Academic literature on the topic 'Réseau convolutif'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseau convolutif.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Réseau convolutif"

1

Postadjian, Tristan, Arnaud Le Bris, Hichem Sahbi, and Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.

Full text
Abstract:
Les algorithmes de classification constituent un outil essentiel pour le calcul de cartes d'occupation des sols. Les récents progrès en apprentissage automatique ont montré les très grandes performances des réseaux de neurones convolutifs pour de nombreuses applications, y compris la classification d'images aériennes et satellites. Ce travail établit une stratégie quant à l'utilisation d'un réseau de neurone convolutif pour la classification d'images satellites à très haute résolution spatiale, couvrant de très larges régions géographiques, avec pour perspective future le calcul de cartes d'occupation des sols à l'échelle d'un pays.
APA, Harvard, Vancouver, ISO, and other styles
2

Jovanović, S., and S. Weber. "Modélisation et accélération de réseaux de neurones profonds (CNN) en Python/VHDL/C++ et leur vérification et test à l’aide de l’environnement Pynq sur les FPGA Xilinx." J3eA 21 (2022): 1028. http://dx.doi.org/10.1051/j3ea/20220028.

Full text
Abstract:
Nous présentons un ensemble de travaux pratiques qui seront dispensés au sein du Master EEA - Électronique Embarquée à l’université de Lorraine dans le cadre des modules Modélisation SystemC et Conception VLSI. Ces TP sont destinés à initier les étudiants à la compréhension, modélisation et conception des réseaux de neurones convolutifs dans des langages de description de matériel au niveau RTL (VHDL, le module Conception VLSI) et dans un langage de haut niveau (C++/SystemC, le module Modélisation SystemC). Ils sont organisés autour d’un ensemble d’outils de modélisation et de synthèse de Mentor Graphics (Modelsim, Catapult HLS) et spécifiques aux plateformes FPGA Xilinx et à l’environnement Pynq pour la simulation, test et vérification.
APA, Harvard, Vancouver, ISO, and other styles
3

Benyamna, Y., E. Ouiame, C. Zineb, and S. Gallouj. "Performance des réseaux neuronaux convolutifs d’apprentissage profond dans la différenciation entre nævus et mélanome cutané." Annales de Dermatologie et de Vénéréologie - FMC 3, no. 8 (December 2023): A263—A264. http://dx.doi.org/10.1016/j.fander.2023.09.480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ait Si Selmi, T., F. Müller Fouarge, T. Estienne, S. Bekadar, Y. Carrillon, C. Pouchy, and M. Bonnin. "Analyse automatique de la sévérité de l’arthrose sur des radiographies du genou à l’aide de réseaux de neurones convolutifs." Revue du Rhumatisme 89 (December 2022): A128. http://dx.doi.org/10.1016/j.rhum.2022.10.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Le Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant, and Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.

Full text
Abstract:
La fusion d'images multispectrales à très haute résolution spatiale (THR) avec des séries temporelles d'images moins résolues spatialement mais comportant plus de bandes spectrales permet d'améliorer la classification de l'occupation du sol. Elle tire en effet le meilleur parti des points forts géométriques et sémantiques de ces deux sources. Ce travail s'intéresse à un processus d'extraction automatique de la tache urbaine fondé sur la fusion tardive de classifications calculées respectivement à partir d'images satellitaires Sentinel-2 et SPOT-6/7. Ces deux sources sont d'abord classées indépendamment selon 5 classes, respectivement par forêts aléatoires et réseaux de neurones convolutifs. Les résultats sont alors fusionnés afin d'extraire les bâtiments le plus finement possible. Cette étape de fusion inclut une fusion au niveau pixellaire suivie d'une étape de régularisation spatiale intégrant un terme lié au contraste de l'image. Le résultat obtenu connaît ensuite une seconde fusion afin d'en déduire une tache urbaine : une mesure a priori de se trouver en zone urbaine est calculée à partir des objets bâtiments détectés précédemment et est fusionnée avec une classification binaire dérivée de la classification originale des données Sentinel-2.
APA, Harvard, Vancouver, ISO, and other styles
6

Monnier, J., A. Le Nilias Houmeau, R. Iguernaissi, M. A. Richard, C. Gaudy-Marqueste, J. J. Grob, and D. Merad. "Développement d’une « boosted fusion » entre un réseau de neurones à convolution (CNN) et un algorithme intégrant l’aspect chaotique de lésions mélanocytaires pour la détection automatisée du mélanome." Annales de Dermatologie et de Vénéréologie - FMC 2, no. 8 (November 2022): A51—A52. http://dx.doi.org/10.1016/j.fander.2022.09.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monnier, J., J. Collenne, R. Iguernaissi, S. Dubuisson, M. Nawaf, M. A. Richard, J. J. Grob, C. Gaudy-Marqueste, and D. Merad. "Détection automatisée du mélanome. Développement d’un algorithme combinant une approche inspirée de l’analyse du dermatologue fondée sur la caractérisation de l’asymétrie du mélanome et un ensemble de réseaux de neurones à convolution." Annales de Dermatologie et de Vénéréologie - FMC 3, no. 8 (December 2023): A54. http://dx.doi.org/10.1016/j.fander.2023.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, K. L., A. Almhdie-Imjabbar, H. Toumi, R. Jennane, and E. Lespessailles. "Combinaison de la texture trabéculaire osseuse et des réseaux de neurones convolutifs pour la prédiction de la progression de la gonarthrose : données des cohortes de l’OsteoArthritis Initiative (OAI) et de la Multicenter Osteoarthritis Study (MOST)." Revue du Rhumatisme 87 (December 2020): A90. http://dx.doi.org/10.1016/j.rhum.2020.10.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maulin, Maëva, Nicolas Estre, David Tisseur, Grégoire Kessedjian, Alix Sardet, Emmanuel Payan, and Daniel Eck. "Défloutage de projections tomographiques industrielles hautes énergies à l’aide d’un réseau de neurones convolutifs." e-journal of nondestructive testing 28, no. 9 (September 2023). http://dx.doi.org/10.58286/28481.

Full text
Abstract:
La fabrication additive, métallique en particulier, est en plein essor, mais les pièces ainsi produites peuvent présenter des défauts tels que des anomalies d'impression, de la rétention de poudre ou des fissures. Pour contrôler l'intégrité de ces pièces, la tomographie par transmission haute résolution reste la méthode de référence. Cependant, pour inspecter des pièces massives et fortement absorbantes, la tomographie haute énergie avec un accélérateur linéaire d'électrons est nécessaire. Le Laboratoire de Mesures Nucléaires du CEA IRESNE dispose d'un tomographe haute énergie et a souhaité améliorer la qualité des projections acquises en mettant en place des post-traitements numériques. Afin d’essayer de dépasser les performances des méthodes de restauration classiques, basées sur des algorithmes de déconvolution, une approche de post-traitement novatrice a été étudiée : la déconvolution de flou par réseaux de neurones convolutifs. Pour ce faire, un jeu de données d’images a tout d’abord été généré par simulation. Un réseau de neurones convolutifs, basé sur la structure du réseau SRCNN (Super-Resolution Convolutional Neural Network), a ensuite été adapté, entraîné et évalué. Chaque hyperparamètre du réseau a alors été spécialement optimisé. Enfin, ce réseau a été validé sur des tomographies à 9 MeV d’objets réels afin d’évaluer les performances finales obtenues, mais aussi comprendre les limitations de ce type d’approche. Le réseau de neurones convolutifs ainsi optimisé démontre de bonnes performances de défloutage tout en limitant l’amplification du bruit.
APA, Harvard, Vancouver, ISO, and other styles
10

"Évaluation d’une intelligence artificielle de type réseau neuronal de convolution profonde pour la détection endoscopique des cancers gastriques précoces." Endoscopy 51, no. 06 (May 28, 2019): 608–9. http://dx.doi.org/10.1055/a-0894-9269.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Réseau convolutif"

1

Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066406.

Full text
Abstract:
Nous avons précédemment mené une étude comparative entre les descripteurs FV et CNN dans le cadre de la recherche par similarité d’instance. Cette étude montre notamment que les descripteurs issus de CNN manquent d’invariance aux transformations comme les rotations ou changements d’échelle. Nous montrons dans un premier temps comment des réductions de dimension (“pooling”) appliquées sur la base de données d’images permettent de réduire fortement l’impact de ces problèmes. Certaines variantes préservent la dimensionnalité des descripteurs associés à une image, alors que d’autres l’augmentent, au prix du temps d’exécution des requêtes. Dans un second temps, nous proposons la réduction de dimension emboitée pour l’invariance (NIP), une méthode originale pour la production, à partir de descripteurs issus de CNN, de descripteurs globaux invariants à de multiples transformations. La méthode NIP est inspirée de la théorie pour l’invariance “i-theory”, une théorie mathématique proposée il y a peu pour le calcul de transformations invariantes à des groupes au sein de réseaux de neurones acycliques. Nous montrons que NIP permet d’obtenir des descripteurs globaux compacts (mais non binaires) et robustes aux rotations et aux changements d’échelle, que NIP est plus performants que les autres méthodes à dimensionnalité équivalente sur la plupart des bases de données d’images. Enfin, nous montrons que la combinaison de NIP avec la méthode de hachage RBMH proposée précédemment permet de produire des codes binaires à la fois compacts et invariants à plusieurs types de transformations. La méthode NIP+RBMH, évaluée sur des bases de données d’images de moyennes et grandes échelles, se révèle plus performante que l’état de l’art, en particulier dans le cas de descripteurs binaires de très petite taille (de 32 à 256 bits)
Image instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Yifu. "Deep learning for visual semantic segmentation." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS200.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la segmentation sémantique visuelle, une des tâches de haut niveau qui ouvre la voie à une compréhension complète des scènes. Plus précisément, elle requiert une compréhension sémantique au niveau du pixel. Avec le succès de l’apprentissage approfondi de ces dernières années, les problèmes de segmentation sémantique sont abordés en utilisant des architectures profondes. Dans la première partie, nous nous concentrons sur la construction d’une fonction de coût plus appropriée pour la segmentation sémantique. En particulier, nous définissons une nouvelle fonction de coût basé sur un réseau de neurone de détection de contour sémantique. Cette fonction de coût impose des prédictions au niveau du pixel cohérentes avec les informa- tions de contour sémantique de la vérité terrain, et conduit donc à des résultats de segmentation mieux délimités. Dans la deuxième partie, nous abordons une autre question importante, à savoir l’apprentissage de modèle de segmentation avec peu de données annotées. Pour cela, nous proposons une nouvelle méthode d’attribution qui identifie les régions les plus importantes dans une image considérée par les réseaux de classification. Nous intégrons ensuite notre méthode d’attribution dans un contexte de segmentation faiblement supervisé. Les modèles de segmentation sémantique sont ainsi entraînés avec des données étiquetées au niveau de l’image uniquement, facile à collecter en grande quantité. Tous les modèles proposés dans cette thèse sont évalués expérimentalement de manière approfondie sur plusieurs ensembles de données et les résultats sont compétitifs avec ceux de la littérature
In this thesis, we are interested in Visual Semantic Segmentation, one of the high-level task that paves the way towards complete scene understanding. Specifically, it requires a semantic understanding at the pixel level. With the success of deep learning in recent years, semantic segmentation problems are being tackled using deep architectures. In the first part, we focus on the construction of a more appropriate loss function for semantic segmentation. More precisely, we define a novel loss function by employing a semantic edge detection network. This loss imposes pixel-level predictions to be consistent with the ground truth semantic edge information, and thus leads to better shaped segmentation results. In the second part, we address another important issue, namely, alleviating the need for training segmentation models with large amounts of fully annotated data. We propose a novel attribution method that identifies the most significant regions in an image considered by classification networks. We then integrate our attribution method into a weakly supervised segmentation framework. The semantic segmentation models can thus be trained with only image-level labeled data, which can be easily collected in large quantities. All models proposed in this thesis are thoroughly experimentally evaluated on multiple datasets and the results are competitive with the literature
APA, Harvard, Vancouver, ISO, and other styles
3

Morère, Olivier André Luc. "Deep learning compact and invariant image representations for instance retrieval." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066406.

Full text
Abstract:
Nous avons précédemment mené une étude comparative entre les descripteurs FV et CNN dans le cadre de la recherche par similarité d’instance. Cette étude montre notamment que les descripteurs issus de CNN manquent d’invariance aux transformations comme les rotations ou changements d’échelle. Nous montrons dans un premier temps comment des réductions de dimension (“pooling”) appliquées sur la base de données d’images permettent de réduire fortement l’impact de ces problèmes. Certaines variantes préservent la dimensionnalité des descripteurs associés à une image, alors que d’autres l’augmentent, au prix du temps d’exécution des requêtes. Dans un second temps, nous proposons la réduction de dimension emboitée pour l’invariance (NIP), une méthode originale pour la production, à partir de descripteurs issus de CNN, de descripteurs globaux invariants à de multiples transformations. La méthode NIP est inspirée de la théorie pour l’invariance “i-theory”, une théorie mathématique proposée il y a peu pour le calcul de transformations invariantes à des groupes au sein de réseaux de neurones acycliques. Nous montrons que NIP permet d’obtenir des descripteurs globaux compacts (mais non binaires) et robustes aux rotations et aux changements d’échelle, que NIP est plus performants que les autres méthodes à dimensionnalité équivalente sur la plupart des bases de données d’images. Enfin, nous montrons que la combinaison de NIP avec la méthode de hachage RBMH proposée précédemment permet de produire des codes binaires à la fois compacts et invariants à plusieurs types de transformations. La méthode NIP+RBMH, évaluée sur des bases de données d’images de moyennes et grandes échelles, se révèle plus performante que l’état de l’art, en particulier dans le cas de descripteurs binaires de très petite taille (de 32 à 256 bits)
Image instance retrieval is the problem of finding an object instance present in a query image from a database of images. Also referred to as particular object retrieval, this problem typically entails determining with high precision whether the retrieved image contains the same object as the query image. Scale, rotation and orientation changes between query and database objects and background clutter pose significant challenges for this problem. State-of-the-art image instance retrieval pipelines consist of two major steps: first, a subset of images similar to the query are retrieved from the database, and second, Geometric Consistency Checks (GCC) are applied to select the relevant images from the subset with high precision. The first step is based on comparison of global image descriptors: high-dimensional vectors with up to tens of thousands of dimensions rep- resenting the image data. The second step is computationally highly complex and can only be applied to hundreds or thousands of images in practical applications. More discriminative global descriptors result in relevant images being more highly ranked, resulting in fewer images that need to be compared pairwise with GCC. As a result, better global descriptors are key to improving retrieval performance and have been the object of much recent interest. Furthermore, fast searches in large databases of millions or even billions of images requires the global descriptors to be compressed into compact representations. This thesis will focus on how to achieve extremely compact global descriptor representations for large-scale image instance retrieval. After introducing background concepts about supervised neural networks, Restricted Boltzmann Machine (RBM) and deep learning in Chapter 2, Chapter 3 will present the design principles and recent work for the Convolutional Neural Networks (CNN), which recently became the method of choice for large-scale image classification tasks. Next, an original multistage approach for the fusion of the output of multiple CNN is proposed. Submitted as part of the ILSVRC 2014 challenge, results show that this approach can significantly improve classification results. The promising perfor- mance of CNN is largely due to their capability to learn appropriate high-level visual representations from the data. Inspired by a stream of recent works showing that the representations learnt on one particular classification task can transfer well to other classification tasks, subsequent chapters will focus on the transferability of representa- tions learnt by CNN to image instance retrieval…
APA, Harvard, Vancouver, ISO, and other styles
4

Pothier, Dominique. "Réseaux convolutifs à politiques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69184.

Full text
Abstract:
Malgré leurs excellentes performances, les exigences élevées des réseaux de neurones artificiels en terme de volume de données et de puissance de calcul limitent leur adoption dans plusieurs domaines. C'est pourquoi il reste important de développer de nouvelles architectures moins voraces. Ce mémoire cherche à produire une architecture plus flexible et moins vorace en s'appuyant sur la théorie de l'apprentissage par renforcement. En considérant le réseau comme un agent suivant une politique, on réalise que cette politique est beaucoup plus rigide que celle suivie habituellement par les agents d'apprentissage par renforcement. Nous posons l'hypothèse qu'une architecture capable de formuler une politique plus flexible pourrait atteindre des performances similaires tout en limitant son utilisation de ressources. L'architecture que nous proposons s'inspire de la recherche faite en prédiction de paramètres, particulièrement de l'architecture hypernetwork, que nous utilisons comme base de référence. Nos résultats montrent que l'apprentissage d'une politique dynamique aussi performante que les politiques statiques suivies par les réseaux conventionnels n'est pas une tâche triviale. Nos meilleurs résultats indiquent une diminution du nombre de paramètres de 33%, une diminution des calculs de 12% au prix d'une baisse de l'exactitude des prédictions de 2%. Malgré ces résultats, nous croyons que notre architecture est un point de départ pouvant être amélioré de plusieurs manières que nous explorons rapidement en conclusion.
Despite their excellent performances, artificial neural networks high demand of both data and computational power limit their adoption in many domains. Developing less demanding architecture thus remain an important endeavor. This thesis seeks to produce a more flexible and less resource-intensive architecture by using reinforcement learning theory. When considering a network as an agent instead of a function approximator, one realize that the implicit policy followed by popular feed forward networks is extremely simple. We hypothesize that an architecture able to learn a more flexible policy could reach similar performances while reducing its resource footprint. The architecture we propose is inspired by research done in weight prediction, particularly by the hypernetwork architecture, which we use as a baseline model.Our results show that learning a dynamic policy achieving similar results to the static policies of conventional networks is not a trivial task. Our proposed architecture succeeds in limiting its parameter space by 20%, but does so at the cost of a 24% computation increase and loss of5% accuracy. Despite those results, we believe that this architecture provides a baseline that can be improved in multiple ways that we describe in the conclusion.
APA, Harvard, Vancouver, ISO, and other styles
5

Elloumi, Zied. "Prédiction de performances des systèmes de Reconnaissance Automatique de la Parole." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM005/document.

Full text
Abstract:
Nous abordons dans cette thèse la tâche de prédiction de performances des systèmes de reconnaissance automatique de la parole (SRAP).Il s'agit d'une tâche utile pour mesurer la fiabilité d'hypothèses de transcription issues d'une nouvelle collection de données, lorsque la transcription de référence est indisponible et que le SRAP utilisé est inconnu (boîte noire).Notre contribution porte sur plusieurs axes:d'abord, nous proposons un corpus français hétérogène pour apprendre et évaluer des systèmes de prédiction de performances ainsi que des systèmes de RAP.Nous comparons par la suite deux approches de prédiction: une approche à l'état de l'art basée sur l'extraction explicite de traitset une nouvelle approche basée sur des caractéristiques entraînées implicitement à l'aide des réseaux neuronaux convolutifs (CNN).L'utilisation jointe de traits textuels et acoustiques n'apporte pas de gains avec de l'approche état de l'art,tandis qu'elle permet d'obtenir de meilleures prédictions en utilisant les CNNs. Nous montrons également que les CNNs prédisent clairement la distribution des taux d'erreurs sur une collection d'enregistrements, contrairement à l'approche état de l'art qui génère une distribution éloignée de la réalité.Ensuite, nous analysons des facteurs impactant les deux approches de prédiction. Nous évaluons également l'impact de la quantité d'apprentissage des systèmes de prédiction ainsi que la robustesse des systèmes appris avec les sorties d'un système de RAP particulier et utilisés pour prédire la performance sur une nouvelle collection de données.Nos résultats expérimentaux montrent que les deux approches de prédiction sont robustes et que la tâche de prédiction est plus difficile sur des tours de parole courts ainsi que sur les tours de parole ayant un style de parole spontané.Enfin, nous essayons de comprendre quelles informations sont capturées par notre modèle neuronal et leurs liens avec différents facteurs.Nos expériences montrent que les représentations intermédiaires dans le réseau encodent implicitementdes informations sur le style de la parole, l'accent du locuteur ainsi que le type d'émission.Pour tirer profit de cette analyse, nous proposons un système multi-tâche qui se montre légèrement plus efficace sur la tâche de prédiction de performance
In this thesis, we focus on performance prediction of automatic speech recognition (ASR) systems.This is a very useful task to measure the reliability of transcription hypotheses for a new data collection, when the reference transcription is unavailable and the ASR system used is unknown (black box).Our contribution focuses on several areas: first, we propose a heterogeneous French corpus to learn and evaluate ASR prediction systems.We then compare two prediction approaches: a state-of-the-art (SOTA) performance prediction based on engineered features and a new strategy based on learnt features using convolutional neural networks (CNNs).While the joint use of textual and signal features did not work for the SOTA system, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably predicts the shape of the WER distribution on a collection of speech recordings.Then, we analyze factors impacting both prediction approaches. We also assess the impact of the training size of prediction systems as well as the robustness of systems learned with the outputs of a particular ASR system and used to predict performance on a new data collection.Our experimental results show that both prediction approaches are robust and that the prediction task is more difficult on short speech turns as well as spontaneous speech style.Finally, we try to understand which information is captured by our neural model and its relation with different factors.Our experiences show that intermediate representations in the network automatically encode information on the speech style, the speaker's accent as well as the broadcast program type.To take advantage of this analysis, we propose a multi-task system that is slightly more effective on the performance prediction task
APA, Harvard, Vancouver, ISO, and other styles
6

Fernandez, Brillet Lucas. "Réseaux de neurones CNN pour la vision embarquée." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM043.

Full text
Abstract:
Pour obtenir des hauts taux de détection, les CNNs requièrent d'un grand nombre de paramètres à stocker, et en fonction de l'application, aussi un grand nombre d'opérations. Cela complique gravement le déploiement de ce type de solutions dans les systèmes embarqués. Ce manuscrit propose plusieurs solutions à ce problème en visant une coadaptation entre l'algorithme, l'application et le matériel.Dans ce manuscrit, les principaux leviers permettant de fixer la complexité computationnelle d'un détecteur d'objets basé sur les CNNs sont identifiés et étudies. Lorsqu'un CNN est employé pour détecter des objets dans une scène, celui-ci doit être appliqué à travers toutes les positions et échelles possibles. Cela devient très coûteux lorsque des petits objets doivent être trouvés dans des images en haute résolution. Pour rendre la solution efficiente et ajustable, le processus est divisé en deux étapes. Un premier CNN s'especialise à trouver des régions d'intérêt de manière efficiente, ce qui permet d'obtenir des compromis flexibles entre le taux de détection et le nombre d’opérations. La deuxième étape comporte un CNN qui classifie l’ensemble des propositions, ce qui réduit la complexité de la tâche, et par conséquent la complexité computationnelle.De plus, les CNN exhibent plusieurs propriétés qui confirment leur surdimensionnement. Ce surdimensionnement est une des raisons du succès des CNN, puisque cela facilite le processus d’optimisation en permettant un ample nombre de solutions équivalentes. Cependant, cela complique leur implémentation dans des systèmes avec fortes contraintes computationnelles. Dans ce sens, une méthode de compression de CNN basé sur une Analyse en Composantes Principales (ACP) est proposé. L’ACP permet de trouver, pour chaque couche du réseau, une nouvelle représentation de l’ensemble de filtres appris par le réseau en les exprimant à travers d’une base ACP plus adéquate. Cette base ACP est hiérarchique, ce qui veut dire que les termes de la base sont ordonnés par importance, et en supprimant les termes moins importants, il est possible de trouver des compromis optimales entre l’erreur d’approximation et le nombre de paramètres. À travers de cette méthode il es possible d’obtenir, par exemple, une réduction x2 sur le nombre de paramètres et opérations d’un réseau du type ResNet-32, avec une perte en accuracy <2%. Il est aussi démontré que cette méthode est compatible avec d’autres méthodes connues de l’état de l’art, notamment le pruning, winograd et la quantification. En les combinant toutes, il est possible de réduire la taille d’un ResNet-110 de 6.88 Mbytes à 370kBytes (gain mémoire x19) avec une dégradation d’accuracy de 3.9%.Toutes ces techniques sont ensuite misses en pratique dans un cadre applicatif de détection de vissages. La solution obtenue comporte une taille de modèle de 29.3kBytes, ce qui représente une réduction x65 par rapport à l’état de l’art, à égal taux de détection. La solution est aussi comparé a une méthode classique telle que Viola-Jones, ce qui confirme autour d’un ordre de magnitude moins de calculs, au même temps que l’habilité d’obtenir des taux de détection plus hauts, sans des hauts surcoûts computationnels Les deux réseaux sont en suite évalues sur un multiprocesseur embarqué, ce qui permet de vérifier que les taux de compression théoriques obtenues restent cohérents avec les chiffres mesurées. Dans le cas de la détection de vissages, la parallélisation du réseau comprimé par ACP sûr 8 processeurs incrémente la vitesse de calcul d’un facteur x11.68 par rapport au réseau original sûr un seul processeur
Recently, Convolutional Neural Networks have become the state-of-the-art soluion(SOA) to most computer vision problems. In order to achieve high accuracy rates, CNNs require a high parameter count, as well as a high number of operations. This greatly complicates the deployment of such solutions in embedded systems, which strive to reduce memory size. Indeed, while most embedded systems are typically in the range of a few KBytes of memory, CNN models from the SOA usually account for multiple MBytes, or even GBytes in model size. Throughout this thesis, multiple novel ideas allowing to ease this issue are proposed. This requires to jointly design the solution across three main axes: Application, Algorithm and Hardware.In this manuscript, the main levers allowing to tailor computational complexity of a generic CNN-based object detector are identified and studied. Since object detection requires scanning every possible location and scale across an image through a fixed-input CNN classifier, the number of operations quickly grows for high-resolution images. In order to perform object detection in an efficient way, the detection process is divided into two stages. The first stage involves a region proposal network which allows to trade-off recall for the number of operations required to perform the search, as well as the number of regions passed on to the next stage. Techniques such as bounding box regression also greatly help reduce the dimension of the search space. This in turn simplifies the second stage, since it allows to reduce the task’s complexity to the set of possible proposals. Therefore, parameter counts can greatly be reduced.Furthermore, CNNs also exhibit properties that confirm their over-dimensionment. This over-dimensionement is one of the key success factors of CNNs in practice, since it eases the optimization process by allowing a large set of equivalent solutions. However, this also greatly increases computational complexity, and therefore complicates deploying the inference stage of these algorithms on embedded systems. In order to ease this problem, we propose a CNN compression method which is based on Principal Component Analysis (PCA). PCA allows to find, for each layer of the network independently, a new representation of the set of learned filters by expressing them in a more appropriate PCA basis. This PCA basis is hierarchical, meaning that basis terms are ordered by importance, and by removing the least important basis terms, it is possible to optimally trade-off approximation error for parameter count. Through this method, it is possible to compress, for example, a ResNet-32 network by a factor of ×2 both in the number of parameters and operations with a loss of accuracy <2%. It is also shown that the proposed method is compatible with other SOA methods which exploit other CNN properties in order to reduce computational complexity, mainly pruning, winograd and quantization. Through this method, we have been able to reduce the size of a ResNet-110 from 6.88Mbytes to 370kbytes, i.e. a x19 memory gain with a 3.9 % accuracy loss.All this knowledge, is applied in order to achieve an efficient CNN-based solution for a consumer face detection scenario. The proposed solution consists of just 29.3kBytes model size. This is x65 smaller than other SOA CNN face detectors, while providing equal detection performance and lower number of operations. Our face detector is also compared to a more traditional Viola-Jones face detector, exhibiting approximately an order of magnitude faster computation, as well as the ability to scale to higher detection rates by slightly increasing computational complexity.Both networks are finally implemented in a custom embedded multiprocessor, verifying that theorical and measured gains from PCA are consistent. Furthermore, parallelizing the PCA compressed network over 8 PEs achieves a x11.68 speed-up with respect to the original network running on a single PE
APA, Harvard, Vancouver, ISO, and other styles
7

Pourchot, Aloïs. "Improving Radiographic Diagnosis with Deep Learning in Clinical Settings." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS421.

Full text
Abstract:
Les succès impressionnants de l'apprentissage profond au cours de la dernière décennie ont renforcé son statut de norme pour résoudre les problèmes difficiles d'apprentissage automatique, et ont permis sa diffusion rapide dans de nombreux domaines d'application. L'un de ces domaines, qui est au cœur de ce doctorat, est l'imagerie médicale. L'apprentissage profond a fait de la perspective exaltante de soulager les experts médicaux d'une fraction de leur charge de travail grâce au diagnostic automatisé une réalité. Au cours de cette thèse, nous avons été amenés à considérer deux problèmes médicaux : la tâche de détection des fractures, et la tâche d'évaluation de l'âge osseux. Pour chacune de ces deux tâches, nous avons cherché à explorer les possibilités d'amélioration des outils d'apprentissage profond visant à faciliter leur diagnostic. Avec cet objectif en tête, nous avons exploré deux stratégies différentes. La première, ambitieuse mais arrogante, nous a conduit à étudier le paradigme de la recherche d'architecture neuronale, une succession logique de l'apprentissage profond qui vise à apprendre la structure même du modèle de réseau neuronal utilisé pour résoudre une tâche. Dans une seconde stratégie, plus simple mais aussi plus sage, nous avons tenté d'améliorer un modèle par l'analyse méticuleuse des sources de données à disposition. Dans les deux cas, un soin particulier a été apporté à la pertinence clinique de nos différentes contributions, car nous pensons que l'ancrage pratique de nos différents résultats est tout aussi important que leur obtention théorique
The impressive successes of deep learning over the course of the past decade have reinforced its establishment as the standard modus operandi to solve difficult machine learning problems, as well as enabled its swift spread to manifold domains of application. One such domain, which is at the heart of this PhD, is medical imaging. Deep learning has made the thrilling perspective of relieving medical experts from a fraction of their burden through automated diagnosis a reality. Over the course of this thesis, we were led to consider two medical problems: the task of fracture detection, and the task of bone age assessment. For both of them, we strove to explore possibilities to improve deep learning tools aimed at facilitating their diagnosis. With this objective in mind, we have explored two different strategies. The first one, ambitious yet arrogant, has led us to investigate the paradigm of neural architecture search, a logical succession to deep learning which aims at learning the very structure of the neural network model used to solve a task. In a second, bleaker but wiser strategy, we have tried to improve a model through the meticulous analysis of the data sources at hands. In both scenarios, a particular care was given to the clinical relevance of our different results and contributions, as we believed that the practical anchoring of our different contrivances was just as important as their theoretical design
APA, Harvard, Vancouver, ISO, and other styles
8

Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.

Full text
Abstract:
L’intelligence artificielle est un domaine de recherche relativement récent. Grâce à lui, plusieurs percées ont été faites sur une série de problèmes qui étaient autrefois considérés comme très difficiles. La classification fine est l’un de ces problèmes. Cependant, même si résoudre cette tâche pourrait représenter des avancées tant au niveau scientifique qu’au niveau industriel, peu de recherche y a été effectué. Dans ce mémoire, nous abordons la problématique de l’application de la classification fine sur des problèmes concrets, soit la classification d’essence d’arbres uniquement grâce à des images de l’écorce et la classification visuelle des moisissures en culture. Nous commençons par présenter plusieurs concepts sur lesquels se basent l’apprentissage profond, à la base de notre solution ainsi que plusieurs expériences qui ont été menées afin de tenter de résoudre le problème de classification d’essence d’arbres à partir d’images de l’écorce. Par la suite, nous détaillons le jeu de données nommé BarkNet 1. 0 que nous avons construit dans le cadre de ce projet. Grâce à celui-ci, nous avons été en mesure de développer une méthode permettant d’obtenir une précision de 93,88% en utilisant une seule crop aléatoire dans une image et une précision de 97,81% en utilisant un vote de majorité sur toutes les images d’un arbre. Finalement, nous concluons en démontrant la faisabilité d’appliquer notre méthode dans d’autres contextes en montrant quelques applications concrètes sur lesquelles nous l’avons essayée, soit la classification d’essence d’arbres en industrie et la classification de moisissures.
Artificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
APA, Harvard, Vancouver, ISO, and other styles
9

Messaoud, Kaouther. "Deep learning based trajectory prediction for autonomous vehicles." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS048.

Full text
Abstract:
La prédiction de trajectoire des agents avoisinants d'un véhicule autonome est essentielle pour la conduite autonome afin d'effectuer une planification de trajectoire d'une manière efficace. Dans cette thèse, nous abordons la problématique de prédiction de trajectoire d'un véhicule cible dans deux environnements différents ; une autoroute et une zone urbaine (intersection, rond-point, etc.). Dans ce but, nous développons des solutions basées sur l'apprentissage automatique profond en mettant en phase les interactions entre le véhicule cibles et les éléments statiques et dynamiques de la scène. De plus, afin de tenir compte de l'incertitude du futur, nous générons de multiples trajectoires plausibles et la probabilité d'occurrence de chacune. Nous nous assurons également que les trajectoires prédites sont réalistes et conformes à la structure de la scène. Les solutions développées sont évaluées à à l'aide de bases de données de conduite réelles
The trajectory prediction of neighboring agents of an autonomous vehicle is essential for autonomous driving in order to perform trajectory planning in an efficient manner. In this thesis, we tackle the problem of predicting the trajectory of a target vehicle in two different environments; a highway and an urban area (intersection, roundabout, etc.). To this end, we develop solutions based on deep machine learning by phasing the interactions between the target vehicle and the static and dynamic elements of the scene. In addition, in order to take into account the uncertainty of the future, we generate multiple plausible trajectories and the probability of occurrence of each. We also make sure that the predicted trajectories are realistic and conform to the structure of the scene. The solutions developed are evaluated using real driving datasets
APA, Harvard, Vancouver, ISO, and other styles
10

Antipov, Grigory. "Apprentissage profond pour la description sémantique des traits visuels humains." Thesis, Paris, ENST, 2017. http://www.theses.fr/2017ENST0071/document.

Full text
Abstract:
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la conception et l’apprentissage des réseaux de neurones convolutifs (CNNs) pour la classification du genre et l’estimation de l’âge. Ainsi, nous obtenons les CNNs les plus performants de l’état de l’art. De plus, ces modèles nous ont permis de remporter une compétition internationale sur l’estimation de l’âge apparent. Nos meilleurs CNNs obtiennent une précision moyenne de 98.7% pour la classification du genre et une erreur moyenne de 4.26 ans pour l’estimation de l’âge sur un corpus interne particulièrement difficile.Ensuite, afin d’adresser le problème de la synthèse et de l’édition d’images de visages, nous concevons un modèle nommé GA-cGAN : le premier réseau de neurones génératif adversaire (GAN) qui produit des visages synthétiques réalistes avec le genre et l’âge souhaités. Enfin, nous proposons une nouvelle méthode permettant d’employer GA-cGAN pour le changement du genre et de l’âge tout en préservant l’identité dans les images synthétiques. Cette méthode permet d'améliorer la précision d’un logiciel sur étagère de vérification faciale en présence d’écarts d’âges importants
The recent progress in artificial neural networks (rebranded as deep learning) has significantly boosted the state-of-the-art in numerous domains of computer vision. In this PhD study, we explore how deep learning techniques can help in the analysis of gender and age from a human face. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes.Firstly, we conduct a comprehensive study which results in an empirical formulation of a set of principles for optimal design and training of gender recognition and age estimation Convolutional Neural Networks (CNNs). As a result, we obtain the state-of-the-art CNNs for gender/age prediction according to the three most popular benchmarks, and win an international competition on apparent age estimation. On a very challenging internal dataset, our best models reach 98.7% of gender classification accuracy and an average age estimation error of 4.26 years.In order to address the problem of synthesis and editing of human faces, we design and train GA-cGAN, the first Generative Adversarial Network (GAN) which can generate synthetic faces of high visual fidelity within required gender and age categories. Moreover, we propose a novel method which allows employing GA-cGAN for gender swapping and aging/rejuvenation without losing the original identity in synthetic faces. Finally, in order to show the practical interest of the designed face editing method, we apply it to improve the accuracy of an off-the-shelf face verification software in a cross-age evaluation scenario
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Réseau convolutif"

1

MOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.

Full text
Abstract:
Ce chapitre traite des méthodes d’analyse de séries chronologiques denses en télédétection. Il présente les principales exigences en termes de prétraitements des données, puis un aperçu des quatre principaux axes en détection de changement basée sur l'analyse de séries chronologiques denses : carte de classification, classification de trajectoire, frontières statistiques et approches d'ensemble. Il fournit aussi les détails sur deux des algorithmes les plus largement utilisés dans ce contexte d’analyse. Il aborde également la question de l'apprentissage profond pour la télédétection, en détaillant trois types d'architectures de réseau adaptées à l'analyse de séries chronologiques d'images satellitaires : les réseaux de neurones récurrents, les réseaux de neurones convolutifs et les modèles hybrides combinant ces deux derniers modèles de réseau.
APA, Harvard, Vancouver, ISO, and other styles
2

ATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN, and Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives." In Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.

Full text
Abstract:
Ce chapitre traite l'extraction d'attributs à partir d'ondelettes et de filtres ConvNet (réseaux de neurones à convolution) pour l'analyse non supervisée de séries chronologiques d'images. Nous exploitons les capacités des ondelettes et des filtres neuro-convolutifs à capturer des propriétés d'invariance non-triviales, ainsi que les nouvelles solutions de centroïdes proposées dans ce chapitre, pour l'analyse d'attributs de hauts niveaux par entropie relative. La détection d'anomalies et le clustering fonctionnel d'évolution sont développés à partir de ce cadre.
APA, Harvard, Vancouver, ISO, and other styles
3

BYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.

Full text
Abstract:
Les réseaux de neurones convolutifs (CNN) utilisés pour l’analyse des signaux vidéo sont très gourmands en calculs. De telles applications embarquées nécessitent des implémentations efficaces en termes de coût et de puissance. Ce chapitre présente une solution basée sur un processeur de jeu d’instructions spécifique à l’application (ASIP) qui représente un bon compromis entre efficacité et programmabilité.
APA, Harvard, Vancouver, ISO, and other styles
4

ATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER, and Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images." In Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.

Full text
Abstract:
Ce chapitre étudie les capacités de généralisation d’une bibliothèque de réseaux de neurones convolutifs pour la classification d’états de surface terrestre dans le temps, avec une granularité variable sur la nature des états. L’ensemble de données utilisé pour réaliser cette étude est constitué d'images à sémantique descriptible au sens de propriétés géophysiques et des impacts des conditions météorologiques en zone de glaciers.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Réseau convolutif"

1

Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.

Full text
Abstract:
« L’intelligence artificielle connaît un essor fulgurant depuis ces dernières années. Lapprentissage automatique et plus précisément lapprentissage profond grâce aux réseaux de neurones convolutifs ont permis des avancées majeures dans le domaine de la reconnaissance des formes. Cette présentation fait suite à mon travail de thèse. La première partie retrace lhistorique et décrit les principes de fonctionnement de ces réseaux. La seconde présente une revue de la littérature de leurs applications dans la pratique médicale de plusieurs spécialités, pour des tâches diagnostiques nécessitant une démarche visuelle (classification dimages et détection de lésions). Quinze articles, évaluant les performances de ces solutions dautomatisation, ont été analysés. La troisième partie est une discussion à propos des perspectives et des limites présentées par les réseaux de neurones convolutifs, ainsi que leurs possibles applications en chirurgie orale. »
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography