia et al., was chosen for its state of the art performances in detection/recognition, and also for its homogeneity based on ConvNets. The first contribution of this work deals with an adequacy study of this facial analysis framework with embedded processors. We propose several algorithmic adaptations of ConvNets, and show that they can lead to significant speedup factors (up to 700) on an embedded processor for mobile phone, without performance degradation. We then present a study of ConvNets parallelization capabilities, through N. Farrugia's PhD work. A coarse-grain parallelism exploration of ConvNets, followed by study of internal scheduling of elementary processors, lead to a parameterized parallel architecture on FPGA, able to detect faces at more than 10 VGA frames per second. Finally, we propose an extension of these studies to the learning phase of neural networks. We analyze several hypothesis space restrictions for ConvNets, and show, on a case study, that classification rate performances are almost the same with a training time divided by up to five
APA, Harvard, Vancouver, ISO, and other styles
19

Mlynarski, Pawel. "Apprentissage profond pour la segmentation des tumeurs cérébrales et des organes à risque en radiothérapie." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4084.

Full text
Abstract:
Les images médicales jouent un rôle important dans le diagnostic et la prise en charge des cancers. Les oncologues analysent des images pour déterminer les différentes caractéristiques de la tumeur, pour proposer un traitement adapté et suivre l'évolution de la maladie. L'objectif de cette thèse est de proposer des méthodes efficaces de segmentation automatique des tumeurs cérébrales et des organes à risque dans le contexte de la radiothérapie, à partir des images de résonance magnétique (IRM). Premièrement, nous nous intéressons à la segmentation des tumeurs cérébrales en utilisant des réseaux neuronaux convolutifs entrainés sur des IRM segmentés par des experts. Nous proposons un modèle de segmentation ayant un grand champ récepteur 3D tout en étant efficace en termes de complexité de calcul, en combinant des réseaux neuronaux convolutifs 2D et 3D. Nous abordons aussi les problèmes liés à l'utilisation conjointe des différentes séquences IRM (T1, T2, FLAIR). Nous introduisons ensuite un modèle de segmentation qui est entrainé avec des images faiblement annotées en complément des images segmentées, souvent disponibles en quantités très limitées du fait de leur coût. Nous montrons que ce niveau mixte de supervision améliore considérablement la performance de segmentation quand le nombre d'images entièrement annotées est limité. Finalement, nous proposons une méthodologie pour segmenter, de manière cohérente anatomiquement, les organes à risque dans le contexte de la radiothérapie des tumeurs cérébrales. Les segmentations produites par notre système sur un ensemble d'IRM acquis dans le Centre Antoine Lacassagne (Nice) sont évaluées par un radiothérapeute expérimenté
Medical images play an important role in cancer diagnosis and treatment. Oncologists analyze images to determine the different characteristics of the cancer, to plan the therapy and to observe the evolution of the disease. The objective of this thesis is to propose efficient methods for automatic segmentation of brain tumors and organs at risk in the context of radiotherapy planning, using Magnetic Resonance (MR) images. First, we focus on segmentation of brain tumors using Convolutional Neural Networks (CNN) trained on MRIs manually segmented by experts. We propose a segmentation model having a large 3D receptive field while being efficient in terms of computational complexity, based on combination of 2D and 3D CNNs. We also address problems related to the joint use of several MRI sequences (T1, T2, FLAIR). Second, we introduce a segmentation model which is trained using weakly-annotated images in addition to fully-annotated images (with voxelwise labels), which are usually available in very limited quantities due to their cost. We show that this mixed level of supervision considerably improves the segmentation accuracy when the number of fully-annotated images is limited.\\ Finally, we propose a methodology for an anatomy-consistent segmentation of organs at risk in the context of radiotherapy of brain tumors. The segmentations produced by our system on a set of MRIs acquired in the Centre Antoine Lacassagne (Nice, France) are evaluated by an experienced radiotherapist
APA, Harvard, Vancouver, ISO, and other styles
20

Beltzung, Benjamin. "Utilisation de réseaux de neurones convolutifs pour mieux comprendre l’évolution et le développement du comportement de dessin chez les Hominidés." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ114.

Full text
Abstract:
L’étude du comportement de dessin peut être très informative cognitivement et psychologiquement, tant chez les humains que chez les autres primates. Cette richesse d’information peut également être un frein à son analyse et à son interprétation, en particulier en l’absence d’explication ou verbalisation de son auteur. En effet, il est possible que l’interprétation donnée par un adulte d’un dessin ne soit pas en accord avec l’intention première du dessinateur. Durant ma thèse, j’ai montré que, bien que généralement considérés comme des boîtes noires, les réseaux de neurones convolutifs (CNNs) peuvent permettre de mieux comprendre le comportement de dessin. Dans un premier lieu, l’utilisation d’un CNN a permis de classifier des dessins d’une femelle orang-outan selon leur saison de production ainsi que de mettre en avant une variation de style et de contenu. De plus, une approche ontogénique a permis de quantifier la similarité entre des productions de différents groupes d’âges. Par la suite, des modèles plus interprétables ainsi que l’application de nouvelles méthodes d’interprétabilité pourraient permettre de mieux déchiffrer le comportement de dessin
The study of drawing behavior can be highly informative, both cognitively and psychologically, in humans and other primates. However, this wealth of information can also be a challenge to analysis and interpretation, particularly in the absence of explanation or verbalization by the author of the drawing. Indeed, an adult's interpretation of a drawing may not be in line with the artist's original intention. During my thesis, I showed that, although generally regarded as black boxes, convolutional neural networks (CNNs) can provide a better understanding of the drawing behavior. Firstly, by using a CNN to classify drawings of a female orangutan according to their season of production, and highlighting variation in style and content. In addition, an ontogenetic approach was considered to quantify the similarity between productions from different age groups. In the future, more interpretable models and the application of new interpretability methods could be applied to better decipher drawing behavior
APA, Harvard, Vancouver, ISO, and other styles
21

Matteo, Lionel. "De l’image optique "multi-stéréo" à la topographie très haute résolution et la cartographie automatique des failles par apprentissage profond." Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4099.

Full text
Abstract:
Les failles sismogéniques sont la source des séismes. L'étude de leurs propriétés nous informe donc sur les caractéristiques des forts séismes qu'elles peuvent produire. Les failles sont des objets 3D qui forment des réseaux complexes incluant une faille principale et une multitude de failles et fractures secondaires qui "découpent" la roche environnante à la faille principale. Mon objectif dans cette thèse a été de développer des approches pour aider à étudier cette fracturation secondaire intense. Pour identifier, cartographier et mesurer les fractures et les failles dans ces réseaux, j'ai adressé deux défis :1) Les failles peuvent former des escarpements topographiques très pentus à la surface du sol, créant des "couloirs" ou des canyons étroits et profond où la topographie et donc, la trace des failles, peut être difficile à mesurer en utilisant des méthodologies standard (comme des acquisitions d'images satellites optiques stéréo et tri-stéréo). Pour répondre à ce défi, j'ai utilisé des acquisitions multi-stéréos avec différentes configurations (différents angles de roulis et tangage, différentes dates et modes d'acquisitions). Notre base de données constituée de 37 images Pléiades dans trois sites tectoniques différents dans l'Ouest américain (Valley of Fire, Nevada ; Granite Dells, Arizona ; Bishop Tuff, California) m'a permis de tester différentes configurations d'acquisitions pour calculer la topographie avec trois approches différentes. En utilisant la solution photogrammétrique open-source Micmac (IGN ; Rupnik et al., 2017), j'ai calculé la topographie sous la forme de Modèles Numériques de Surfaces (MNS) : (i) à partir de combinaisons de 2 à 17 images Pléiades, (ii) en fusionnant des MNS calculés individuellement à partir d'acquisitions stéréo et tri-stéréo, évitant alors l'utilisant d'acquisitions multi-dates et (iii) en fusionnant des nuages de points calculés à partir d'acquisitions tri-stéréos en suivant la méthodologie multi-vues développée par Rupnik et al. (2018). J’ai aussi combiné, dans une dernière approche (iv), des acquisitions tri-stéréos avec la méthodologie multi-vues stéréos du CNES/CMLA (CARS) développé par Michel et al. (2020), en combinant des acquisitions tri-stéréos. A partir de ces quatre approches, j'ai calculé plus de 200 MNS et mes résultats suggèrent que deux acquisitions tri-stéréos ou une acquisition stéréo combinée avec une acquisition tri-stéréo avec des angles de roulis opposés permettent de calculer les MNS avec la surface topographique la plus complète et précise.2) Couramment, les failles sont cartographiées manuellement sur le terrain ou sur des images optiques et des données topographiques en identifiant les traces curvilinéaires qu'elles forment à la surface du sol. Néanmoins, la cartographie manuelle demande beaucoup de temps ce qui limite notre capacité à produire cartographies et des mesures complètes des réseaux de failles. Pour s'affranchir de ce problème, j'ai adopté une approche d'apprentissage profond, couramment appelé un réseau de neurones convolutifs (CNN) - U-Net, pour automatiser l'identification et la cartographie des fractures et des failles dans des images optiques et des données topographiques. Volontairement, le modèle CNN a été entraîné avec une quantité modérée de fractures et failles cartographiées manuellement à basse résolution et dans un seul type d'images optiques (photographies du sol avec des caméras classiques). A partir d'un grand nombre de tests, j'ai sélectionné le meilleur modèle, MRef et démontre sa capacité à prédire des fractures et des failles précisément dans données optiques et topographiques de différents types et différentes résolutions (photographies prises au sol, avec un drone et par satellite). Le modèle MRef montre de bonnes capacités de généralisations faisant alors de ce modèle un bon outil pour cartographie rapidement et précisément des fractures et des failles dans des images optiques et des données topographiques
Seismogenic faults are the source of earthquakes. The study of their properties thus provides information on some of the properties of the large earthquakes they might produce. Faults are 3D features, forming complex networks generally including one master fault and myriads of secondary faults and fractures that intensely dissect the master fault embedding rocks. I aim in my thesis to develop approaches to help studying this intense secondary faulting/fracturing. To identify, map and measure the faults and fractures within dense fault networks, I have handled two challenges:1) Faults generally form steep topographic escarpments at the ground surface that enclose narrow, deep corridors or canyons, where topography, and hence fault traces, are difficult to measure using the available standard methods (such as stereo and tri-stereo of optical satellite images). To address this challenge, I have thus used multi-stéréo acquisitions with different configuration such as different roll and pitch angles, different date of acquisitions and different mode of acquisitions (mono and tri-stéréo). Our dataset amounting 37 Pléiades images in three different tectonic sites within Western USA (Valley of Fire, Nevada; Granite Dells, Arizona; Bishop Tuff, California) allow us to test different configuration of acquisitions to calculate the topography with three different approaches. Using the free open-source software Micmac (IGN ; Rupnik et al., 2017), I have calculated the topography in the form of Digital Surface Models (DSM): (i) with the combination of 2 to 17 Pleiades images, (ii) stacking and merging DSM built from individual stéréo or tri-stéréo acquisitions avoiding the use of multi-dates combinations, (iii) stacking and merging point clouds built from tri-stereo acquisitions following the multiview pipeline developped by Rupnik et al., 2018. We used the recent multiview stereo pipeling CARS (CNES/CMLA) developped by Michel et al., 2020 as a last approach (iv), combnining tri-stereo acquisitions. From the four different approaches, I have thus calculated more than 200 DSM and my results suggest that combining two tri-stéréo acquisitions or one stéréo and one tri-stéréo acquisitions with opposite roll angles leads to the most accurate DSM (with the most complete and precise topography surface).2) Commonly, faults are mapped manually in the field or from optical images and topographic data through the recognition of the specific curvilinear traces they form at the ground surface. However, manual mapping is time-consuming, which limits our capacity to produce complete representations and measurements of the fault networks. To overcome this problem, we have adopted a machine learning approach, namely a U-Net Convolutional Neural Network, to automate the identification and mapping of fractures and faults in optical images and topographic data. Intentionally, we trained the CNN with a moderate amount of manually created fracture and fault maps of low resolution and basic quality, extracted from one type of optical images (standard camera photographs of the ground surface). Based on the results of a number of performance tests, we select the best performing model, MRef, and demonstrate its capacity to predict fractures and faults accurately in image data of various types and resolutions (ground photographs, drone and satellite images and topographic data). The MRef predictions thus enable the statistical analysis of the fault networks. MRef exhibits good generalization capacities, making it a viable tool for fast and accurate extraction of fracture and fault networks from image and topographic data
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, Lixuan. "Structuring of image databases for the suggestion of products for online advertising." Electronic Thesis or Diss., Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1102.

