Contents
Academic literature on the topic 'Réseau de neurone a valeurs complexes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseau de neurone a valeurs complexes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Réseau de neurone a valeurs complexes"
Lek, S., I. Dimopoulos, M. Derraz, and Y. El Ghachtoul. "Modélisation de la relation pluie-débit à l'aide des réseaux de neurones artificiels." Revue des sciences de l'eau 9, no. 3 (April 12, 2005): 319–31. http://dx.doi.org/10.7202/705255ar.
Full textMichael, RALIJAONA Ahazia, RAKOTOVAO Ndimbinarimalala Philémon, RALIJAONA Mbolahasina Soanandrianina, and RATIARISON Adolphe Andriamanga. "Simulation Numérique De La Propagation Des Vagues Franchissant Un Obstacle Et Modélisation Des Résultats Obtenus Par Réseau De Neurones Et Neuro-Flou." International Journal of Progressive Sciences and Technologies 34, no. 2 (October 5, 2022): 15. http://dx.doi.org/10.52155/ijpsat.v34.2.4610.
Full textLaïdi, Maamar, and Salah Hanini. "Approche neuronale pour l’estimation des transferts thermiques dans un fluide frigoporteur diphasique." Journal of Renewable Energies 15, no. 3 (October 23, 2023): 513–20. http://dx.doi.org/10.54966/jreen.v15i3.340.
Full textLarocque, M., and O. Banton. "Gestion de la contamination des eaux souterraines par les fertilisants agricoles: application du modèle AgriFlux." Revue des sciences de l'eau 8, no. 1 (April 12, 2005): 3–20. http://dx.doi.org/10.7202/705210ar.
Full textRenier, Janine. "Crises systémiques : Effondrement ? Ou méta-morphose vers la grande transition ?" Acta Europeana Systemica 8 (July 10, 2020): 285–300. http://dx.doi.org/10.14428/aes.v8i1.56463.
Full textDissertations / Theses on the topic "Réseau de neurone a valeurs complexes"
Barrachina, Jose Agustin. "Complex-valued neural networks for radar applications." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG094.
Full textRadar signal and SAR image processing generally require complex-valued representations and operations, e.g., Fourier, wavelet transforms, Wiener, matched filters, etc. However, the vast majority of architectures for deep learning are currently based on real-valued operations, which restrict their ability to learn from complex-valued features. Despite the emergence of Complex-Valued Neural Networks (CVNNs), their application on radar and SAR still lacks study on their relevance and efficiency. And the comparison against an equivalent Real-Valued Neural Network (RVNN) is usually biased.In this thesis, we propose to investigate the merits of CVNNs for classifying complex-valued data. We show that CVNNs achieve better performance than their real-valued counterpart for classifying non-circular Gaussian data. We also define a criterion of equivalence between feed-forward fully connected and convolutional CVNNs and RVNNs in terms of trainable parameters while keeping a similar architecture. We statistically compare the performance of equivalent Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Fully Convolutional Neural Networks (FCNNs) for polarimetric SAR image segmentation. SAR image splitting and balancing classes are also studied to avoid learning biases. In parallel, we also proposed an open-source toolbox to facilitate the implementation of CVNNs and the comparison with real-equivalent networks
Kazhuthuveettil, Sreedharan Jithin. "Échantillonnage et inférence dans réseaux complexes." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4121/document.
Full textThe recent emergence of large networks, mainly due to the rise of online social networks, brought out the difficulty to gather a complete picture of a network and it prompted the development of new distributed techniques. In this thesis, we design and analyze algorithms based on random walks and diffusion for sampling, estimation and inference of the network functions, and for approximating the spectrum of graph matrices. The thesis starts with the classical problem of finding the dominant eigenvalues and the eigenvectors of symmetric graph matrices like Laplacian of undirected graphs. Using the fact that the eigenspectrum is associated with a Schrödinger-type differential equation, we develop scalable techniques with diffusion over the graph and with gossiping algorithms. They are also adaptable to a simple algorithm based on quantum computing. Next, we consider sampling and estimation of network functions (sum and average) using random walks on graph. In order to avoid the burn-in time of random walks, with the idea of regeneration at its revisits to a fixed node, we develop an estimator for the aggregate function which is non-asymptotically unbiased and derive an approximation to its Bayesian posterior. An estimator based on reinforcement learning is also developed making use of regeneration. The final part of the thesis deals with the use of extreme value theory to make inference from the stationary samples of the random walks. Extremal events such as first hitting time of a large degree node, order statistics and mean cluster size are well captured in the parameter “extremal index”. We theoretically study and estimate extremal index of different random walk sampling techniques
Zhou, Rongyan. "Exploration of opportunities and challenges brought by Industry 4.0 to the global supply chains and the macroeconomy by integrating Artificial Intelligence and more traditional methods." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST037.
Full textIndustry 4.0 is a significant shift and a tremendous challenge for every industrial segment, especially for the manufacturing industry that gave birth to the new industrial revolution. The research first uses literature analysis to sort out the literature, and focuses on the use of “core literature extension method” to enumerate the development direction and application status of different fields, which devotes to showing a leading role for theory and practice of industry 4.0. The research then explores the main trend of multi-tier supply in Industry 4.0 by combining machine learning and traditional methods. Next, the research investigates the relationship of industry 4.0 investment and employment to look into the inter-regional dependence of industry 4.0 so as to present a reasonable clustering based on different criteria and make suggestions and analysis of the global supply chain for enterprises and organizations. Furthermore, our analysis system takes a glance at the macroeconomy. The combination of natural language processing in machine learning to classify research topics and traditional literature review to investigate the multi-tier supply chain significantly improves the study's objectivity and lays a solid foundation for further research. Using complex networks and econometrics to analyze the global supply chain and macroeconomic issues enriches the research methodology at the macro and policy level. This research provides analysis and references to researchers, decision-makers, and companies for their strategic decision-making