Journal articles on the topic 'Representations up to homotopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Representations up to homotopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Trentinaglia, Giorgio, and Chenchang Zhu. "Some remarks on representations up to homotopy." International Journal of Geometric Methods in Modern Physics 13, no. 03 (March 2016): 1650024. http://dx.doi.org/10.1142/s0219887816500249.
Full textPorter, Tim, and Jim Stasheff. "Homotopy Coherent Representations." Symmetry 14, no. 3 (March 9, 2022): 553. http://dx.doi.org/10.3390/sym14030553.
Full textSheng, Yunhe, and Chenchang Zhu. "Semidirect products of representations up to homotopy." Pacific Journal of Mathematics 249, no. 1 (January 3, 2011): 211–36. http://dx.doi.org/10.2140/pjm.2011.249.211.
Full textMerati, S., and M. R. Farhangdoost. "Representation up to homotopy of hom-Lie algebroids." International Journal of Geometric Methods in Modern Physics 15, no. 05 (April 2, 2018): 1850074. http://dx.doi.org/10.1142/s0219887818500743.
Full textVITAGLIANO, LUCA. "Representations of Homotopy Lie–Rinehart Algebras." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 1 (December 4, 2014): 155–91. http://dx.doi.org/10.1017/s0305004114000541.
Full textGracia-Saz, A., M. Jotz Lean, K. C. H. Mackenzie, and R. A. Mehta. "Double Lie algebroids and representations up to homotopy." Journal of Homotopy and Related Structures 13, no. 2 (July 7, 2017): 287–319. http://dx.doi.org/10.1007/s40062-017-0183-1.
Full textMehta, Rajan Amit. "Lie algebroid modules and representations up to homotopy." Indagationes Mathematicae 25, no. 5 (October 2014): 1122–34. http://dx.doi.org/10.1016/j.indag.2014.07.013.
Full textJotz, M. "Obstructions to representations up to homotopy and ideals." Asian Journal of Mathematics 26, no. 2 (2022): 137–66. http://dx.doi.org/10.4310/ajm.2022.v26.n2.a1.
Full textDrummond, T., M. Jotz Lean, and C. Ortiz. "VB-algebroid morphisms and representations up to homotopy." Differential Geometry and its Applications 40 (June 2015): 332–57. http://dx.doi.org/10.1016/j.difgeo.2015.03.005.
Full textArias Abad, Camilo, and Florian Schätz. "Deformations of Lie brackets and representations up to homotopy." Indagationes Mathematicae 22, no. 1-2 (October 2011): 27–54. http://dx.doi.org/10.1016/j.indag.2011.07.003.
Full textWILKIN, GRAEME. "HOMOTOPY GROUPS OF MODULI SPACES OF STABLE QUIVER REPRESENTATIONS." International Journal of Mathematics 21, no. 09 (September 2010): 1219–38. http://dx.doi.org/10.1142/s0129167x1000646x.
Full textSheng, Yunhe, and Chenchang Zhu. "Higher extensions of Lie algebroids." Communications in Contemporary Mathematics 19, no. 03 (April 5, 2017): 1650034. http://dx.doi.org/10.1142/s0219199716500346.
Full textArias Abad, Camilo, and Marius Crainic. "Representations up to homotopy and Bottʼs spectral sequence for Lie groupoids." Advances in Mathematics 248 (November 2013): 416–52. http://dx.doi.org/10.1016/j.aim.2012.12.022.
Full textBrahic, Olivier, and Cristian Ortiz. "Integration of $2$-term representations up to homotopy via $2$-functors." Transactions of the American Mathematical Society 372, no. 1 (March 19, 2019): 503–43. http://dx.doi.org/10.1090/tran/7586.
Full textArias Abad, Camilo, and Florian Schätz. "The A∞ de Rham Theorem and Integration of Representations up to Homotopy." International Mathematics Research Notices 2013, no. 16 (July 4, 2012): 3790–855. http://dx.doi.org/10.1093/imrn/rns166.
Full textVélez, Alexander Quintero. "Boundary Coupling of Lie Algebroid Poisson Sigma Models and Representations up to Homotopy." Letters in Mathematical Physics 102, no. 1 (March 3, 2012): 31–64. http://dx.doi.org/10.1007/s11005-012-0549-6.
Full textPuschnigg, Michael. "Finitely summable Fredholm modules over higher rank groups and lattices." Journal of K-Theory 8, no. 2 (December 23, 2010): 223–39. http://dx.doi.org/10.1017/is010011023jkt131.
Full textReinhold, Ben. "L∞-algebras and their cohomology." Emergent Scientist 3 (2019): 4. http://dx.doi.org/10.1051/emsci/2019003.
Full textMerati, S., M. R. Farhangdoost, and A. R. Attari Polsangi. "Representation up to Homotopy and Hom-Lie Algebroid Modules." Journal of Dynamical Systems and Geometric Theories 18, no. 1 (January 2, 2020): 27–37. http://dx.doi.org/10.1080/1726037x.2020.1788817.
Full textMerati, S., and M. R. Farhangdoost. "Representation up to homotopy of double algebroids and their transgression classes." Journal of Dynamical Systems and Geometric Theories 16, no. 1 (January 2, 2018): 89–99. http://dx.doi.org/10.1080/1726037x.2018.1436269.
Full textRutter, J. W. "The group of homotopy self-equivalences of non-simply-connected spaces using Postnikov decompositions." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 120, no. 1-2 (1992): 47–60. http://dx.doi.org/10.1017/s0308210500014979.
Full textdel Hoyo, Matias, and Cristian Ortiz. "Morita Equivalences of Vector Bundles." International Mathematics Research Notices 2020, no. 14 (June 26, 2018): 4395–432. http://dx.doi.org/10.1093/imrn/rny149.
Full textGrady, Ryan, and Owen Gwilliam. "LIE ALGEBROIDS AS SPACES." Journal of the Institute of Mathematics of Jussieu 19, no. 2 (February 13, 2018): 487–535. http://dx.doi.org/10.1017/s1474748018000075.
Full textSHENG, YUNHE, and CHENCHANG ZHU. "INTEGRATION OF SEMIDIRECT PRODUCT LIE 2-ALGEBRAS." International Journal of Geometric Methods in Modern Physics 09, no. 05 (July 3, 2012): 1250043. http://dx.doi.org/10.1142/s0219887812500430.
Full textMerati, S., and M. R. Farhangdoost. "VB-Hom Algebroid Morphisms and 2-Term Representation Up to Homotopy of Hom-Lie Algebroids." Iranian Journal of Science and Technology, Transactions A: Science 45, no. 3 (March 30, 2021): 937–44. http://dx.doi.org/10.1007/s40995-020-01049-1.
Full textShepherd, Kendrick M., Xianfeng David Gu, René R. Hiemstra, and Thomas J. R. Hughes. "Quadrilateral layout generation and optimization using equivalence classes of integral curves: theory and application to surfaces with boundaries." Journal of Mechanics 38 (2022): 128–55. http://dx.doi.org/10.1093/jom/ufac002.
Full textNagasaki, Ikumitsu. "Linearity of homotopy representations, II." Manuscripta Mathematica 82, no. 1 (December 1994): 277–92. http://dx.doi.org/10.1007/bf02567702.
Full textAnderson, Laura. "Homotopy Sphere Representations for Matroids." Annals of Combinatorics 16, no. 2 (January 26, 2012): 189–202. http://dx.doi.org/10.1007/s00026-012-0125-x.
Full textLubawski, Wojciech, and Krzysztof Ziemiański. "Homotopy representations of the unitary groups." Algebraic & Geometric Topology 16, no. 4 (September 12, 2016): 1913–51. http://dx.doi.org/10.2140/agt.2016.16.1913.
Full textHambleton, Ian, and Ergün Yalçin. "Homotopy representations over the orbit category." Homology, Homotopy and Applications 16, no. 2 (2014): 345–69. http://dx.doi.org/10.4310/hha.2014.v16.n2.a19.
Full textGuérin, Clément, Sean Lawton, and Daniel Ramras. "Bad Representations and Homotopy of Character Varieties." Annales Henri Lebesgue 5 (February 23, 2022): 93–140. http://dx.doi.org/10.5802/ahl.119.
Full textStasheff, Jim. "Constrained Poisson algebras and strong homotopy representations." Bulletin of the American Mathematical Society 19, no. 1 (July 1, 1988): 287–91. http://dx.doi.org/10.1090/s0273-0979-1988-15645-5.
Full textBradlow, Steven B., Oscar García-Prada, and Peter B. Gothen. "Homotopy groups of moduli spaces of representations." Topology 47, no. 4 (September 2008): 203–24. http://dx.doi.org/10.1016/j.top.2007.06.001.
Full textNAGASAKI, Ikumitsu. "On homotopy representations with the same dimension function." Journal of the Mathematical Society of Japan 40, no. 1 (January 1988): 35–51. http://dx.doi.org/10.2969/jmsj/04010035.
Full textCrawley, Timothy, and Arthur G. Palmer III. "Approximate representations of shaped pulses using the homotopy analysis method." Magnetic Resonance 2, no. 1 (April 16, 2021): 175–86. http://dx.doi.org/10.5194/mr-2-175-2021.
Full textEnochs, Edgar E., and Ivo Herzog. "A Homotopy of Quiver Morphisms with Applications to Representations." Canadian Journal of Mathematics 51, no. 2 (April 1, 1999): 294–308. http://dx.doi.org/10.4153/cjm-1999-015-0.
Full textLeykin, Anton, and Daniel Plaumann. "Determinantal representations of hyperbolic curves via polynomial homotopy continuation." Mathematics of Computation 86, no. 308 (February 16, 2017): 2877–88. http://dx.doi.org/10.1090/mcom/3194.
Full textBauer, Stefan. "Dimension functions of homotopy representations for compact Lie groups." Mathematische Annalen 280, no. 2 (March 1988): 247–65. http://dx.doi.org/10.1007/bf01456053.
Full textVazquez-Leal, H., V. M. Jimenez-Fernandez, B. Benhammouda, U. Filobello-Nino, A. Sarmiento-Reyes, A. Ramirez-Pinero, A. Marin-Hernandez, and J. Huerta-Chua. "Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices." Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/938598.
Full textAnick, David J. "Hopf algebras up to homotopy." Journal of the American Mathematical Society 2, no. 3 (September 1, 1989): 417. http://dx.doi.org/10.1090/s0894-0347-1989-0991015-7.
Full textBlanc, David, and Boris Chorny. "Representability theorems, up to homotopy." Proceedings of the American Mathematical Society 148, no. 3 (November 13, 2019): 1363–72. http://dx.doi.org/10.1090/proc/14828.
Full textBruce, Andrew James, and Alfonso Giuseppe Tortorella. "Kirillov structures up to homotopy." Differential Geometry and its Applications 48 (October 2016): 72–86. http://dx.doi.org/10.1016/j.difgeo.2016.06.005.
Full textNOTBOHM, D. "HOMOLOGY DECOMPOSITIONS FOR CLASSIFYING SPACES OF FINITE GROUPS ASSOCIATED TO MODULAR REPRESENTATIONS." Journal of the London Mathematical Society 64, no. 2 (October 2001): 472–88. http://dx.doi.org/10.1112/s0024610701002459.
Full textBRIGHTWELL, MARK, and PAUL TURNER. "REPRESENTATIONS OF THE HOMOTOPY SURFACE CATEGORY OF A SIMPLY CONNECTED SPACE." Journal of Knot Theory and Its Ramifications 09, no. 07 (November 2000): 855–64. http://dx.doi.org/10.1142/s0218216500000487.
Full textAsadollahi, J., H. Eshraghi, R. Hafezi, and Sh Salarian. "On the homotopy categories of projective and injective representations of quivers." Journal of Algebra 346, no. 1 (November 2011): 101–15. http://dx.doi.org/10.1016/j.jalgebra.2011.08.028.
Full textDas, Apurba. "Hom-associative algebras up to homotopy." Journal of Algebra 556 (August 2020): 836–78. http://dx.doi.org/10.1016/j.jalgebra.2020.03.020.
Full textMELLOR, BLAKE. "FINITE TYPE LINK HOMOTOPY INVARIANTS." Journal of Knot Theory and Its Ramifications 08, no. 06 (September 1999): 773–87. http://dx.doi.org/10.1142/s0218216599000481.
Full textKanenobu, Taizo, and Toshio Sumi. "Suciu’s ribbon 2-knots with isomorphic group." Journal of Knot Theory and Its Ramifications 29, no. 07 (June 2020): 2050053. http://dx.doi.org/10.1142/s0218216520500534.
Full textMerkulov, Sergei, and Thomas Willwacher. "Classification of universal formality maps for quantizations of Lie bialgebras." Compositio Mathematica 156, no. 10 (October 2020): 2111–48. http://dx.doi.org/10.1112/s0010437x20007381.
Full textTraczyk, Paweł. "The cancellation problem for homotopy equivalent representations of finite groups: a survey." Banach Center Publications 18, no. 1 (1986): 205–13. http://dx.doi.org/10.4064/-18-1-205-213.
Full text