Full text
Abstract:
Le sujet de la thèse est l'extraction et la segmentation des vêtements à partir d'images en utilisant des techniques de la vision par ordinateur, de l'apprentissage par ordinateur et de la description d'image, pour la recommandation de manière non intrusive aux utilisateurs des produits similaires provenant d'une base de données de vente. Nous proposons tout d'abord un extracteur d'objets dédié à la segmentation de la robe en combinant les informations locales avec un apprentissage préalable. Un détecteur de personne localises des sites dans l'image qui est probable de contenir l'objet. Ensuite, un processus d'apprentissage intra-image en deux étapes est est développé pour séparer les pixels de l'objet de fond. L'objet est finalement segmenté en utilisant un algorithme de contour actif qui prend en compte la segmentation précédente et injecte des connaissances spécifiques sur la courbure locale dans la fonction énergie. Nous proposons ensuite un nouveau framework pour l'extraction des vêtements généraux en utilisant une procédure d'ajustement globale et locale à trois étapes. Un ensemble de modèles initialises un processus d'extraction d'objet par un alignement global du modèle, suivi d'une recherche locale en minimisant une mesure de l'inadéquation par rapport aux limites potentielles dans le voisinage. Les résultats fournis par chaque modèle sont agrégés, mesuré par un critère d'ajustement globale, pour choisir la segmentation finale. Dans notre dernier travail, nous étendons la sortie d'un réseau de neurones Fully Convolutional Network pour inférer le contexte à partir d'unités locales (superpixels). Pour ce faire, nous optimisons une fonction énergie, qui combine la structure à grande échelle de l'image avec le local structure superpixels, en recherchant dans l'espace de toutes les possibilité d'étiquetage. De plus, nous introduisons une nouvelle base de données RichPicture, constituée de 1000 images pour l'extraction de vêtements à partir d'images de mode. Les méthodes sont validées sur la base de données publiques et se comparent favorablement aux autres méthodes selon toutes les mesures de performance considérées
The topic of the thesis is the extraction and segmentation of clothing items from still images using techniques from computer vision, machine learning and image description, in view of suggesting non intrusively to the users similar items from a database of retail products. We firstly propose a dedicated object extractor for dress segmentation by combining local information with a prior learning. A person detector is applied to localize sites in the image that are likely to contain the object. Then, an intra-image two-stage learning process is developed to roughly separate foreground pixels from the background. Finally, the object is finely segmented by employing an active contour algorithm that takes into account the previous segmentation and injects specific knowledge about local curvature in the energy function.We then propose a new framework for extracting general deformable clothing items by using a three stage global-local fitting procedure. A set of template initiates an object extraction process by a global alignment of the model, followed by a local search minimizing a measure of the misfit with respect to the potential boundaries in the neighborhood. The results provided by each template are aggregated, with a global fitting criterion, to obtain the final segmentation.In our latest work, we extend the output of a Fully Convolution Neural Network to infer context from local units(superpixels). To achieve this we optimize an energy function,that combines the large scale structure of the image with the locallow-level visual descriptions of superpixels, over the space of all possiblepixel labellings. In addition, we introduce a novel dataset called RichPicture, consisting of 1000 images for clothing extraction from fashion images.The methods are validated on the public database and compares favorably to the other methods according to all the performance measures considered
APA, Harvard, Vancouver, ISO, and other styles
23

Nkeumaleu, Guy-Merlin. "Propagation d'informations le long d'une ligne de transmission non linéaire structurée en super réseau et simulant un neurone myélinisé." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK006/document.

Full text
Abstract:
Les systèmes non linéaires sont décrits pour la plupart avec des équations aux dérivées partiellesqui les caractérisent, comme la chaine de pendules couplés, la chaine de protéines comportant des molécules avec liaisons hydrogène, les réseaux atomiques ...etc. Ces modèles comportent le plus souvent des interactions inter particulaires anharmoniques et des potentiels de substrat déformables. En effet, aux conséquences importantes dues à la non linéarité et à la dispersion, ces autres phénomènes comme l’anharmonicité et la déformabilité conduisent à d’autres propriétés de propagation des ondes solitaires telles que les compactons, les kinks et les antikinks , les peakons , … ainsi qu’à la capacité du système à transmettre un signal. Nous utilisons ici la méthode de bifurcation pour tracer les différents portraits de phases obtenus par variation des paramètres du système. Nous mettons en évidence l’influence du facteur d’anharmonicité sur la transmissivité et la bistabilité du système: Il en ressort que l’amplitude du signal d’entrée qui produit la bistabilité augmente avec la valeur absolue du coefficient d’anharmonicité et la bistabilité est retardée. En tenant compte des propriétés importantes générées par de tels systèmes, il nous a paru intéressant de construire une ligne électrique caractérisée par les mêmes équations, mais en doublant sur un tronçon de 10 cellules la valeur de la capacité par rapport à celles des 10 condensateurs suivants, et en reproduisant ce motif avec une périodicité de 20 cellules. Nous réalisons ainsi un super réseau qui simule un neurone myélinisé. Les types de solitons obtenus semblent mieux adaptés pour décrire le signal électrique qui caractérise l’influx neuronal localisé dans l’espace avec un support compact
Non-linear systems are almostly described by partial differential equations that characterize them. We have some systems such as the chain of coupled pebdelums, the protein chain comprising molecules with hydrogen bonds, atomic lattice, and so on .These systems are most often characterized by anharmonic inter particulate interactions and and then immersed in deformable potential substrates. In addition to nonlinearity and dispersion, these other phenomena namely anharmonicity and deformability are responsible for certain properties of propagation of solitary waves such as (compactons, kinks and anti-kinks, peackons, ...etc) and also the ability of the systems to transmit a signal . We used the bifurcation method to plot the different phase portraits obtained . For various parameters of such systems , we have highlighted the influence of anharmonicity on transmissivity and bistability of the system: It appears that the amplitude of the input signal which produces bistability increases with anharmonicity and the bistability is delayed.To considering these important properties generated by such systems, it seemed interesting to buildin an electrical line characterized by the same equations of the system. By alternately doubling the capacitance of the capacitors of a section of this line, we have realised a super-lattice that simulates a myelinised neuron. The types of solitons we get from this line are better adapted to describe the electrical signal which characterizes the neuron impulse located in space with a compact support
APA, Harvard, Vancouver, ISO, and other styles
24

Heuillet, Alexandre. "Exploring deep neural network differentiable architecture design." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG069.

Full text
Abstract:
L'intelligence artificielle (IA) a gagné en popularité ces dernières années, principalement en raison de ses applications réussies dans divers domaines tels que l'analyse de données textuelles, la vision par ordinateur et le traitement audio. La résurgence des techniques d'apprentissage profond a joué un rôle central dans ce succès. L'article révolutionnaire de Krizhevsky et al., AlexNet, a réduit l'écart entre les performances humaines et celles des machines dans les tâches de classification d'images. Des articles ultérieurs tels que Xception et ResNet ont encore renforcé l'apprentissage profond en tant que technique de pointe, ouvrant de nouveaux horizons pour la communauté de l'IA. Le succès de l'apprentissage profond réside dans son architecture, conçue manuellement avec des connaissances d'experts et une validation empirique. Cependant, ces architectures n'ont pas la certitude d'être la solution optimale. Pour résoudre ce problème, des articles récents ont introduit le concept de Recherche d'Architecture Neuronale ( extit{NAS}), permettant l'automatisation de la conception des architectures profondes. Cependant, la majorités des approches initiales se sont concentrées sur de grandes architectures avec des objectifs spécifiques (par exemple, l'apprentissage supervisé) et ont utilisé des techniques d'optimisation coûteuses en calcul telles que l'apprentissage par renforcement et les algorithmes génétiques. Dans cette thèse, nous approfondissons cette idée en explorant la conception automatique d'architectures profondes, avec une emphase particulière sur les méthodes extit{NAS} différentiables ( extit{DNAS}), qui représentent la tendance actuelle en raison de leur efficacité computationnelle. Bien que notre principal objectif soit les réseaux convolutifs ( extit{CNNs}), nous explorons également les Vision Transformers (ViTs) dans le but de concevoir des architectures rentables adaptées aux applications en temps réel
Artificial Intelligence (AI) has gained significant popularity in recent years, primarily due to its successful applications in various domains, including textual data analysis, computer vision, and audio processing. The resurgence of deep learning techniques has played a central role in this success. The groundbreaking paper by Krizhevsky et al., AlexNet, narrowed the gap between human and machine performance in image classification tasks. Subsequent papers such as Xception and ResNet have further solidified deep learning as a leading technique, opening new horizons for the AI community. The success of deep learning lies in its architecture, which is manually designed with expert knowledge and empirical validation. However, these architectures lack the certainty of an optimal solution. To address this issue, recent papers introduced the concept of Neural Architecture Search (NAS), enabling the learning of deep architectures. However, most initial approaches focused on large architectures with specific targets (e.g., supervised learning) and relied on computationally expensive optimization techniques such as reinforcement learning and evolutionary algorithms. In this thesis, we further investigate this idea by exploring automatic deep architecture design, with a particular emphasis on differentiable NAS (DNAS), which represents the current trend in NAS due to its computational efficiency. While our primary focus is on Convolutional Neural Networks (CNNs), we also explore Vision Transformers (ViTs) with the goal of designing cost-effective architectures suitable for real-time applications
APA, Harvard, Vancouver, ISO, and other styles
25

Barhoumi, Amira. "Une approche neuronale pour l’analyse d’opinions en arabe." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1022.

Full text
Abstract:
Cette thèse s’inscrit dans le cadre de l’analyse d’opinions en arabe. Son objectif consiste à déterminer la polarité globale d’un énoncé textuel donné écrit en Arabe standard moderne (ASM) ou dialectes arabes. Cette thématique est un domaine de recherche en plein essor et a fait l’objet de nombreuses études avec une majorité de travaux actuels traitant des langues indo-européennes, en particulier la langue anglaise. Une des difficultés à laquelle se confronte cette thèse est le traitement de la langue arabe qui est une langue morphologiquement riche avec une grande variabilité des formes de surface observables dans les données d’apprentissage. Nous souhaitons pallier ce problème en produisant, de manière totalement automatique et contrôlée, de nouvelles représentations vectorielles continues (en anglais embeddings) spécifiques à la langue arabe. Notre étude se concentre sur l’utilisation d’une approche neuronale pour améliorer la détection de polarité, en exploitant la puissance des embeddings. En effet, ceux-ci se sont révélés un atout fondamental dans différentes tâches de traitement automatique des langues naturelles (TALN). Notre contribution dans le cadre de cette thèse porte plusieurs axes. Nous commençons, d’abord, par une étude préliminaire des différentes ressources d’embeddings de mots pré-entraînés existants en langue arabe. Ces embeddings considèrent les mots comme étant des unités séparées par des espaces afin de capturer, dans l'espace de projection, des similarités sémantiques et syntaxiques. Ensuite, nous nous focalisons sur les spécificités de la langue arabe en proposant des embeddings spécifiques pour cette langue. Les phénomènes comme l’agglutination et la richesse morphologique de l’arabe sont alors pris en compte. Ces embeddings spécifiques ont été utilisés, seuls et combinés, comme entrée à deux réseaux neuronaux (l’un convolutif et l’autre récurrent) apportant une amélioration des performances dans la détection de polarité sur un corpus de revues. Nous proposons une analyse poussée des embeddings proposées. Dans une évaluation intrinsèque, nous proposons un nouveau protocole introduisant la notion de la stabilité de polarités (sentiment stability) dans l’espace d'embeddings. Puis, nous proposons une analyse qualitative extrinsèque de nos embeddings en utilisant des méthodes de projection et de visualisation
My thesis is part of Arabic sentiment analysis. Its aim is to determine the global polarity of a given textual statement written in MSA or dialectal arabic. This research area has been subject of numerous studies dealing with Indo-European languages, in particular English. One of difficulties confronting this thesis is the processing of Arabic. In fact, Arabic is a morphologically rich language which implies a greater sparsity : we want to overcome this problem by producing, in a completely automatic way, new arabic specific embeddings. Our study focuses on the use of a neural approach to improve polarity detection, using embeddings. These embeddings have revealed fundamental in various natural languages processing tasks (NLP). Our contribution in this thesis concerns several axis. First, we begin with a preliminary study of the various existing pre-trained word embeddings resources in arabic. These embeddings consider words as space separated units in order to capture semantic and syntactic similarities in the embedding space. Second, we focus on the specifity of Arabic language. We propose arabic specific embeddings that take into account agglutination and morphological richness of Arabic. These specific embeddings have been used, alone and in combined way, as input to neural networks providing an improvement in terms of classification performance. Finally, we evaluate embeddings with intrinsic and extrinsic methods specific to sentiment analysis task. For intrinsic embeddings evaluation, we propose a new protocol introducing the notion of sentiment stability in the embeddings space. We propose also a qualitaive extrinsic analysis of our embeddings by using visualisation methods
APA, Harvard, Vancouver, ISO, and other styles
26

Breux, Yohan. "Du capteur à la sémantique : contribution à la modélisation d'environnement pour la robotique autonome en interaction avec l'humain." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS059/document.

