Academic literature on the topic 'Réseau de neurone convolutif'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseau de neurone convolutif.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Réseau de neurone convolutif"
Postadjian, Tristan, Arnaud Le Bris, Hichem Sahbi, and Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.
Full textVibert, Jean-François, Vincent Lagoueyte, Nicolas Bourrié, Gilles Fortin, and Jean Champagnat. "Modélisation du réseau de neurone à l'origine des rythmes chez l'embryon de poulet." ESAIM: Proceedings 9 (2000): 101–17. http://dx.doi.org/10.1051/proc:2000020.
Full textJovanović, S., and S. Weber. "Modélisation et accélération de réseaux de neurones profonds (CNN) en Python/VHDL/C++ et leur vérification et test à l’aide de l’environnement Pynq sur les FPGA Xilinx." J3eA 21 (2022): 1028. http://dx.doi.org/10.1051/j3ea/20220028.
Full textMichael, RALIJAONA Ahazia, RAKOTOVAO Ndimbinarimalala Philémon, RALIJAONA Mbolahasina Soanandrianina, and RATIARISON Adolphe Andriamanga. "Simulation Numérique De La Propagation Des Vagues Franchissant Un Obstacle Et Modélisation Des Résultats Obtenus Par Réseau De Neurones Et Neuro-Flou." International Journal of Progressive Sciences and Technologies 34, no. 2 (October 5, 2022): 15. http://dx.doi.org/10.52155/ijpsat.v34.2.4610.
Full textAit Si Selmi, T., F. Müller Fouarge, T. Estienne, S. Bekadar, Y. Carrillon, C. Pouchy, and M. Bonnin. "Analyse automatique de la sévérité de l’arthrose sur des radiographies du genou à l’aide de réseaux de neurones convolutifs." Revue du Rhumatisme 89 (December 2022): A128. http://dx.doi.org/10.1016/j.rhum.2022.10.186.
Full textLe Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant, and Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.
Full textMonnier, J., A. Le Nilias Houmeau, R. Iguernaissi, M. A. Richard, C. Gaudy-Marqueste, J. J. Grob, and D. Merad. "Développement d’une « boosted fusion » entre un réseau de neurones à convolution (CNN) et un algorithme intégrant l’aspect chaotique de lésions mélanocytaires pour la détection automatisée du mélanome." Annales de Dermatologie et de Vénéréologie - FMC 2, no. 8 (November 2022): A51—A52. http://dx.doi.org/10.1016/j.fander.2022.09.040.
Full textSusplugas, V., N. Costa, M. Biotteau, L. Molinier, E. Dufetelle, and X. de Boissezon. "Le projet APSoREN - Amélioration du parcours de soins du patient traumatisé crânien par le développement d'un modèle d'intelligence artificielle en Réseau de neurone appliqué à des jeux de données massives." Revue d'Épidémiologie et de Santé Publique 70 (March 2022): S50—S51. http://dx.doi.org/10.1016/j.respe.2022.01.045.
Full textMonnier, J., J. Collenne, R. Iguernaissi, S. Dubuisson, M. Nawaf, M. A. Richard, J. J. Grob, C. Gaudy-Marqueste, and D. Merad. "Détection automatisée du mélanome. Développement d’un algorithme combinant une approche inspirée de l’analyse du dermatologue fondée sur la caractérisation de l’asymétrie du mélanome et un ensemble de réseaux de neurones à convolution." Annales de Dermatologie et de Vénéréologie - FMC 3, no. 8 (December 2023): A54. http://dx.doi.org/10.1016/j.fander.2023.09.032.
Full textNguyen, K. L., A. Almhdie-Imjabbar, H. Toumi, R. Jennane, and E. Lespessailles. "Combinaison de la texture trabéculaire osseuse et des réseaux de neurones convolutifs pour la prédiction de la progression de la gonarthrose : données des cohortes de l’OsteoArthritis Initiative (OAI) et de la Multicenter Osteoarthritis Study (MOST)." Revue du Rhumatisme 87 (December 2020): A90. http://dx.doi.org/10.1016/j.rhum.2020.10.153.
Full textDissertations / Theses on the topic "Réseau de neurone convolutif"
Messaoud, Kaouther. "Deep learning based trajectory prediction for autonomous vehicles." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS048.
Full textThe trajectory prediction of neighboring agents of an autonomous vehicle is essential for autonomous driving in order to perform trajectory planning in an efficient manner. In this thesis, we tackle the problem of predicting the trajectory of a target vehicle in two different environments; a highway and an urban area (intersection, roundabout, etc.). To this end, we develop solutions based on deep machine learning by phasing the interactions between the target vehicle and the static and dynamic elements of the scene. In addition, in order to take into account the uncertainty of the future, we generate multiple plausible trajectories and the probability of occurrence of each. We also make sure that the predicted trajectories are realistic and conform to the structure of the scene. The solutions developed are evaluated using real driving datasets
Fernandez, Brillet Lucas. "Réseaux de neurones CNN pour la vision embarquée." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM043.
Full textRecently, Convolutional Neural Networks have become the state-of-the-art soluion(SOA) to most computer vision problems. In order to achieve high accuracy rates, CNNs require a high parameter count, as well as a high number of operations. This greatly complicates the deployment of such solutions in embedded systems, which strive to reduce memory size. Indeed, while most embedded systems are typically in the range of a few KBytes of memory, CNN models from the SOA usually account for multiple MBytes, or even GBytes in model size. Throughout this thesis, multiple novel ideas allowing to ease this issue are proposed. This requires to jointly design the solution across three main axes: Application, Algorithm and Hardware.In this manuscript, the main levers allowing to tailor computational complexity of a generic CNN-based object detector are identified and studied. Since object detection requires scanning every possible location and scale across an image through a fixed-input CNN classifier, the number of operations quickly grows for high-resolution images. In order to perform object detection in an efficient way, the detection process is divided into two stages. The first stage involves a region proposal network which allows to trade-off recall for the number of operations required to perform the search, as well as the number of regions passed on to the next stage. Techniques such as bounding box regression also greatly help reduce the dimension of the search space. This in turn simplifies the second stage, since it allows to reduce the task’s complexity to the set of possible proposals. Therefore, parameter counts can greatly be reduced.Furthermore, CNNs also exhibit properties that confirm their over-dimensionment. This over-dimensionement is one of the key success factors of CNNs in practice, since it eases the optimization process by allowing a large set of equivalent solutions. However, this also greatly increases computational complexity, and therefore complicates deploying the inference stage of these algorithms on embedded systems. In order to ease this problem, we propose a CNN compression method which is based on Principal Component Analysis (PCA). PCA allows to find, for each layer of the network independently, a new representation of the set of learned filters by expressing them in a more appropriate PCA basis. This PCA basis is hierarchical, meaning that basis terms are ordered by importance, and by removing the least important basis terms, it is possible to optimally trade-off approximation error for parameter count. Through this method, it is possible to compress, for example, a ResNet-32 network by a factor of ×2 both in the number of parameters and operations with a loss of accuracy <2%. It is also shown that the proposed method is compatible with other SOA methods which exploit other CNN properties in order to reduce computational complexity, mainly pruning, winograd and quantization. Through this method, we have been able to reduce the size of a ResNet-110 from 6.88Mbytes to 370kbytes, i.e. a x19 memory gain with a 3.9 % accuracy loss.All this knowledge, is applied in order to achieve an efficient CNN-based solution for a consumer face detection scenario. The proposed solution consists of just 29.3kBytes model size. This is x65 smaller than other SOA CNN face detectors, while providing equal detection performance and lower number of operations. Our face detector is also compared to a more traditional Viola-Jones face detector, exhibiting approximately an order of magnitude faster computation, as well as the ability to scale to higher detection rates by slightly increasing computational complexity.Both networks are finally implemented in a custom embedded multiprocessor, verifying that theorical and measured gains from PCA are consistent. Furthermore, parallelizing the PCA compressed network over 8 PEs achieves a x11.68 speed-up with respect to the original network running on a single PE
Pothier, Dominique. "Réseaux convolutifs à politiques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69184.
Full textDespite their excellent performances, artificial neural networks high demand of both data and computational power limit their adoption in many domains. Developing less demanding architecture thus remain an important endeavor. This thesis seeks to produce a more flexible and less resource-intensive architecture by using reinforcement learning theory. When considering a network as an agent instead of a function approximator, one realize that the implicit policy followed by popular feed forward networks is extremely simple. We hypothesize that an architecture able to learn a more flexible policy could reach similar performances while reducing its resource footprint. The architecture we propose is inspired by research done in weight prediction, particularly by the hypernetwork architecture, which we use as a baseline model.Our results show that learning a dynamic policy achieving similar results to the static policies of conventional networks is not a trivial task. Our proposed architecture succeeds in limiting its parameter space by 20%, but does so at the cost of a 24% computation increase and loss of5% accuracy. Despite those results, we believe that this architecture provides a baseline that can be improved in multiple ways that we describe in the conclusion.
Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066406.
Full textImage instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.
Full textArtificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066406.
Full textImage instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
Elloumi, Zied. "Prédiction de performances des systèmes de Reconnaissance Automatique de la Parole." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM005/document.
Full textIn this thesis, we focus on performance prediction of automatic speech recognition (ASR) systems.This is a very useful task to measure the reliability of transcription hypotheses for a new data collection, when the reference transcription is unavailable and the ASR system used is unknown (black box).Our contribution focuses on several areas: first, we propose a heterogeneous French corpus to learn and evaluate ASR prediction systems.We then compare two prediction approaches: a state-of-the-art (SOTA) performance prediction based on engineered features and a new strategy based on learnt features using convolutional neural networks (CNNs).While the joint use of textual and signal features did not work for the SOTA system, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably predicts the shape of the WER distribution on a collection of speech recordings.Then, we analyze factors impacting both prediction approaches. We also assess the impact of the training size of prediction systems as well as the robustness of systems learned with the outputs of a particular ASR system and used to predict performance on a new data collection.Our experimental results show that both prediction approaches are robust and that the prediction task is more difficult on short speech turns as well as spontaneous speech style.Finally, we try to understand which information is captured by our neural model and its relation with different factors.Our experiences show that intermediate representations in the network automatically encode information on the speech style, the speaker's accent as well as the broadcast program type.To take advantage of this analysis, we propose a multi-task system that is slightly more effective on the performance prediction task
Foroughmand, Aarabi Hadrien. "Towards global tempo estimation and rhythm-oriented genre classification based on harmonic characteristics of rhythm." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS018.
Full textAutomatic detection of the rhythmic structure within music is one of the challenges of the "Music Information Retrieval" research area. The advent of technology dedicated to the arts has allowed the emergence of new musical trends generally described by the term "Electronic/Dance Music" (EDM) which encompasses a plethora of sub-genres. This type of music often dedicated to dance is characterized by its rhythmic structure. We propose a rhythmic analysis of what defines certain musical genres including those of EDM. To do so, we want to perform an automatic global tempo estimation task and a genre classification task based on rhythm. Tempo and genre are two intertwined aspects since genres are often associated with rhythmic patterns that are played in specific tempo ranges. Some so-called "handcrafted" tempo estimation systems have been shown to be effective based on the extraction of rhythm-related characteristics. Recently, with the appearance of annotated databases, so-called "data-driven" systems and deep learning approaches have shown progress in the automatic estimation of these tasks. In this thesis, we propose methods at the crossroads between " handcrafted " and " data-driven " systems. The development of a new representation of rhythm combined with deep learning by convolutional neural network is at the basis of all our work. We present in detail our Deep Rhythm method in this thesis and we also present several extensions based on musical intuitions that allow us to improve our results
Pourchot, Aloïs. "Improving Radiographic Diagnosis with Deep Learning in Clinical Settings." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS421.
Full textThe impressive successes of deep learning over the course of the past decade have reinforced its establishment as the standard modus operandi to solve difficult machine learning problems, as well as enabled its swift spread to manifold domains of application. One such domain, which is at the heart of this PhD, is medical imaging. Deep learning has made the thrilling perspective of relieving medical experts from a fraction of their burden through automated diagnosis a reality. Over the course of this thesis, we were led to consider two medical problems: the task of fracture detection, and the task of bone age assessment. For both of them, we strove to explore possibilities to improve deep learning tools aimed at facilitating their diagnosis. With this objective in mind, we have explored two different strategies. The first one, ambitious yet arrogant, has led us to investigate the paradigm of neural architecture search, a logical succession to deep learning which aims at learning the very structure of the neural network model used to solve a task. In a second, bleaker but wiser strategy, we have tried to improve a model through the meticulous analysis of the data sources at hands. In both scenarios, a particular care was given to the clinical relevance of our different results and contributions, as we believed that the practical anchoring of our different contrivances was just as important as their theoretical design
Abbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.
Full textIn this thesis, our goal is to develop robust and reliable yet accurate learning models, particularly Convolutional Neural Networks (CNNs), in the presence of adversarial examples and Out-of-Distribution (OOD) samples. As the first contribution, we propose to predict adversarial instances with high uncertainty through encouraging diversity in an ensemble of CNNs. To this end, we devise an ensemble of diverse specialists along with a simple and computationally efficient voting mechanism to predict the adversarial examples with low confidence while keeping the predictive confidence of the clean samples high. In the presence of high entropy in our ensemble, we prove that the predictive confidence can be upper-bounded, leading to have a globally fixed threshold over the predictive confidence for identifying adversaries. We analytically justify the role of diversity in our ensemble on mitigating the risk of both black-box and white-box adversarial examples. Finally, we empirically assess the robustness of our ensemble to the black-box and the white-box attacks on several benchmark datasets.The second contribution aims to address the detection of OOD samples through an end-to-end model trained on an appropriate OOD set. To this end, we address the following central question: how to differentiate many available OOD sets w.r.t. a given in distribution task to select the most appropriate one, which in turn induces a model with a high detection rate of unseen OOD sets? To answer this question, we hypothesize that the “protection” level of in-distribution sub-manifolds by each OOD set can be a good possible property to differentiate OOD sets. To measure the protection level, we then design three novel, simple, and cost-effective metrics using a pre-trained vanilla CNN. In an extensive series of experiments on image and audio classification tasks, we empirically demonstrate the abilityof an Augmented-CNN (A-CNN) and an explicitly-calibrated CNN for detecting a significantly larger portion of unseen OOD samples, if they are trained on the most protective OOD set. Interestingly, we also observe that the A-CNN trained on the most protective OOD set (calledA-CNN) can also detect the black-box Fast Gradient Sign (FGS) adversarial examples. As the third contribution, we investigate more closely the capacity of the A-CNN on the detection of wider types of black-box adversaries. To increase the capability of A-CNN to detect a larger number of adversaries, we augment its OOD training set with some inter-class interpolated samples. Then, we demonstrate that the A-CNN trained on the most protective OOD set along with the interpolated samples has a consistent detection rate on all types of unseen adversarial examples. Where as training an A-CNN on Projected Gradient Descent (PGD) adversaries does not lead to a stable detection rate on all types of adversaries, particularly the unseen types. We also visually assess the feature space and the decision boundaries in the input space of a vanilla CNN and its augmented counterpart in the presence of adversaries and the clean ones. By a properly trained A-CNN, we aim to take a step toward a unified and reliable end-to-end learning model with small risk rates on both clean samples and the unusual ones, e.g. adversarial and OOD samples.The last contribution is to show a use-case of A-CNN for training a robust object detector on a partially-labeled dataset, particularly a merged dataset. Merging various datasets from similar contexts but with different sets of Object of Interest (OoI) is an inexpensive way to craft a large-scale dataset which covers a larger spectrum of OoIs. Moreover, merging datasets allows achieving a unified object detector, instead of having several separate ones, resultingin the reduction of computational and time costs. However, merging datasets, especially from a similar context, causes many missing-label instances. With the goal of training an integrated robust object detector on a partially-labeled but large-scale dataset, we propose a self-supervised training framework to overcome the issue of missing-label instances in the merged datasets. Our framework is evaluated on a merged dataset with a high missing-label rate. The empirical results confirm the viability of our generated pseudo-labels to enhance the performance of YOLO, as the current (to date) state-of-the-art object detector.
Books on the topic "Réseau de neurone convolutif"
Abbott, L. F., and Peter Dayan. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, 2005.
Find full textBook chapters on the topic "Réseau de neurone convolutif"
MOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Full textATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN, and Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives." In Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.
Full textBYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Full textATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER, and Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images." In Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Full textConference papers on the topic "Réseau de neurone convolutif"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Full textORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez, and Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples." In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Full textKim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Full textGendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Full text