Full text
Abstract:
La robotique autonome est employée avec succès dans des environnements industriels contrôlés, où les instructions suivent des plans d’action prédéterminés.La robotique domestique est le challenge des années à venir et comporte un certain nombre de nouvelles difficultés : il faut passer de l'hypothèse d'un monde fermé borné à un monde ouvert. Un robot ne peut plus compter seulement sur ses données capteurs brutes qui ne font qu'indiquer la présence ou l'absence d'objets. Il lui faut aussi comprendre les relations implicites entre les objets de son environnement ainsi que le sens des tâches qu'on lui assigne. Il devra également pouvoir interagir avec des humains et donc partager leur conceptualisation à travers le langage. En effet, chaque langue est une représentation abstraite et compacte du monde qui relie entre eux une multitude de concepts concrets et purement abstraits. Malheureusement, les observations réelles sont plus complexes que nos représentations sémantiques simplifiées. Elles peuvent donc rentrer en contradiction, prix à payer d'une représentation finie d'un monde "infini". Pour répondre à ces difficultés, nous proposons dans cette thèse une architecture globale combinant différentes modalités de représentation d'environnement. Elle permet d'interpréter une représentation physique en la rattachant aux concepts abstraits exprimés en langage naturel. Le système est à double entrée : les données capteurs vont alimenter la modalité de perception tandis que les données textuelles et les interactions avec l'humain seront reliées à la modalité sémantique. La nouveauté de notre approche se situe dans l'introduction d'une modalité intermédiaire basée sur la notion d'instance (réalisation physique de concepts sémantiques). Cela permet notamment de connecter indirectement et sans contradiction les données perceptuelles aux connaissances en langage naturel.Nous présentons dans ce cadre une méthode originale de création d'ontologie orientée vers la description d'objets physiques. Du côté de la perception, nous analysons certaines propriétés des descripteurs image génériques extraits de couches intermédiaires de réseaux de neurones convolués. En particulier, nous montrons leur adéquation à la représentation d'instances ainsi que leur usage dans l'estimation de transformation de similarité. Nous proposons aussi une méthode de rattachement d'instance à une ontologie, alternative aux méthodes de classification classique dans l'hypothèse d'un monde ouvert. Enfin nous illustrons le fonctionnement global de notre modèle par la description de nos processus de gestion de requête utilisateur
Autonomous robotics is successfully used in controled industrial environments where instructions follow predetermined implementation plans.Domestic robotics is the challenge of years to come and involve several new problematics : we have to move from a closed bounded world to an open one. A robot can no longer only rely on its raw sensor data as they merely show the absence or presence of things. It should also understand why objects are in its environment as well as the meaning of its tasks. Besides, it has to interact with human beings and therefore has to share their conceptualization through natural language. Indeed, each language is in its own an abstract and compact representation of the world which links up variety of concrete and abstract concepts. However, real observations are more complex than our simplified semantical representation. Thus they can come into conflict : this is the price for a finite representation of an "infinite" world.To address those challenges, we propose in this thesis a global architecture bringing together different modalities of environment representation. It allows to relate a physical representation to abstract concepts expressed in natural language. The inputs of our system are two-fold : sensor data feed the perception modality whereas textual information and human interaction are linked to the semantic modality. The novelty of our approach is in the introduction of an intermediate modality based on instances (physical realization of semantic concepts). Among other things, it allows to connect indirectly and without contradiction perceptual data to knowledge in natural langage.We propose in this context an original method to automatically generate an ontology for the description of physical objects. On the perception side, we investigate some properties of image descriptor extracted from intermediate layers of convolutional neural networks. In particular, we show their relevance for instance representation as well as their use for estimation of similarity transformation. We also propose a method to relate instances to our object-oriented ontology which, in the assumption of an open world, can be seen as an alternative to classical classification methods. Finally, the global flow of our system is illustrated through the description of user request management processes
APA, Harvard, Vancouver, ISO, and other styles
27

Yedroudj, Mehdi. "Steganalysis and steganography by deep learning." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS095.

Full text
Abstract:
La stéganographie d'image est l'art de la communication secrète dans le but d'échanger un message de manière furtive. La stéganalyse d'image a elle pour objectif de détecter la présence d'un message caché en recherchant les artefacts présent dans l'image. Pendant une dizaine d'années, l'approche classique en stéganalyse a été d'utiliser un ensemble classifieur alimenté par des caractéristiques extraites "à la main". Au cours des dernières années, plusieurs études ont montré que les réseaux de neurones convolutionnels peuvent atteindre des performances supérieures à celles des approches conventionnelles d'apprentissage machine.Le sujet de cette thèse traite des techniques d'apprentissage profond utilisées pour la stéganographie d'images et la stéganalyse dans le domaine spatial.La première contribution est un réseau de neurones convolutionnel rapide et efficace pour la stéganalyse, nommé Yedroudj-Net. Comparé aux méthodes modernes de steganalyse basées sur l'apprentissage profond, Yedroudj-Net permet d'obtenir des résultats de détection performants, mais prend également moins de temps à converger, ce qui permet l'utilisation des bases d'apprentissage de grandes dimensions. De plus, Yedroudj-Net peut facilement être amélioré en ajoutant des compléments ou des modules bien connus. Parmi les amélioration possibles, nous avons évalué l'augmentation de la base de données d'entraînement, et l'utilisation d'un ensemble de CNN. Les deux modules complémentaires permettent d'améliorer les performances de notre réseau.La deuxième contribution est l'application des techniques d'apprentissage profond à des fins stéganographiques i.e pour l'insertion. Parmi les techniques existantes, nous nous concentrons sur l'approche du "jeu-à-3-joueurs". Nous proposons un algorithme d'insertion qui apprend automatiquement à insérer un message secrètement. Le système de stéganographie que nous proposons est basé sur l'utilisation de réseaux adverses génératifs. L'entraînement de ce système stéganographique se fait à l'aide de trois réseaux de neurones qui se font concurrence : le stéganographeur, l'extracteur et le stéganalyseur. Pour le stéganalyseur nous utilisons Yedroudj-Net, pour sa petite taille, et le faite que son entraînement ne nécessite pas l'utilisation d'astuces qui pourrait augmenter le temps de calcul.Cette deuxième contribution donne des premiers éléments de réflexion tout en donnant des résultats prometteurs, et pose ainsi les bases pour de futurs recherches
Image steganography is the art of secret communication in order to exchange a secret message. In the other hand, image steganalysis attempts to detect the presence of a hidden message by searching artefacts within an image. For about ten years, the classic approach for steganalysis was to use an Ensemble Classifier fed by hand-crafted features. In recent years, studies have shown that well-designed convolutional neural networks (CNNs) can achieve superior performance compared to conventional machine-learning approaches.The subject of this thesis deals with the use of deep learning techniques for image steganography and steganalysis in the spatialdomain.The first contribution is a fast and very effective convolutional neural network for steganalysis, named Yedroudj-Net. Compared tomodern deep learning based steganalysis methods, Yedroudj-Net can achieve state-of-the-art detection results, but also takes less time to converge, allowing the use of a large training set. Moreover,Yedroudj-Net can easily be improved by using well known add-ons. Among these add-ons, we have evaluated the data augmentation, and the the use of an ensemble of CNN; Both increase our CNN performances.The second contribution is the application of deep learning techniques for steganography i.e the embedding. Among the existing techniques, we focus on the 3-player game approach.We propose an embedding algorithm that automatically learns how to hide a message secretly. Our proposed steganography system is based on the use of generative adversarial networks. The training of this steganographic system is conducted using three neural networks that compete against each other: the embedder, the extractor, and the steganalyzer. For the steganalyzer we use Yedroudj-Net, this for its affordable size, and for the fact that its training does not require the use of any tricks that could increase the computational time.This second contribution defines a research direction, by giving first reflection elements while giving promising first results
APA, Harvard, Vancouver, ISO, and other styles
28

Pham, Huy-Hieu. "Architectures d'apprentissage profond pour la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires : application à la surveillance dans les transports publics." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30145.

Full text
Abstract:
Cette thèse porte sur la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires. La question principale est, à partir d'une vidéo ou d'une séquence d'images donnée, de savoir comment reconnaître des actions particulières qui se produisent. Cette tâche est importante et est un défi majeur à cause d'un certain nombre de verrous scientifiques induits par la variabilité des conditions d'acquisition, comme l'éclairage, la position, l'orientation et le champ de vue de la caméra, ainsi que par la variabilité de la réalisation des actions, notamment de leur vitesse d'exécution. Pour surmonter certaines de ces difficultés, dans un premier temps, nous examinons et évaluons les techniques les plus récentes pour la reconnaissance d'actions dans des vidéos. Nous proposons ensuite une nouvelle approche basée sur des réseaux de neurones profonds pour la reconnaissance d'actions humaines à partir de séquences de squelettes 3D. Deux questions clés ont été traitées. Tout d'abord, comment représenter la dynamique spatio-temporelle d'une séquence de squelettes pour exploiter efficacement la capacité d'apprentissage des représentations de haut niveau des réseaux de neurones convolutifs (CNNs ou ConvNets). Ensuite, comment concevoir une architecture de CNN capable d'apprendre des caractéristiques spatio-temporelles discriminantes à partir de la représentation proposée dans un objectif de classification. Pour cela, nous introduisons deux nouvelles représentations du mouvement 3D basées sur des squelettes, appelées SPMF (Skeleton Posture-Motion Feature) et Enhanced-SPMF, qui encodent les postures et les mouvements humains extraits des séquences de squelettes sous la forme d'images couleur RGB. Pour les tâches d'apprentissage et de classification, nous proposons différentes architectures de CNNs, qui sont basées sur les modèles Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) et Efficient Neural Architecture Search (ENAS), pour extraire des caractéristiques robustes de la représentation sous forme d'image que nous proposons et pour les classer. Les résultats expérimentaux sur des bases de données publiques (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, et NTU-RGB+D) montrent que notre approche surpasse les méthodes de l'état de l'art. Nous proposons également une nouvelle technique pour l'estimation de postures humaines à partir d'une vidéo RGB. Pour cela, le modèle d'apprentissage profond appelé OpenPose est utilisé pour détecter les personnes et extraire leur posture en 2D. Un réseau de neurones profond est ensuite proposé pour apprendre la transformation permettant de reconstruire ces postures en trois dimensions. Les résultats expérimentaux sur la base de données Human3.6M montrent l'efficacité de la méthode proposée. Ces résultats ouvrent des perspectives pour une approche de la reconnaissance d'actions humaines à partir des séquences de squelettes 3D sans utiliser des capteurs de profondeur comme la Kinect. Nous avons également constitué la base CEMEST, une nouvelle base de données RGB-D illustrant des comportements de passagers dans les transports publics. Elle contient 203 vidéos de surveillance collectées dans une station du métro incluant des événements "normaux" et "anormaux". Nous avons obtenu des résultats prometteurs sur cette base en utilisant des techniques d'augmentation de données et de transfert d'apprentissage. Notre approche permet de concevoir des applications basées sur des techniques de l'apprentissage profond pour renforcer la qualité des services de transport en commun
This thesis is dealing with automatic recognition of human actions from monocular RGB-D video sequences. Our main goal is to recognize which human actions occur in unknown videos. This problem is a challenging task due to a number of obstacles caused by the variability of the acquisition conditions, including the lighting, the position, the orientation and the field of view of the camera, as well as the variability of actions which can be performed differently, notably in terms of speed. To tackle these problems, we first review and evaluate the most prominent state-of-the-art techniques to identify the current state of human action recognition in videos. We then propose a new approach for skeleton-based action recognition using Deep Neural Networks (DNNs). Two key questions have been addressed. First, how to efficiently represent the spatio-temporal patterns of skeletal data for fully exploiting the capacity in learning high-level representations of Deep Convolutional Neural Networks (D-CNNs). Second, how to design a powerful D-CNN architecture that is able to learn discriminative features from the proposed representation for classification task. As a result, we introduce two new 3D motion representations called SPMF (Skeleton Posture-Motion Feature) and Enhanced-SPMF that encode skeleton poses and their motions into color images. For learning and classification tasks, we design and train different D-CNN architectures based on the Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) and Efficient Neural Architecture Search (ENAS) to extract robust features from color-coded images and classify them. Experimental results on various public and challenging human action recognition datasets (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, and NTU-RGB+D) show that the proposed approach outperforms current state-of-the-art. We also conducted research on the problem of 3D human pose estimation from monocular RGB video sequences and exploited the estimated 3D poses for recognition task. Specifically, a deep learning-based model called OpenPose is deployed to detect 2D human poses. A DNN is then proposed and trained for learning a 2D-to-3D mapping in order to map the detected 2D keypoints into 3D poses. Our experiments on the Human3.6M dataset verified the effectiveness of the proposed method. These obtained results allow opening a new research direction for human action recognition from 3D skeletal data, when the depth cameras are failing. In addition, we collect and introduce in this thesis, CEMEST database, a new RGB-D dataset depicting passengers' behaviors in public transport. It consists of 203 untrimmed real-world surveillance videos of realistic "normal" and "abnormal" events. We achieve promising results on CEMEST with the support of data augmentation and transfer learning techniques. This enables the construction of real-world applications based on deep learning for enhancing public transportation management services
APA, Harvard, Vancouver, ISO, and other styles
29

Duhr, Fanny. "Voies de signalisation associées au récepteur 5-HT6 et développement neuronal." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT042/document.

Full text
Abstract:
La mise en place des circuits neuronaux est un processus complexe et précisément régulé. Une atteinte de ce processus est à l'origine de diverses pathologies neurodéveloppementales telles que la schizophrénie ou les troubles du spectre autistique, désordres psychiatriques partageant une altération des fonctions cognitives. Le récepteur 6 de la sérotonine (récepteur 5-HT6), notamment connu pour son implication dans la migration neuronale, s'est révélé être une cible thérapeutique de choix dans le traitement des symptômes cognitifs associés à la schizophrénie mais aussi à des pathologies neurodégénératives comme la maladie d'Alzheimer. Cependant la signalisation déclenchée par le récepteur 5-HT6 n'explique pas entièrement son implication dans les processus neurodéveloppementaux. Mon travail de thèse a donc visé à comprendre les mécanismes de signalisation engagés par le récepteur 5-HT6 au cours du développement neuronal. La réalisation d'un crible protéomique a permis de montrer que le récepteur 5-HT6 interagissait avec plusieurs protéines cruciales dans le développement neuronal comme la protéine Cdk5 et sa cible WAVE-1. J'ai ensuite pu démontrer qu'en plus de son rôle dans la migration, le récepteur 5-HT6 contrôlait de façon agoniste-indépendante l'élongation des neurites par un mécanisme impliquant la phosphorylation de son domaine C-terminal par la kinase Cdk5 et l'activation de la RhoGTPase Cdc42. La seconde partie de mon travail a visé à mettre en évidence le rôle du récepteur 5-HT6 dans la formation des épines dendritiques et à comprendre l'implication de la protéine WAVE-1, cible de Cdk5, dans ce processus. Les résultats obtenus au cours de ma thèse apportent de nouveaux éléments quant au contrôle des processus neurodéveloppementaux par le récepteur 5-HT6. Ce récepteur apparaît donc comme une cible thérapeutique de choix dans les atteintes neurodéveloppementales en contribuant au développement des circuits cognitifs en relation avec la physiopathologie des troubles du spectre autistique ou de la schizophrénie
Brain circuitry patterning is a complex, highly regulated process. Alteration of this process is affected gives rise to various neurodevelopmental disorders such as schizophrenia or Autism Spectrum Disorders (ASD), which are both characterized by a wide spectrum of deficits. Serotonin 6 receptor (5-HT6 receptor), which is known for its implication in neuronal migration process, has been identified as a key therapeutic target for the treatment of cognitive deficits observed in schizophrenia, but also in neurodegenerative pathologies such as Alzheimer's disease. However, the signalling mechanisms knowned to be activated by the 5-HT6 receptor do not explain its involvement in neurodevelopmental processes. My thesis project therefore aimed at characterizing the signalling pathways engaged by 5-HT6 receptor during neural development. A proteomic approach allowed me to show that the 5-HT6 receptor was interacting with several proteins playing crucial roles in neurodevelopmental processes such as Cdk5 or WAVE-1. I then demonstrated that, besides its role in neuronal migration, the 5-HT6 receptor was also involved in neurite growth through constitutive phosphorylation of 5-HT6 receptor at Ser350 by associated Cdk5, a process leading to an increase in Cdc42 activity. The second part of my work aimed at understanding the role of 5-HT6 receptor in dendritic spines morphogenesis, and the involvement of WAVE-1 and Cdk5 in this process. These results provide new insights into the control of neurodevelopemental processes by 5-HT6 receptor. Thus, 5-HT6 receptor appears to be a key therapeutic target for neurodevelopmental disorders by contributing to the development of cognitive circuitry related to the pathophysiology of ASD or schizophrenia
APA, Harvard, Vancouver, ISO, and other styles
30

Martin, Pierre-Etienne. "Détection et classification fines d'actions à partir de vidéos par réseaux de neurones à convolutions spatio-temporelles : Application au tennis de table." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0313.

Full text
Abstract:
La reconnaissance des actions à partir de vidéos est l'un des principaux problèmes de vision par ordinateur. Malgré des recherches intensives, la différenciation et la reconnaissance d'actions similaires restent un défi. Cette thèse porte sur la classification des gestes sportifs à partir de vidéos, avec comme cadre applicatif le tennis de table.Nous proposons une méthode d’apprentissage profond pour segmenter et classifier automatiquement les différents coup de Tennis de Table. Notre objectif est de concevoir un système intelligent permettant d'analyser les performances des élèves pongistes, et de donner la possibilité à l’entraîneur d'adapter ses séances d'entraînement pour améliorer leurs performances.Dans ce but, nous avons élaboré la base de données “TTStroke-21”, constituée de clips vidéo d'exercices de tennis de table, enregistrés par les étudiants de la faculté de sport de l'Université de Bordeaux – STAPS. Cette base de données a ensuite été annotée par des professionnels du domaine à l'aide d'une plateforme crowdsourcing. Les annotations consistent en une description des coups effectués (début, fin et type de coup). Au total, 20 différents coups de tennis de table sont considérés plus une classe de rejet.La reconnaissance des actions similaires présente des différences avec la reconnaissance d’actions classique. En effet, dans les bases de données classiques, le contexte de l’arrière plan fournit souvent des informations discriminantes que les méthodes peuvent utiliser pour classer l'action plutôt que de se concentrer sur l'action elle-même. Dans notre cas, la similarité entre classes est élevée, les caractéristiques visuelles discriminantes sont donc plus difficiles à extraire et le mouvement joue un rôle clef dans la caractérisation de l’action.Dans cette thèse, nous introduisons un réseau de neurones spatio-temporel convolutif avec une architecture Jumelle. Ce réseau d'apprentissage profond prend comme entrées une séquence d'images RVB et son flot optique estimé. Les données RVB permettent à notre modèle de capturer les caractéristiques d'apparence tandis que le flot optique capture les caractéristiques de mouvement. Ces deux flux sont traités en parallèle à l'aide de convolutions 3D, et sont fusionnés à la dernière étape du réseau. Les caractéristiques spatio-temporelles extraites dans le réseau permettent une classification efficace des clips vidéo de TTStroke-21. Notre méthode obtient une performance de classification de 93.2% sur l'ensemble des données tests. Appliquée à la tâche jointe de détection et de classification, notre méthode atteint une précision de 82.6%.Nous étudions les performances en fonction des types de données utilisés en entrée et la manière de les fusionner. Différents estimateurs de flot optique ainsi que leur normalisation sont testés afin d’améliorer la précision. Les caractéristiques de chaque branche de notre architecture sont également analysées afin de comprendre le chemin de décision de notre modèle. Enfin, nous introduisons un mécanisme d'attention pour aider le modèle à se concentrer sur des caractéristiques discriminantes et aussi pour accélérer le processus d’entraînement. Nous comparons notre modèle avec d'autres méthodes sur TTStroke-21 et le testons sur d'autres ensembles de données. Nous constatons que les modèles fonctionnant bien sur des bases de données d’actions classiques ne fonctionnent pas toujours aussi bien sur notre base de données d'actions similaires.Les travaux présentés dans cette thèse ont été validés par des publications dans une revue internationale, cinq papiers de conférences internationales, deux papiers d’un workshop international et une tâche reconductible dans le workshop MediaEval où les participants peuvent appliquer leurs méthodes de reconnaissance d'actions à notre base de données TTStroke-21. Deux autres papiers de workshop internationaux sont en cours de préparation, ainsi qu'un chapitre de livre
Action recognition in videos is one of the key problems in visual data interpretation. Despite intensive research, differencing and recognizing similar actions remains a challenge. This thesis deals with fine-grained classification of sport gestures from videos, with an application to table tennis.In this manuscript, we propose a method based on deep learning for automatically segmenting and classifying table tennis strokes in videos. Our aim is to design a smart system for students and teachers for analyzing their performances. By profiling the players, a teacher can therefore tailor the training sessions more efficiently in order to improve their skills. Players can also have an instant feedback on their performances.For developing such a system with fine-grained classification, a very specific dataset is needed to supervise the learning process. To that aim, we built the “TTStroke-21” dataset, which is composed of 20 stroke classes plus a rejection class. The TTStroke-21 dataset comprises video clips of recorded table tennis exercises performed by students at the sport faculty of the University of Bordeaux - STAPS. These recorded sessions were annotated by professional players or teachers using a crowdsourced annotation platform. The annotations consist in a description of the handedness of the player and information for each stroke performed (starting and ending frames, class of the stroke).Fine-grained action recognition has some notable differences with coarse-grained action recognition. In general, datasets used for coarse-grained action recognition, the background context often provides discriminative information that methods can use to classify the action, rather than focusing on the action itself. In fine-grained classification, where the inter-class similarity is high, discriminative visual features are harder to extract and the motion plays a key role for characterizing an action.In this thesis, we introduce a Twin Spatio-Temporal Convolutional Neural Network. This deep learning network takes as inputs an RGB image sequence and its computed Optical Flow. The RGB image sequence allows our model to capture appearance features while the optical flow captures motion features. Those two streams are processed in parallel using 3D convolutions, and fused at the last stage of the network. Spatio-temporal features extracted in the network allow efficient classification of video clips from TTStroke-21. Our method gets an average classification performance of 87.3% with a best run of 93.2% accuracy on the test set. When applied on joint detection and classification task, the proposed method reaches an accuracy of 82.6%.A systematic study of the influence of each stream and fusion types on classification accuracy has been performed, giving clues on how to obtain the best performances. A comparison of different optical flow methods and the role of their normalization on the classification score is also done. The extracted features are also analyzed by back-tracing strong features from the last convolutional layer to understand the decision path of the trained model. Finally, we introduce an attention mechanism to help the model focusing on particular characteristic features and also to speed up the training process. For comparison purposes, we provide performances of other methods on TTStroke-21 and test our model on other datasets. We notice that models performing well on coarse-grained action datasets do not always perform well on our fine-grained action dataset.The research presented in this manuscript was validated with publications in one international journal, five international conference papers, two international workshop papers and a reconductible task in MediaEval workshop in which participants can apply their action recognition methods to TTStroke-21. Two additional international workshop papers are in process along with one book chapter
APA, Harvard, Vancouver, ISO, and other styles
31

Combes, Denis. "Processus d'intégration dans un système sensori-moteur simple : mécanismes cellulaires impliqués dans le contrôle d'un réseau moteur par un neurone mécanorécepteur primaire chez le homard." Bordeaux 1, 1993. http://www.theses.fr/1993BOR10634.

Full text
Abstract:
Une preparation simple a permis d'etudier les mecanismes cellulaires via lesquels une activite motrice centralement programmee peut etre remaniee par un unique propiocepteur. Dans un premier temps, par des etudes morphologiques et electrophysiologiques, il a ete montre que le neurone sensoriel etudie est un mecanorecepteur de type tendineux, premier exemple connu chez les invertebres. D'autre part, apres avoir identifie les relations synaptiques existantes entre tous les elements du generateur central ainsi que les deux uniques voies d'acces du neurone sensoriel a ce generateur, il a ete montre en particulier que le reseau central controle ces voies d'acces et que par ses proprietes intrinseques et les proprietes synaptiques de ses cibles, le mecanorecepteur est capable de selectionner ces memes voies et du meme coup de determiner la nature du remaniement impose au generateur central
APA, Harvard, Vancouver, ISO, and other styles
32

Kosmidis, Efstratios. "Effets du bruit dans le système nerveux central : du neurone au réseau de neurones : fiabilité des neurones, rythmogenèse respiratoire, information visuelle : étude par neurobiologie numérique." Paris 6, 2002. http://www.theses.fr/2002PA066199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chauvet, Pierre. "Sur la stabilité d'un réseau de neurones hiérarchique à propos de la coordination du mouvement." Angers, 1993. http://www.theses.fr/1993ANGE0011.

Full text
Abstract:
Dans le premier chapitre, quelques réseaux de neurones capables d'apprendre des mouvements sont présentés. Un modèle du cortex cérébelleux, très impliqué dans la coordination des mouvements, est décrit en détail : c'est un réseau hiérarchique de réseaux de neurones linéaires, appelés unités de Purkinje, qui respectent la connectivité réelle. Les poids synaptiques, en apprentissage, sont modifiés par une règle de covariance. L'étude de ce modèle a permis de définir de nouvelles règles d'apprentissage appelées règles d'apprentissage variationnelles. L'objectif de cette thèse est d'en étudier les conditions de validité pour des unités non linéaires et d'en déduire une explication sur la manière dont la coordination de mouvements est apprise. Dans le deuxième chapitre, une unité de Purkinje linéaire plus générale est analysée. Les notions d'apprentissage et de reconnaissance sont approfondies. Il est montre qu'en phase d'apprentissage, une unité linéaire converge et est stable au sens de Lyapunov, sous certaines conditions. Sous ces mêmes conditions, les règles variationnelles vues dans le chapitre précédent sont confirmées. Dans la première partie du troisième chapitre, il est supposé que les neurones de l'unité sont non linéaires. Sa stabilité au sens de Lyapunov est étudiée par linéarisation autour d'un point équilibre. Dans la seconde partie, des délais sont introduits à l'intérieur de l'unité entre certains neurones. Il en résulte que l'unité possède une dynamique interne. Les conditions de convergence de la sortie de l'unité sont alors déterminées. Finalement, les règles variationnelles sont confirmées sous certaines conditions pour cette unité non linéaire. Dans le quatrième chapitre, l'étude d'un réseau d'unités de Purkinje est entreprise. Après l'étude d'un réseau simple, des délais entre unités sont introduits. Des conditions de stabilité de réseaux d'unités non linéaires sont déterminées et des simulations numériques permettent de vérifier que les règles variationnelles sont bien suivies. Enfin, un exemple de coordination musculaire apprise par un réseau est donné.
APA, Harvard, Vancouver, ISO, and other styles
34

Boukhtache, Seyfeddine. "Système de traitement d’images temps réel dédié à la mesure de champs denses de déplacements et de déformations." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC054.

Full text
Abstract:
Cette thèse s’inscrit dans un cadre pluridisciplinaire. Elle traite de la problématique du temps réel et de celle des performances métrologiques en traitement d’images numériques. Elle s'intéresse plus particulièrement à la photomécanique. Il s'agit d'une discipline récente visant à développer et à utiliser au mieux des systèmes de mesure de champs entiers de petits déplacements et de petites déformations en surface de solides soumis à des sollicitations thermomécaniques. La technique utilisée dans cette thèse est la corrélation des images numériques (CIN), qui se trouve être l'une des plus employées dans cette communauté. Elle représente cependant des limitations à savoir un temps de calcul prohibitif et des performances métrologiques améliorables afin d'atteindre celles des capteurs ponctuels classiques comme les jauges de déformation.Ce travail s'appuie sur deux axes d'étude pour relever ce défi. Le premier repose sur l'optimisation de l'interpolation d'images qui est le traitement le plus coûteux dans la CIN. Une accélération est proposée en utilisant une implémentation matérielle parallélisée sur FPGA, tout en tenant compte de la consommation des ressources matérielles et de la précision. La principale conclusion est qu'un seul FPGA (dans les limites technologiques actuelles) ne suffit pas à implémenter l'intégralité de l'algorithme CIN. Un second axe d'étude a donc été proposé. Il vise à développer et à utiliser des réseaux de neurones convolutifs pour tenter d'atteindre à la fois des performances métrologiques meilleures que la CIN et un traitement en temps réel. Cette deuxième étude a montré l'efficacité d'un tel outil pour la mesure des champs de déplacements et de déformations. Elle ouvre de nouvelles perspectives en termes de performances métrologiques et de rapidité des systèmes de mesure de champs
This PhD thesis has been carried out in a multidisciplinary context. It deals with the challenge of real-time and metrological performance in digital image processing. This is particularly interesting in photomechanics. This is a recent field of activity, which consists in developing and using systems for measuring whole fields of small displacements and small deformations of solids subjected to thermomechanical loading. The technique targeted in this PhD thesis is Digital Images Correlation (DIC), which is the most popular measuring technique in this community. However, it has some limitations, the main one being the computing resources and the metrological performance, which should be improved to reach that of classic pointwise measuring sensors such as strain gauges.In order to address this challenge, this work relies on two main studies. The first one consists in optimizing the interpolation process because this is the most expensive treatment in DIC. Acceleration is proposed by using a parallel hardware implementation on FPGA, and by taking into consideration the consumption of hardware resources as well as accuracy. The main conclusion of this study is that a single FPGA (current technology) is not sufficient to implement the entire DIC algorithm. Thus, a second study has been proposed. It is based on the use of convolutional neural networks (CNNs) in an attempt to achieve both better metrological performance than CIN and real-time processing. This second study shows the relevance of using CNNs for measuring displacement and deformation fields. It opens new perspectives in terms of metrological performance and speed of full-field measuring systems
APA, Harvard, Vancouver, ISO, and other styles
35

Wauquier, Pauline. "Task driven representation learning." Thesis, Lille 3, 2017. http://www.theses.fr/2017LIL30005/document.

Full text
Abstract:
De nombreux algorithmes d'Apprentissage automatique ont été proposés afin de résoudre les différentes tâches pouvant être extraites des problèmes de prédiction issus d'un contexte réel. Pour résoudre les différentes tâches pouvant être extraites, la plupart des algorithmes d'Apprentissage automatique se basent d'une manière ou d'une autre sur des relations liant les instances. Les relations entre paires d'instances peuvent être définies en calculant une distance entre les représentations vectorielles des instances. En se basant sur la représentation vectorielle des données, aucune des distances parmi celles communément utilisées n'est assurée d'être représentative de la tâche à résoudre. Dans ce document, nous étudions l'intérêt d'adapter la représentation vectorielle des données à la distance utilisée pour une meilleure résolution de la tâche. Nous nous concentrons plus précisément sur l'algorithme existant résolvant une tâche de classification en se basant sur un graphe. Nous décrivons d'abord un algorithme apprenant une projection des données dans un espace de représentation permettant une résolution, basée sur un graphe, optimale de la classification. En projetant les données dans un espace de représentation dans lequel une distance préalablement définie est représentative de la tâche, nous pouvons surpasser la représentation vectorielle des données lors de la résolution de la tâche. Une analyse théorique de l'algorithme décrit est développée afin de définir les conditions assurant une classification optimale. Un ensemble d'expériences nous permet finalement d'évaluer l'intérêt de l'approche introduite et de nuancer l'analyse théorique
Machine learning proposes numerous algorithms to solve the different tasks that can be extracted from real world prediction problems. To solve the different concerned tasks, most Machine learning algorithms somehow rely on relationships between instances. Pairwise instances relationships can be obtained by computing a distance between the vectorial representations of the instances. Considering the available vectorial representation of the data, none of the commonly used distances is ensured to be representative of the task that aims at being solved. In this work, we investigate the gain of tuning the vectorial representation of the data to the distance to more optimally solve the task. We more particularly focus on an existing graph-based algorithm for classification task. An algorithm to learn a mapping of the data in a representation space which allows an optimal graph-based classification is first introduced. By projecting the data in a representation space in which the predefined distance is representative of the task, we aim at outperforming the initial vectorial representation of the data when solving the task. A theoretical analysis of the introduced algorithm is performed to define the conditions ensuring an optimal classification. A set of empirical experiments allows us to evaluate the gain of the introduced approach and to temper the theoretical analysis
APA, Harvard, Vancouver, ISO, and other styles
36

Abdelouahab, Kamel. "Reconfigurable hardware acceleration of CNNs on FPGA-based smart cameras." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC042/document.

Full text
Abstract:
Les Réseaux de Neurones Convolutifs profonds (CNNs) ont connu un large succès au cours de la dernière décennie, devenant un standard de la vision par ordinateur. Ce succès s’est fait au détriment d’un large coût de calcul, où le déploiement des CNNs reste une tâche ardue surtout sous des contraintes de temps réel.Afin de rendre ce déploiement possible, la littérature exploite le parallélisme important de ces algorithmes, ce qui nécessite l’utilisation de plate-formes matérielles dédiées. Dans les environnements soumis à des contraintes de consommations énergétiques, tels que les nœuds des caméras intelligentes, les cœurs de traitement à base de FPGAs sont reconnus comme des solutions de choix pour accélérer les applications de vision par ordinateur. Ceci est d’autant plus vrai pour les CNNs, où les traitements se font naturellement sur un flot de données, rendant les architectures matérielles à base de FPGA d’autant plus pertinentes. Dans ce contexte, cette thèse aborde les problématiques liées à l’implémentation des CNNs sur FPGAs. En particulier, ces travaux visent à améliorer l’efficacité des implantations grâce à deux principales stratégies d’optimisation; la première explore le modèle et les paramètres des CNNs, tandis que la seconde se concentre sur les architectures matérielles adaptées au FPGA
Deep Convolutional Neural Networks (CNNs) have become a de-facto standard in computer vision. This success came at the price of a high computational cost, making the implementation of CNNs, under real-time constraints, a challenging task.To address this challenge, the literature exploits the large amount of parallelism exhibited by these algorithms, motivating the use of dedicated hardware platforms. In power-constrained environments, such as smart camera nodes, FPGA-based processing cores are known to be adequate solutions in accelerating computer vision applications. This is especially true for CNN workloads, which have a streaming nature that suits well to reconfigurable hardware architectures.In this context, the following thesis addresses the problems of CNN mapping on FPGAs. In Particular, it aims at improving the efficiency of CNN implementations through two main optimization strategies; The first one focuses on the CNN model and parameters while the second one considers the hardware architecture and the fine-grain building blocks
APA, Harvard, Vancouver, ISO, and other styles
37

Haj, Hassan Hawraa. "Détection et classification temps réel de biocellules anormales par technique de segmentation d’images." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0043.

Full text
Abstract:
Le développement de méthodes de la détection en temps réel de cellules anormales (pouvant être considérées comme des cellules cancéreuses) par captures et traitements bio-images sont des axes de recherche importants dans le domaine biomédical car cela contribue à diagnostiquer un cancer. C’est dans ce contexte que se situe ces travaux de thèse. Plus précisément, les travaux présentés dans ce manuscrit, se focalise sur le développement de procédures de lecture, de détection et de classification automatiques de bio-images de cellules anormales considérées comme des cellules cancéreuses. Par conséquent, une première étape du travail à consister à déterminer une solution de détection, à partir d’images microscopiques multispectrales permettant une répétitivité d’images sur une gamme de longueurs d'ondes de certains types de bio-images anormales associées à différents stades ou évolutions de cellules cancéreuses. L’approche développée dans ces travaux repose sur l’exploitation d’une nouvelle méthode de segmentation basée sur l'intensité de la couleur et pouvant être appliquée sur des séquences d'objets dans une image en reformant de manière adaptative et itérative la localisation et la couverture de contours réels de cellules. Cette étape préalable de segmentation est primordiale et permet une classification des tissus anormaux en utilisant la méthode de réseau de neurones à convolution (CNN) appliqué sur les images microscopiques segmenté de type snake. L’approche permet d’obtenir de bas résultats comparativement à une approche basée sur d’autres méthodes de segmentation de la littérature. En effet, cette méthode de classification atteint des valeurs de performance de 100% pour la phase d’apprentissage et de 99.168 % pour les phases de test. Cette méthode est comparée à différents travaux antérieurs et basée sur différentes fonctionnalités d'extraction, et a prouvé son efficacité par rapport à ces autres méthodes. En terme de perspectives, les travaux futurs visent à valider notre approche sur des ensembles de données plus larges, et à explorer différentes architectures CNN selon différents critères d’optimisation
Development of methods for help diagnosis of the real time detection of abnormal cells (which can be considered as cancer cells) through bio-image processing and detection are most important research directions in information science and technology. Our work has been concerned by developing automatic reading procedures of the normal and abnormal bio-images tissues. Therefore, the first step of our work is to detect a certain type of abnormal bio-images associated to many types evolution of cancer within a Microscopic multispectral image, which is an image, repeated in many wavelengths. And using a new segmentation method that reforms itself in an iterative adaptive way to localize and cover the real cell contour, using some segmentation techniques. It is based on color intensity and can be applied on sequences of objects in the image. This work presents a classification of the abnormal tissues using the Convolution neural network (CNN), where it was applied on the microscopic images segmented using the snake method, which gives a high performance result with respect to the other segmentation methods. This classification method reaches high performance values, where it reaches 100% for training and 99.168% for testing. This method was compared to different papers that uses different feature extraction, and proved its high performance with respect to other methods. As a future work, we will aim to validate our approach on a larger datasets, and to explore different CNN architectures and the optimization of the hyper-parameters, in order to increase its performance, and it will be applied to relevant medical imaging tasks including computer-aided diagnosis
APA, Harvard, Vancouver, ISO, and other styles
38

Guerre, Alexandre. "Champ visuel augmenté pour l'exploration vidéo de la rétine." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0110.

Full text
Abstract:
L’objectif de cette thèse est d’augmenter le confort visuel de l’ophtalmologue au cours d’examens ou de chirurgies de la rétine. Pour ce faire, nous décidons d’augmenter artificiellement et en temps réel le champ visuel dans le cas de vidéos d’exploration acquises à la lampe à fente et à l’endoscope oculaire. L’augmentation passe par la mise en place de cartes dynamiques en 3D de la rétine. A notre connaissance, il n’existe pas de telle méthode dans la littérature. Notre solution passe par l’étude de différentes méthodes d’estimation de déplacements entre deux images. Nous les regroupons en méthodes « classiques » d’une part, comptant notamment des méthodes basées sur les algorithmes SIFT ou SURF. D’autre part, nous rassemblons des méthodes utilisant l’apprentissage profond (ou méthodes « CNN » pour Convolutional Neural Network). Certaines de ces méthodes, comme celles utilisant les réseaux FlowNet, nécessitent une annotation vérité terrain des déplacements entre images. Comme de telles bases de données n’existent pas en ophtalmologie, des bases généralistes ont été utilisées. De plus, nous avons construit deux bases de données de déplacements artificiels ayant pour fond des images de rétines. Enfin, pour contourner le problème d’annotation, une approche utilisant l’apprentissage auto-supervisé a été étudiée. Après comparaisons des résultats, il apparaît que les méthodes « CNN » surpassent les méthodes classiques. De plus, seule une supervision forte de l’apprentissage permet des résultats satisfaisants. A l’avenir, nous espérons que ces travaux pourront permettre aux chirurgiens d’être plus confiants et efficaces dans des environnements où il peut être compliqué de se repérer
The main objective of this thesis is toincrease the visual comfort of theophthalmologists during examinations orsurgeries. To do so, we decided toartificially increase in real time the field ofview in videos of retinal exploration. Thetools used for the acquisition of thesevideos are the slit lamp and theendoscope. The increase of the field ofview passes by the establishment ofdynamic 3D maps of the retina.To our knowledge, there is still no suchmethod in the state of the art.In order to implement our solution, westudied the different methods of motionestimations between two images. Wegrouped them into "classical" methods, onthe one hand, including methods based onSIFT or SURF algorithms. On the otherhand, we grouped deep learning methods(or "CNN" methods for ConvolutionalNeural Network).Some of these methods, such as thoseusing FlowNet networks, required groundtruth annotation of movement betweenimages.Since such bases are very difficult to set upin the medical field and do not exist inophthalmology, general databases havebeen used. In addition, we built twodatabases of artificial displacements whichbackgrounds are composed of images ofretinas. Finally, to get around this problemof annotations, a self-supervised deeplearning approach was studied.After comparing the results, it appears thatmethods using convolutional neuralnetworks outperform conventional methodsfor estimating movements in retinal videos.Moreover, only a strong supervision allowsacceptable results. In the future, we hopethat this work will enable surgeons to bemore confident and effective inenvironments where it is sometimesdifficult to find their bearings
APA, Harvard, Vancouver, ISO, and other styles
39

Mayorquim, Jorge Luiz. "Étude en vue de la réalisation d'un réseau de neurones binaires logiques : détection de contours en temps réel." Compiègne, 1996. http://www.theses.fr/1996COMPD893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Palluat, Nicolas. "Méthodologie de surveillance dynamique à l'aide des réseaux neuro-flous temporels." Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00217474.

Full text
Abstract:
Notre travail porte sur la surveillance industrielle, processus couramment décomposé en deux phases : la détection et le diagnostic. Nous proposons ainsi un système dynamique d'aide à la surveillance, sous la forme de deux outils exploitant les techniques de l'intelligence artificielle. Le premier réalise une détection dynamique intelligente à l'aide des réseaux de neurones récurrents à fonction de base radiale. Le second, basé sur un réseau neuro-flou, effectue une aide au diagnostic.
A partir de l'observation de données capteurs, l'outil de détection détermine l'état du système en associant un degré de possibilité à chacun des modes de fonctionnement. A partir de ces informations, l'outil de diagnostic recherche les causes les plus probables (diagnostic abductif) pondérées par un degré de confiance. En complément et dans une optique à la décision, nous avons veillé à ce que l'opérateur puisse ajouter des informations supplémentaires. Notons que la configuration et l'initialisation des outils implique de connaître l'historique et les données de maintenance du système. Nous exploitons pour cela les AMDEC et Arbres de Défaillance des équipements surveillés. La partie applicative de cette thèse se décompose en deux points : l'intégration logicielle de l'ensemble du travail sur un ordinateur industriel (démarche UML + implémentation) ainsi que l'application sur un système de transfert flexible de production.
APA, Harvard, Vancouver, ISO, and other styles
41

Caye, Daudt Rodrigo. "Convolutional neural networks for change analysis in earth observation images with noisy labels and domain shifts." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT033.

Full text
Abstract:
L'analyse de l'imagerie satellitaire et aérienne d'observation de la Terre nous permet d'obtenir des informations précises sur de vastes zones. Une analyse multitemporelle de telles images est nécessaire pour comprendre l'évolution de ces zones. Dans cette thèse, les réseaux de neurones convolutifs sont utilisés pour détecter et comprendre les changements en utilisant des images de télédétection provenant de diverses sources de manière supervisée et faiblement supervisée. Des architectures siamoises sont utilisées pour comparer des paires d'images recalées et identifier les pixels correspondant à des changements. La méthode proposée est ensuite étendue à une architecture de réseau multitâche qui est utilisée pour détecter les changements et effectuer une cartographie automatique simultanément, ce qui permet une compréhension sémantique des changements détectés. Ensuite, un filtrage de classification et un nouvel algorithme de diffusion anisotrope guidée sont utilisés pour réduire l'effet du bruit d'annotation, un défaut récurrent pour les ensembles de données à grande échelle générés automatiquement. Un apprentissage faiblement supervisé est également réalisé pour effectuer une détection de changement au niveau des pixels en utilisant uniquement une supervision au niveau de l'image grâce à l'utilisation de cartes d'activation de classe et d'une nouvelle couche d'attention spatiale. Enfin, une méthode d'adaptation de domaine fondée sur un entraînement adverse est proposée. Cette méthode permet de projeter des images de différents domaines dans un espace latent commun où une tâche donnée peut être effectuée. Cette méthode est testée non seulement pour l'adaptation de domaine pour la détection de changement, mais aussi pour la classification d'images et la segmentation sémantique, ce qui prouve sa polyvalence
The analysis of satellite and aerial Earth observation images allows us to obtain precise information over large areas. A multitemporal analysis of such images is necessary to understand the evolution of such areas. In this thesis, convolutional neural networks are used to detect and understand changes using remote sensing images from various sources in supervised and weakly supervised settings. Siamese architectures are used to compare coregistered image pairs and to identify changed pixels. The proposed method is then extended into a multitask network architecture that is used to detect changes and perform land cover mapping simultaneously, which permits a semantic understanding of the detected changes. Then, classification filtering and a novel guided anisotropic diffusion algorithm are used to reduce the effect of biased label noise, which is a concern for automatically generated large-scale datasets. Weakly supervised learning is also achieved to perform pixel-level change detection using only image-level supervision through the usage of class activation maps and a novel spatial attention layer. Finally, a domain adaptation method based on adversarial training is proposed, which succeeds in projecting images from different domains into a common latent space where a given task can be performed. This method is tested not only for domain adaptation for change detection, but also for image classification and semantic segmentation, which proves its versatility
APA, Harvard, Vancouver, ISO, and other styles
42

Chen, Dexiong. "Modélisation de données structurées avec des machines profondes à noyaux et des applications en biologie computationnelle." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM070.

Full text
Abstract:
Le développement d'algorithmes efficaces pour apprendre des représentations appropriées des données structurées, telles des sequences ou des graphes, est un défi majeur et central de l'apprentissage automatique. Pour atteindre cet objectif, l'apprentissage profond est devenu populaire pour modéliser des données structurées. Les réseaux de neurones profonds ont attiré une attention particulière dans divers domaines scientifiques tels que la vision par ordinateur, la compréhension du langage naturel ou la biologie. Par exemple, ils fournissent aux biologistes des outils de calcul qui leur permettent de comprendre et de découvrir les propriétés biologiques ou les relations entre les macromolécules des organismes vivants. Toutefois, leur succès dans ces domaines repose essentiellement sur des connaissances empiriques ainsi que d'énormes quantités de données annotées. Exploiter des modèles plus efficaces est nécessaire car les données annotées sont souvent rares.Un autre axe de recherche est celui des méthodes à noyaux, qui fournissent une approche systématique et fondée sur des principes théoriquement solides pour l'apprentissage de modèles non linéaires à partir de données de structure arbitraire. Outre leur simplicité, elles présentent une manière naturelle de contrôler la régularisation et ainsi d'éviter le surapprentissage.Cependant, les représentations de données fournies par les méthodes à noyaux ne sont définies que par des caractéristiques artisanales simplement conçues, ce qui les rend moins performantes que les réseaux de neurones lorsque suffisamment de données étiquetées sont disponibles. Des noyaux plus complexes, inspirés des connaissances préalables utilisées dans les réseaux de neurones, ont ainsi été développés pour construire des représentations plus riches et ainsi combler cette lacune. Pourtant, ils sont moins adaptatifs. Par comparaison, les réseaux de neurones sont capables d'apprendre une représentation compacte pour une tâche d'apprentissage spécifique, ce qui leur permet de conserver l'expressivité de la représentation tout en s'adaptant à une grande taille d'échantillon.Il est donc utile d'intégrer les vues complémentaires des méthodes à noyaux et des réseaux de neurones profonds pour construire de nouveaux cadres afin de bénéficier du meilleur des deux mondes.Dans cette thèse, nous construisons un cadre général basé sur les noyaux pour la modélisation des données structurées en tirant parti des connaissances préalables des méthodes à noyaux classiques et des réseaux profonds. Notre cadre fournit des outils algorithmiques efficaces pour l'apprentissage de représentations sans annotations ainsi que pour l'apprentissage de représentations plus compactes de manière supervisée par les tâches. Notre cadre peut être utilisé pour modéliser efficacement des séquences et des graphes avec une interprétation simple. Il offre également de nouvelles perspectives sur la construction des noyaux et de réseaux de neurones plus expressifs pour les séquences et les graphes
Developing efficient algorithms to learn appropriate representations of structured data, including sequences or graphs, is a major and central challenge in machine learning. To this end, deep learning has become popular in structured data modeling. Deep neural networks have drawn particular attention in various scientific fields such as computer vision, natural language understanding or biology. For instance, they provide computational tools for biologists to possibly understand and uncover biological properties or relationships among macromolecules within living organisms. However, most of the success of deep learning methods in these fields essentially relies on the guidance of empirical insights as well as huge amounts of annotated data. Exploiting more data-efficient models is necessary as labeled data is often scarce.Another line of research is kernel methods, which provide a systematic and principled approach for learning non-linear models from data of arbitrary structure. In addition to their simplicity, they exhibit a natural way to control regularization and thus to avoid overfitting.However, the data representations provided by traditional kernel methods are only defined by simply designed hand-crafted features, which makes them perform worse than neural networks when enough labeled data are available. More complex kernels inspired by prior knowledge used in neural networks have thus been developed to build richer representations and thus bridge this gap. Yet, they are less scalable. By contrast, neural networks are able to learn a compact representation for a specific learning task, which allows them to retain the expressivity of the representation while scaling to large sample size.Incorporating complementary views of kernel methods and deep neural networks to build new frameworks is therefore useful to benefit from both worlds.In this thesis, we build a general kernel-based framework for modeling structured data by leveraging prior knowledge from classical kernel methods and deep networks. Our framework provides efficient algorithmic tools for learning representations without annotations as well as for learning more compact representations in a task-driven way. Our framework can be used to efficiently model sequences and graphs with simple interpretation of predictions. It also offers new insights about designing more expressive kernels and neural networks for sequences and graphs
APA, Harvard, Vancouver, ISO, and other styles
43

Tran, Ngoc Tiem. "Recherche des oscillations de neutrinos par apparition du τ avec désintégration muonique du vτ dans l'expérience OPERA." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00534753.

Full text
Abstract:
La physique des oscillations de neutrinos occupe une place majeure dans les études s'intéressant à cetteparticule. Le mécanisme des oscillations, basé sur un changement d'état de saveur d'un neutrino durant sapropagation, permet d'élucider les déficits observés de neutrinos solaires et atmosphériques et apporte des indicationsintéressantes de physique au delà du Modèle Standard par l'étude des angles de mélanges et du schéma de masse desneutrinos.OPERA est un détecteur hybride combinant à la fois latechnique d'une détection électronique en temps réel et la technique de la chambre à brouillard à émulsion ou ECC(EmulsionCloud Chamber). Le détecteur ECC est un détecteur massif (cible) composé de 150000 briques dontchacune est constituée de feuilles de plombs, utilisées comme cible, alternées avec des émulsions nucléaires dont laprécision de reconstruction des traces est de l'ordre du micron. Le détecteur comprend également deux spectromètresavec des plaques de fer magnétisé de 5 cm d'épaisseur alternées avec les détecteurs RPC (Resistive Plate Chamber)associés à six ensembles de drift tubes (PT) pour la mesure de la charge et de l'impulsion du muon, et un plan de vetoservant à la rejection des particules extérieures à la cible.
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Yifu. "Deep learning for visual semantic segmentation." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS200.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la segmentation sémantique visuelle, une des tâches de haut niveau qui ouvre la voie à une compréhension complète des scènes. Plus précisément, elle requiert une compréhension sémantique au niveau du pixel. Avec le succès de l’apprentissage approfondi de ces dernières années, les problèmes de segmentation sémantique sont abordés en utilisant des architectures profondes. Dans la première partie, nous nous concentrons sur la construction d’une fonction de coût plus appropriée pour la segmentation sémantique. En particulier, nous définissons une nouvelle fonction de coût basé sur un réseau de neurone de détection de contour sémantique. Cette fonction de coût impose des prédictions au niveau du pixel cohérentes avec les informa- tions de contour sémantique de la vérité terrain, et conduit donc à des résultats de segmentation mieux délimités. Dans la deuxième partie, nous abordons une autre question importante, à savoir l’apprentissage de modèle de segmentation avec peu de données annotées. Pour cela, nous proposons une nouvelle méthode d’attribution qui identifie les régions les plus importantes dans une image considérée par les réseaux de classification. Nous intégrons ensuite notre méthode d’attribution dans un contexte de segmentation faiblement supervisé. Les modèles de segmentation sémantique sont ainsi entraînés avec des données étiquetées au niveau de l’image uniquement, facile à collecter en grande quantité. Tous les modèles proposés dans cette thèse sont évalués expérimentalement de manière approfondie sur plusieurs ensembles de données et les résultats sont compétitifs avec ceux de la littérature
In this thesis, we are interested in Visual Semantic Segmentation, one of the high-level task that paves the way towards complete scene understanding. Specifically, it requires a semantic understanding at the pixel level. With the success of deep learning in recent years, semantic segmentation problems are being tackled using deep architectures. In the first part, we focus on the construction of a more appropriate loss function for semantic segmentation. More precisely, we define a novel loss function by employing a semantic edge detection network. This loss imposes pixel-level predictions to be consistent with the ground truth semantic edge information, and thus leads to better shaped segmentation results. In the second part, we address another important issue, namely, alleviating the need for training segmentation models with large amounts of fully annotated data. We propose a novel attribution method that identifies the most significant regions in an image considered by classification networks. We then integrate our attribution method into a weakly supervised segmentation framework. The semantic segmentation models can thus be trained with only image-level labeled data, which can be easily collected in large quantities. All models proposed in this thesis are thoroughly experimentally evaluated on multiple datasets and the results are competitive with the literature
APA, Harvard, Vancouver, ISO, and other styles
45

Estienne, Théo. "Deep learning-based methods for 3D medical image registration." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG055.

Full text
Abstract:
Cette thèse se concentre sur des nouvelles approches d'apprentissage profond (aussi appelé deep learning) pour trouver le meilleur déplacement entre deux images médicales différentes. Ce domaine de recherche, appelé recalage d'images, a de nombreuses applications dans la prise en charge clinique, notamment la fusion de différents types d'imagerie ou le suivi temporel d'un patient. Ce domaine est étudié depuis de nombreuses années avec diverses méthodes, telles que les méthodes basées sur des difféomorphismes, sur des graphes ou sur des équations physiques. Récemment, des méthodes basées sur l'apprentissage profond ont été proposées en utilisant des réseaux de neurones convolutifs.Les méthodes utilisant l’apprentissage profond ont obtenu des résultats similaires aux méthodes classiques tout en réduisant considérablement le temps de calcul et en permettant une prédiction en temps réel. Cette amélioration provient de l'utilisation de processeurs graphiques (GPU) et d'une phase de prédiction où aucune optimisation n'est requise. Cependant, les méthodes utilisant l'apprentissage profond ont plusieurs limites, telles que le besoin de grandes bases de données pour entraîner le réseau ou le choix des bons hyperparamètres pour éviter des transformations trop irrégulières.Dans ce manuscrit, nous proposons diverses modifications apportées aux algorithmes de recalage à l’aide de deep learning, en travaillant sur différentes types d'imagerie et de parties du corps. Nous étudions dans un premier temps la combinaison des tâches de segmentation et de recalage proposant une nouvelle architecture conjointe. Nous nous appliquons à des jeux de données d'IRM cérébrales, en explorant différents cas : des cerveaux sans et avec tumeurs. Notre architecture comprend un encodeur et deux décodeurs et le couplage est renforcé par l'introduction d’une fonction de coût supplémentaire. Dans le cas de la présence d’une tumeur, la fonction de similarité est modifiée tel que l’entraînement se concentre uniquement sur la partie saine du cerveau, ignorant ainsi la tumeur. Ensuite, nous passons au scanner abdominal, une localisation plus difficile, à cause des mouvements et des déformations naturelles des organes. Nous améliorons les performances d’apprentissage grâce à l'utilisation de pré-apprentissage et de pseudo segmentations, l'ajout de nouvelles fonction de coût pour permettre une meilleure régularisation et une stratégie multi-étapes. Enfin, nous analysons l'explicabilité des réseaux d'enregistrement en utilisant une décomposition linéaire et en s'appliquant à l'IRM pulmonaire et l’hippocampe cérébrale. Grâce à notre stratégie de fusion tardive, nous projetons des images dans l'espace latent et calculons une nouvelle base. Cette base correspond à la transformation élémentaire que nous étudions qualitativement
This thesis focuses on new deep learning approaches to find the best displacement between two different medical images. This research area, called image registration, have many applications in the clinical pipeline, including the fusion of different imaging types or the temporal follow-up of a patient. This field is studied for many years with various methods, such as diffeomorphic, graph-based or physical-based methods. Recently, deep learning-based methods were proposed using convolutional neural networks.These methods obtained similar results to non-deep learning methods while greatly reducing the computation time and enabling real-time prediction. This improvement comes from the use of graphics processing units (GPU) and a prediction phase where no optimisation is required. However, deep learning-based registration has several limitations, such as the need for large databases to train the network or tuning regularisation hyperparameters to prevent too noisy transformations.In this manuscript, we investigate diverse modifications to deep learning algorithms, working on various imaging types and body parts. We study first the combination of segmentation and registration tasks proposing a new joint architecture. We apply to brain MRI datasets, exploring different cases : brain without and with tumours. Our architecture comprises one encoder and two decoders and the coupling is reinforced by the introduction of a supplementary loss. In the presence of tumour, the similarity loss is modified such as the registration focus only on healthy part ignoring the tumour. Then, we shift to abdominal CT, a more challenging localisation, as there are natural organ's movement and deformation. We improve registration performances thanks to the use of pre-training and pseudo segmentations, the addition of new losses to provide a better regularisation and a multi-steps strategy. Finally, we analyse the explainability of registration networks using a linear decomposition and applying to lung and hippocampus MR. Thanks to our late fusion strategy, we project images to the latent space and calculate a new basis. This basis correspond to elementary transformation witch we study qualitatively
APA, Harvard, Vancouver, ISO, and other styles
46

Al, Chami Zahi. "Estimation de la qualité des données multimedia en temps réel." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3066.

Full text
Abstract:
Au cours de la dernière décennie, les fournisseurs de données ont généré et diffusé une grande quantité de données, notamment des images, des vidéos, de l'audio, etc. Dans cette thèse, nous nous concentrerons sur le traitement des images puisqu'elles sont les plus communément partagées entre les utilisateurs sur l'inter-réseau mondial. En particulier, le traitement des images contenant des visages a reçu une grande attention en raison de ses nombreuses applications, telles que les applications de divertissement et de médias sociaux. Cependant, plusieurs défis pourraient survenir au cours de la phase de traitement et de transmission : d'une part, le nombre énorme d'images partagées et produites à un rythme rapide nécessite un temps de traitement et de livraison considérable; d’autre part, les images sont soumises à un très grand nombre de distorsions lors du traitement, de la transmission ou de la combinaison de nombreux facteurs qui pourraient endommager le contenu des images. Deux contributions principales sont développées. Tout d'abord, nous présentons un framework d'évaluation de la qualité d'image ayant une référence complète en temps réel, capable de : 1) préserver le contenu des images en s'assurant que certaines informations visuelles utiles peuvent toujours être extraites de l'image résultante, et 2) fournir un moyen de traiter les images en temps réel afin de faire face à l'énorme quantité d'images reçues à un rythme rapide. Le framework décrit ici est limité au traitement des images qui ont accès à leur image de référence (connu sous le nom référence complète). Dans notre second chapitre, nous présentons un framework d'évaluation de la qualité d'image sans référence en temps réel. Il a les capacités suivantes : a) évaluer l'image déformée sans avoir recours à son image originale, b) préserver les informations visuelles les plus utiles dans les images avant de les publier, et c) traiter les images en temps réel, bien que les modèles d'évaluation de la qualité des images sans référence sont considérés très complexes. Notre framework offre plusieurs avantages par rapport aux approches existantes, en particulier : i. il localise la distorsion dans une image afin d'évaluer directement les parties déformées au lieu de traiter l'image entière, ii. il a un compromis acceptable entre la précision de la prédiction de qualité et le temps d’exécution, et iii. il pourrait être utilisé dans plusieurs applications, en particulier celles qui fonctionnent en temps réel. L'architecture de chaque framework est présentée dans les chapitres tout en détaillant les modules et composants du framework. Ensuite, un certain nombre de simulations sont faites pour montrer l'efficacité de nos approches pour résoudre nos défis par rapport aux approches existantes
Over the past decade, data providers have been generating and streaming a large amount of data, including images, videos, audio, etc. In this thesis, we will be focusing on processing images since they are the most commonly shared between the users on the global inter-network. In particular, treating images containing faces has received great attention due to its numerous applications, such as entertainment and social media apps. However, several challenges could arise during the processing and transmission phase: firstly, the enormous number of images shared and produced at a rapid pace requires a significant amount of time to be processed and delivered; secondly, images are subject to a wide range of distortions during the processing, transmission, or combination of many factors that could damage the images’content. Two main contributions are developed. First, we introduce a Full-Reference Image Quality Assessment Framework in Real-Time, capable of:1) preserving the images’content by ensuring that some useful visual information can still be extracted from the output, and 2) providing a way to process the images in real-time in order to cope with the huge amount of images that are being received at a rapid pace. The framework described here is limited to processing those images that have access to their reference version (a.k.a Full-Reference). Secondly, we present a No-Reference Image Quality Assessment Framework in Real-Time. It has the following abilities: a) assessing the distorted image without having its distortion-free image, b) preserving the most useful visual information in the images before publishing, and c) processing the images in real-time, even though the No-Reference image quality assessment models are considered very complex. Our framework offers several advantages over the existing approaches, in particular: i. it locates the distortion in an image in order to directly assess the distorted parts instead of processing the whole image, ii. it has an acceptable trade-off between quality prediction accuracy and execution latency, andiii. it could be used in several applications, especially these that work in real-time. The architecture of each framework is presented in the chapters while detailing the modules and components of the framework. Then, a number of simulations are made to show the effectiveness of our approaches to solve our challenges in relation to the existing approaches
APA, Harvard, Vancouver, ISO, and other styles
47

Etienne, Caroline. "Apprentissage profond appliqué à la reconnaissance des émotions dans la voix." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS517.

Full text
Abstract:
Mes travaux de thèse s'intéressent à l'utilisation de nouvelles technologies d'intelligence artificielle appliquées à la problématique de la classification automatique des séquences audios selon l'état émotionnel du client au cours d'une conversation avec un téléconseiller. En 2016, l'idée est de se démarquer des prétraitements de données et modèles d'apprentissage automatique existant au sein du laboratoire, et de proposer un modèle qui soit le plus performant possible sur la base de données audios IEMOCAP. Nous nous appuyons sur des travaux existants sur les modèles de réseaux de neurones profonds pour la reconnaissance de la parole, et nous étudions leur extension au cas de la reconnaissance des émotions dans la voix. Nous nous intéressons ainsi à l'architecture neuronale bout-en-bout qui permet d'extraire de manière autonome les caractéristiques acoustiques du signal audio en vue de la tâche de classification à réaliser. Pendant longtemps, le signal audio est prétraité avec des indices paralinguistiques dans le cadre d'une approche experte. Nous choisissons une approche naïve pour le prétraitement des données qui ne fait pas appel à des connaissances paralinguistiques spécialisées afin de comparer avec l'approche experte. Ainsi le signal audio brut est transformé en spectrogramme temps-fréquence à l'aide d'une transformée de Fourier à court-terme. Exploiter un réseau neuronal pour une tâche de prédiction précise implique de devoir s'interroger sur plusieurs aspects. D'une part, il convient de choisir les meilleurs hyperparamètres possibles. D'autre part, il faut minimiser les biais présents dans la base de données (non discrimination) en ajoutant des données par exemple et prendre en compte les caractéristiques de la base de données choisie. Le but est d'optimiser le mieux possible l'algorithme de classification. Nous étudions ces aspects pour une architecture neuronale bout-en-bout qui associe des couches convolutives spécialisées dans le traitement de l'information visuelle, et des couches récurrentes spécialisées dans le traitement de l'information temporelle. Nous proposons un modèle d'apprentissage supervisé profond compétitif avec l'état de l'art sur la base de données IEMOCAP et cela justifie son utilisation pour le reste des expérimentations. Ce modèle de classification est constitué de quatre couches de réseaux de neurones à convolution et un réseau de neurones récurrent bidirectionnel à mémoire court-terme et long-terme (BLSTM). Notre modèle est évalué sur deux bases de données audios anglophones proposées par la communauté scientifique : IEMOCAP et MSP-IMPROV. Une première contribution est de montrer qu'avec un réseau neuronal profond, nous obtenons de hautes performances avec IEMOCAP et que les résultats sont prometteurs avec MSP-IMPROV. Une autre contribution de cette thèse est une étude comparative des valeurs de sortie des couches du module convolutif et du module récurrent selon le prétraitement de la voix opéré en amont : spectrogrammes (approche naïve) ou indices paralinguistiques (approche experte). À l'aide de la distance euclidienne, une mesure de proximité déterministe, nous analysons les données selon l'émotion qui leur est associée. Nous tentons de comprendre les caractéristiques de l'information émotionnelle extraite de manière autonome par le réseau. L'idée est de contribuer à une recherche centrée sur la compréhension des réseaux de neurones profonds utilisés en reconnaissance des émotions dans la voix et d'apporter plus de transparence et d'explicabilité à ces systèmes dont le mécanisme décisionnel est encore largement incompris
This thesis deals with the application of artificial intelligence to the automatic classification of audio sequences according to the emotional state of the customer during a commercial phone call. The goal is to improve on existing data preprocessing and machine learning models, and to suggest a model that is as efficient as possible on the reference IEMOCAP audio dataset. We draw from previous work on deep neural networks for automatic speech recognition, and extend it to the speech emotion recognition task. We are therefore interested in End-to-End neural architectures to perform the classification task including an autonomous extraction of acoustic features from the audio signal. Traditionally, the audio signal is preprocessed using paralinguistic features, as part of an expert approach. We choose a naive approach for data preprocessing that does not rely on specialized paralinguistic knowledge, and compare it with the expert approach. In this approach, the raw audio signal is transformed into a time-frequency spectrogram by using a short-term Fourier transform. In order to apply a neural network to a prediction task, a number of aspects need to be considered. On the one hand, the best possible hyperparameters must be identified. On the other hand, biases present in the database should be minimized (non-discrimination), for example by adding data and taking into account the characteristics of the chosen dataset. We study these aspects in order to develop an End-to-End neural architecture that combines convolutional layers specialized in the modeling of visual information with recurrent layers specialized in the modeling of temporal information. We propose a deep supervised learning model, competitive with the current state-of-the-art when trained on the IEMOCAP dataset, justifying its use for the rest of the experiments. This classification model consists of a four-layer convolutional neural networks and a bidirectional long short-term memory recurrent neural network (BLSTM). Our model is evaluated on two English audio databases proposed by the scientific community: IEMOCAP and MSP-IMPROV. A first contribution is to show that, with a deep neural network, we obtain high performances on IEMOCAP, and that the results are promising on MSP-IMPROV. Another contribution of this thesis is a comparative study of the output values ​​of the layers of the convolutional module and the recurrent module according to the data preprocessing method used: spectrograms (naive approach) or paralinguistic indices (expert approach). We analyze the data according to their emotion class using the Euclidean distance, a deterministic proximity measure. We try to understand the characteristics of the emotional information extracted autonomously by the network. The idea is to contribute to research focused on the understanding of deep neural networks used in speech emotion recognition and to bring more transparency and explainability to these systems, whose decision-making mechanism is still largely misunderstood
APA, Harvard, Vancouver, ISO, and other styles
48

Boutin, Victor. "Etude d’un algorithme hiérarchique de codage épars et prédictif : vers un modèle bio-inspiré de la perception visuelle." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0028.

Full text
Abstract:
La représentation concise et efficace de l'information est un problème qui occupe une place centrale dans l'apprentissage machine. Le cerveau, et plus particulièrement le cortex visuel, ont depuis longtemps trouvé des solutions performantes et robustes afin de résoudre un tel problème. A l'échelle locale, le codage épars est l'un des mécanismes les plus prometteurs pour modéliser le traitement de l'information au sein des populations de neurones dans le cortex visuel. A l'échelle structurelle, le codage prédictif suggère que les signaux descendants observés dans le cortex visuel modulent l'activité des neurones pour inclure des détails contextuels au flux d'information ascendant. Cette thèse propose de combiner codage épars et codage prédictif au sein d'un modèle hiérarchique et convolutif. D'un point de vue computationnel, nous démontrons que les connections descendantes, introduites par le codage prédictif, permettent une convergence meilleure et plus rapide du modèle. De plus, nous analysons les effets des connections descendantes sur l'organisation des populations de neurones, ainsi que leurs conséquences sur la manière dont notre algorithme se représente les images. Nous montrons que les connections descendantes réorganisent les champs d'association de neurones dans V1 afin de permettre une meilleure intégration des contours. En outre, nous observons que ces connections permettent une meilleure reconstruction des images bruitées. Nos résultats suggèrent que l'inspiration des neurosciences fournit un cadre prometteur afin de développer des algorithmes de vision artificielles plus performants et plus robustes
Building models to efficiently represent images is a central and difficult problem in the machine learning community. The neuroscientific study of the early visual cortical areas is a great source of inspiration to find economical and robust solutions. For instance, Sparse Coding (SC) is one of the most successful frameworks to model neural computation at the local scale in the visual cortex. At the structural scale of the ventral visual pathways, the Predictive Coding (PC) theory has been proposed to model top-down and bottom-up interaction between cortical regions. The presented thesis introduces a model called the Sparse Deep Predictive Coding (SDPC) that combines Sparse Coding and Predictive Coding in a hierarchical and convolutional architecture. We analyze the SPDC from a computational and a biological perspective. In terms of computation, the recurrent connectivity introduced by the PC framework allows the SDPC to converge to lower prediction errors with a higher convergence rate. In addition, we combine neuroscientific evidence with machine learning methods to analyze the impact of recurrent processing at both the neural organization and representational level. At the neural organization level, the feedback signal of the model accounted for a reorganization of the V1 association fields that promotes contour integration. At the representational level, the SDPC exhibited significant denoising ability which is highly correlated with the strength of the feedback from V2 to V1. These results from the SDPC model demonstrate that neuro-inspiration might be the right methodology to design more powerful and more robust computer vision algorithms
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Xuhong. "Regularization schemes for transfer learning with convolutional networks." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2497/document.

Full text
Abstract:
L’apprentissage par transfert de réseaux profonds réduit considérablement les coûts en temps de calcul et en données du processus d’entraînement des réseaux et améliore largement les performances de la tâche cible par rapport à l’apprentissage à partir de zéro. Cependant, l’apprentissage par transfert d’un réseau profond peut provoquer un oubli des connaissances acquises lors de l’apprentissage de la tâche source. Puisque l’efficacité de l’apprentissage par transfert vient des connaissances acquises sur la tâche source, ces connaissances doivent être préservées pendant le transfert. Cette thèse résout ce problème d’oubli en proposant deux schémas de régularisation préservant les connaissances pendant l’apprentissage par transfert. Nous examinons d’abord plusieurs formes de régularisation des paramètres qui favorisent toutes explicitement la similarité de la solution finale avec le modèle initial, par exemple, L1, L2, et Group-Lasso. Nous proposons également les variantes qui utilisent l’information de Fisher comme métrique pour mesurer l’importance des paramètres. Nous validons ces approches de régularisation des paramètres sur différentes tâches de segmentation sémantique d’image ou de calcul de flot optique. Le second schéma de régularisation est basé sur la théorie du transport optimal qui permet d’estimer la dissimilarité entre deux distributions. Nous nous appuyons sur la théorie du transport optimal pour pénaliser les déviations des représentations de haut niveau entre la tâche source et la tâche cible, avec le même objectif de préserver les connaissances pendant l’apprentissage par transfert. Au prix d’une légère augmentation du temps de calcul pendant l’apprentissage, cette nouvelle approche de régularisation améliore les performances des tâches cibles et offre une plus grande précision dans les tâches de classification d’images par rapport aux approches de régularisation des paramètres
Transfer learning with deep convolutional neural networks significantly reduces the computation and data overhead of the training process and boosts the performance on the target task, compared to training from scratch. However, transfer learning with a deep network may cause the model to forget the knowledge acquired when learning the source task, leading to the so-called catastrophic forgetting. Since the efficiency of transfer learning derives from the knowledge acquired on the source task, this knowledge should be preserved during transfer. This thesis solves this problem of forgetting by proposing two regularization schemes that preserve the knowledge during transfer. First we investigate several forms of parameter regularization, all of which explicitly promote the similarity of the final solution with the initial model, based on the L1, L2, and Group-Lasso penalties. We also propose the variants that use Fisher information as a metric for measuring the importance of parameters. We validate these parameter regularization approaches on various tasks. The second regularization scheme is based on the theory of optimal transport, which enables to estimate the dissimilarity between two distributions. We benefit from optimal transport to penalize the deviations of high-level representations between the source and target task, with the same objective of preserving knowledge during transfer learning. With a mild increase in computation time during training, this novel regularization approach improves the performance of the target tasks, and yields higher accuracy on image classification tasks compared to parameter regularization approaches
APA, Harvard, Vancouver, ISO, and other styles
50

Papadopoulos, Georgios. "Towards a 3D building reconstruction using spatial multisource data and computational intelligence techniques." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0084/document.

Full text
Abstract:
La reconstruction de bâtiments à partir de photographies aériennes et d’autres données spatiales urbaines multi-sources est une tâche qui utilise une multitude de méthodes automatisées et semi-automatisées allant des processus ponctuels au traitement classique des images et au balayage laser. Dans cette thèse, un système de relaxation itératif est développé sur la base de l'examen du contexte local de chaque bord en fonction de multiples sources d'entrée spatiales (masques optiques, d'élévation, d'ombre et de feuillage ainsi que d'autres données prétraitées, décrites au chapitre 6). Toutes ces données multisource et multirésolution sont fusionnées de manière à extraire les segments de ligne probables ou les arêtes correspondant aux limites des bâtiments. Deux nouveaux sous-systèmes ont également été développés dans cette thèse. Ils ont été conçus dans le but de fournir des informations supplémentaires, plus fiables, sur les contours des bâtiments dans une future version du système de relaxation proposé. La première est une méthode de réseau de neurones à convolution profonde (CNN) pour la détection de frontières de construction. Le réseau est notamment basé sur le modèle SRCNN (Dong C. L., 2015) de super-résolution à la pointe de la technologie. Il accepte des photographies aériennes illustrant des données de zones urbaines densément peuplées ainsi que leurs cartes d'altitude numériques (DEM) correspondantes. La formation utilise trois variantes de cet ensemble de données urbaines et vise à détecter les contours des bâtiments grâce à une nouvelle cartographie hétéroassociative super-résolue. Une autre innovation de cette approche est la conception d'une couche de perte personnalisée modifiée appelée Top-N. Dans cette variante, l'erreur quadratique moyenne (MSE) entre l'image de sortie reconstruite et l'image de vérité de sol (GT) fournie des contours de bâtiment est calculée sur les 2N pixels de l'image avec les valeurs les plus élevées. En supposant que la plupart des N pixels de contour de l’image GT figurent également dans les 2N pixels supérieurs de la reconstruction, cette modification équilibre les deux catégories de pixels et améliore le comportement de généralisation du modèle CNN. Les expériences ont montré que la fonction de coût Top-N offre des gains de performance par rapport à une MSE standard. Une amélioration supplémentaire de la capacité de généralisation du réseau est obtenue en utilisant le décrochage. Le deuxième sous-système est un réseau de convolution profonde à super-résolution, qui effectue un mappage associatif à entrée améliorée entre les images d'entrée à basse résolution et à haute résolution. Ce réseau a été formé aux données d’altitude à basse résolution et aux photographies urbaines optiques à haute résolution correspondantes. Une telle différence de résolution entre les images optiques / satellites optiques et les données d'élévation est souvent le cas dans les applications du monde réel
Building reconstruction from aerial photographs and other multi-source urban spatial data is a task endeavored using a plethora of automated and semi-automated methods ranging from point processes, classic image processing and laser scanning. In this thesis, an iterative relaxation system is developed based on the examination of the local context of each edge according to multiple spatial input sources (optical, elevation, shadow & foliage masks as well as other pre-processed data as elaborated in Chapter 6). All these multisource and multiresolution data are fused so that probable line segments or edges are extracted that correspond to prominent building boundaries.Two novel sub-systems have also been developed in this thesis. They were designed with the purpose to provide additional, more reliable, information regarding building contours in a future version of the proposed relaxation system. The first is a deep convolutional neural network (CNN) method for the detection of building borders. In particular, the network is based on the state of the art super-resolution model SRCNN (Dong C. L., 2015). It accepts aerial photographs depicting densely populated urban area data as well as their corresponding digital elevation maps (DEM). Training is performed using three variations of this urban data set and aims at detecting building contours through a novel super-resolved heteroassociative mapping. Another innovation of this approach is the design of a modified custom loss layer named Top-N. In this variation, the mean square error (MSE) between the reconstructed output image and the provided ground truth (GT) image of building contours is computed on the 2N image pixels with highest values . Assuming that most of the N contour pixels of the GT image are also in the top 2N pixels of the re-construction, this modification balances the two pixel categories and improves the generalization behavior of the CNN model. It is shown in the experiments, that the Top-N cost function offers performance gains in comparison to standard MSE. Further improvement in generalization ability of the network is achieved by using dropout.The second sub-system is a super-resolution deep convolutional network, which performs an enhanced-input associative mapping between input low-resolution and high-resolution images. This network has been trained with low-resolution elevation data and the corresponding high-resolution optical urban photographs. Such a resolution discrepancy between optical aerial/satellite images and elevation data is often the case in real world applications. More specifically, low-resolution elevation data augmented by high-resolution optical aerial photographs are used with the aim of augmenting the resolution of the elevation data. This is a unique super-resolution problem where it was found that many of -the proposed general-image SR propositions do not perform as well. The network aptly named building super resolution CNN (BSRCNN) is trained using patches extracted from the aforementioned data. Results show that in comparison with a classic bicubic upscale of the elevation data the proposed implementation offers important improvement as attested by a modified PSNR and SSIM metric. In comparison, other proposed general-image SR methods performed poorer than a standard bicubic up-scaler.Finally, the relaxation system fuses together all these multisource data sources comprising of pre-processed optical data, elevation data, foliage masks, shadow masks and other pre-processed data in an attempt to assign confidence values to each pixel belonging to a building contour. Confidence is augmented or decremented iteratively until the MSE error fails below a specified threshold or a maximum number of iterations have been executed. The confidence matrix can then be used to extract the true building contours via thresholding
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography