Academic literature on the topic 'Repetitive element'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Repetitive element.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Repetitive element"
Gurjia, Aesha Adnan, and Ahmed Abdulwahid Dhannoon. "REPETITIVE ELEMENTS AND THEIR OBJECTIVES IN ANCIENT AND CONTEMPORARY MOSQUES." Journal of Islamic Architecture 6, no. 4 (December 26, 2021): 264–76. http://dx.doi.org/10.18860/jia.v6i4.11718.
Full textCramton, Sarah E., Norbert F. Schnell, Friedrich Götz, and Reinhold Brückner. "Identification of a New Repetitive Element inStaphylococcus aureus." Infection and Immunity 68, no. 4 (April 1, 2000): 2344–48. http://dx.doi.org/10.1128/iai.68.4.2344-2348.2000.
Full textAbuín, M., P. Martínez, L. Sánchez, C. Clabby, F. Flavin, N. P. Wilkins, J. A. Houghton, R. Powell, and U. Goswami. "A NOR-associated repetitive element present in the genome of two Salmo species (salmo salar and Salmo trutta)." Genome 39, no. 4 (August 1, 1996): 671–79. http://dx.doi.org/10.1139/g96-085.
Full textDouville, Christopher, Joshua D. Cohen, Janine Ptak, Maria Popoli, Joy Schaefer, Natalie Silliman, Lisa Dobbyn, et al. "Assessing aneuploidy with repetitive element sequencing." Proceedings of the National Academy of Sciences 117, no. 9 (February 19, 2020): 4858–63. http://dx.doi.org/10.1073/pnas.1910041117.
Full textFoster, E., J. Hattori, P. Zhang, H. Labbé, T. Martin-Heller, J. Li-Pook-Than, T. Ouellet, K. Malik, and B. Miki. "The new RENT family of repetitive elements in Nicotiana species harbors gene regulatory elements related to the tCUP cryptic promoter." Genome 46, no. 1 (February 1, 2003): 146–55. http://dx.doi.org/10.1139/g02-102.
Full textYoussoufian, H., and H. F. Lodish. "Transcriptional inhibition of the murine erythropoietin receptor gene by an upstream repetitive element." Molecular and Cellular Biology 13, no. 1 (January 1993): 98–104. http://dx.doi.org/10.1128/mcb.13.1.98-104.1993.
Full textYoussoufian, H., and H. F. Lodish. "Transcriptional inhibition of the murine erythropoietin receptor gene by an upstream repetitive element." Molecular and Cellular Biology 13, no. 1 (January 1993): 98–104. http://dx.doi.org/10.1128/mcb.13.1.98.
Full textMarszałek, Jerzy, Jacek Stadnicki, and Piotr Danielczyk. "Finite element model of laminate construction element with multi-phase microstructure." Science and Engineering of Composite Materials 27, no. 1 (December 3, 2020): 405–14. http://dx.doi.org/10.1515/secm-2020-0044.
Full textLunyak, Victoria V., and Michelle Atallah. "Genomic relationship between SINE retrotransposons, Pol III–Pol II transcription, and chromatin organization: the journey from junk to jewel." Biochemistry and Cell Biology 89, no. 5 (October 2011): 495–504. http://dx.doi.org/10.1139/o11-046.
Full textJeršek, B., P. Gilot, M. Gubina, N. Klun, J. Mehle, E. Tcherneva, N. Rijpens, and L. Herman. "Typing of Listeria monocytogenes Strains by Repetitive Element Sequence-Based PCR." Journal of Clinical Microbiology 37, no. 1 (1999): 103–9. http://dx.doi.org/10.1128/jcm.37.1.103-109.1999.
Full textDissertations / Theses on the topic "Repetitive element"
Albarazi, Rayan. "Evaluation of Roadway Embankment Under Repetitive Axial Loading Using Finite Element Analysis." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81916.
Full textRazavi, Borghei Seyyed Moein. "The Modeling of Partial Discharge under Fast, Repetitive Voltage Pulses Using Finite-Element Analysis." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98001.
Full textM.S.
To decarbonize and reduce energy consumption for commercial aviation, the development of lightweight and ultra-efficient all-electric powertrain including electric motors, drives, and associated thermal management systems has been targeted. Using wide bandgap (WBG) power modules that can tolerate high voltages and currents can reduce the size and weight of the drive. However, the operation of WBG-based power converter can endanger the reliability of the electrified systems, most importantly, the insulation system. In this study, it is attempted to model the impact of such threats to the insulation system using numerical models.
Yoshimoto, Hideki. "Pulse and rhythm : exploring the value of repetitive motion as an element of design." Thesis, Royal College of Art, 2015. http://researchonline.rca.ac.uk/1708/.
Full textBryden, Louis J. "ROn-1 SINES, a short interspersed repetitive element from the genome of oreochromis niloticus and its species distribution in cichlid fishes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq24809.pdf.
Full textGlugoski, Larissa. "Análise de marcadores cromossômicos em Rineloricaria (Siluriformes: Loricariidae) com ênfase na diversidade cariotípica." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2017. http://tede2.uepg.br/jspui/handle/prefix/940.
Full textThe Loricariidae family is the largest in the Siluriformes order, being comprised of eight subfamilies. One of these, the Loricariinae subfamily, shows great diversity in respect to the number of chromosomes and karyotype formula, varying in the diploid number (2n) from 36 to 74 chromosomes. This diverse range originated mainly from Robertsonian(Rb) rearrangements. Rineloricaria is the largest genre in the Loricariinae subfamily, its species ranging from 2n = 36 to 70 chromosomes. In spite of this, little is known about which kinds of repetitive DNA gave rise to the events of chromosome fusion or fission. Previous studies have revealed the presence of multiple 5S rDNA sites in specimens of Rineloricaria from the Paraná River Basin, associated to the Robertsonian fission/fusion events. The aim of this work was the molecular characterization of the fragile sites associated to the 5S rDNA, besides localizing in situ marker chromosomes in Rineloricaria latirostris from the Das Pedras River and R. latirostris from the Piumhi River (first described in this work), seeking to understand the 2n diversification in this group. Rineloricaria latirostris from the Pedras River exhibited 2n = 46 chromosomes, while those from the Piumhi River presented 2n = 48 chromosomes, and both had a fundamental number (FN) of 60. Fluorescence in situ hybridization (FISH) assays in R. latirostris from the Piumhi River revealed 2 chromosome pairs with 5S rDNA sites, pair 7 with 18S rDNA, and only terminal staining when subjected to a telomeric probe (TTAGGGn). The population of the Pedras river exhibited 5 pairs with 5S rDNA sites, the metacentric (m) pair 2 marked with 18S rDNA, TTAGGGn markers in the terminal regions of the chromosomes, and the presence of interstitial telomeric sites (ITS) in pairs m 1 and m 3. The latter, in synteny with 5S rDNA, is indicative of Robertsonian fusion events. The isolation, cloning and sequencing of the 5S rDNA revealed clones with high sequence identity to 5S rDNA from other species, in addition to the necessary regions for recognition and transcription by RNA polymerase III. One clone of ~700 bp exhibited a degenerated fragment of hAT transposon in its sequence. It was named degenerated 5S rDNA. The fluorescence in situ hybridization assay highlighted chromosomes with co-localized staining for 5S rDNA/hAT, 5S rDNA/degenerated 5S rDNA, and 5S rDNA/ITS (m 3 pair) in R. latirostris from das Pedras River. In R. latirostris from Piumhi River, there was no detection of degenerated 5S rDNA sites. These results allow us to infer the role of the hAT transposon in the dispersion of 5S rDNA sites in the population, since some studies have indicated a relation between 5S rDNA dispersion and transposons in fish. In conclusion, data obtained by this study indicate a possible association between the hAT and the dispersion of 5S rDNA sites and Robertsonian events in the studied population of R. latirostris. The presence of the 5S rDNA/degenerated 5S rDNA/ITS generates hotspots for chromosomal breakage, contributing to the large karyotype diversity found in Loricariidae.
A família Loricariidae é a mais numerosa dentro da ordem Siluriformes e abrange oito subfamílias. A subfamília Loricarinae apresenta uma grande diversidade no que diz respeito ao número de cromossomos e a fórmula cariotípica, com variação do número diploide (2n) de 36 a 74 cromossomos, sendo os rearranjos Robertsonianos (Rb) considerados os principais mecanismos para explicar esta variação cromossômica. Rineloricaria é o gênero mais numeroso de Loricariinae, com espécies apresentando 2n = 36 - 70 cromossomos. Contudo, pouco ainda se sabe sobre quais os tipos de DNAs repetitivos originaram os eventos de fissão e fusão cromossômica. Estudos anteriores revelaram a presença de sítios múltiplos de rDNA 5S em exemplares de Rineloricaria da bacia do Rio Paraná, associados aos eventos de fissão/fusão Robertsonianos. O objetivo deste trabalho foi a caracterização molecular de sítios frágeis associados ao rDNA 5S, além da localização in situ de marcadores cromossômicos em Rineloricaria latirostris do rio das Pedras e R. latirostris do rio Piumhi (pela primeira vez descrito neste trabalho), visando a compreensão da diversificação do 2n neste grupo. Rineloricaria latirostris do rio das Pedras apresentou 2n = 46 cromossomos, enquanto R. latirostris do rio Piumhi apresentou 2n = 48 cromossomos, ambos com número fundamental (NF) de 60. Ensaios de hibridação in situ fluorescente em R. latirostris do rio Piumhi revelaram 2 pares cromossômicos marcados com rDNA 5S, o par 7 marcado com rDNA 18S, além de apenas marcações terminais utilizando-se a sonda telomérica (TTAGGGn). A população do rio das Pedras apresentou 5 pares portadores de sítios de rDNA 5S, o par metacêntrico (m) 2 marcado com rDNA 18S, marcações de TTAGGGn nas regiões terminais dos cromossomos, além da presença de vestígios de sítios teloméricos intersticiais (interstitial telomeric sites - ITS) nos pares m 1 e m 3, sendo este último em sintenia com o rDNA 5S, indicativo de eventos de fusão Robertsoniana. O isolamento, clonagem e sequenciamento de fragmentos de rDNA 5S, revelaram clones apresentando alta identidade ao rDNA 5S de outras espécies, além das regiões necessárias para o reconhecimento e transcrição pela RNA polimerase III. Um dos clones de ~700 pb apresentou um fragmento do transposon hAT em sua sequência, já em intensa degeneração molecular, sendo denominado de rDNA 5S degenerado. A hibridação in situ fluorescente evidenciou cromossomos com marcações co-localizadas de rDNA 5S/hAT, rDNA 5S/rDNA 5S degenerado e rDNA 5S/ITS (no par m 3) em R. latirostris do rio da Pedras. Em R. latirostris do rio Piumhi, não foram detectados sítios com rDNA 5S degenerado. Estes resultados nos permitem inferir o papel do TE hAT na dispersão dos sítios de rDNA 5S na população estudada, visto que alguns estudos indicam haver uma relação entre a dispersão do rDNA 5S pelo genoma e TEs em peixes. Em conclusão, os dados obtidos neste estudo indicam uma possível associação entre o elemento hAT e a dispersão de sítios de rDNA 5S e eventos Robertsonianos presentes na população de R. latirostris estudada. A presença de rDNA 5S/rDNA 5S degenerado/ITS geram hotspots para as quebras cromossômicas, contribuindo assim para a ampla diversidade cariotípica encontrada em Loricariidae.
Motta, V. "DIFFERENTIAL SUSCEPTIBILITY OF REPETITIVE ELEMENTS TO AIRBORNE POLLUTANTS." Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/216407.
Full textWard, Michelle Claire. "The regulatory potential of repetitive elements in mammalian genomes." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648276.
Full textHypský, Jan. "Rekonstrukce repetitivních elementů DNA." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385940.
Full textCasas, Masnou Eduard. "A role for heterochromatin and repetitive elements in epigenetic inheritance." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668338.
Full textEls mecanismes de regulació gènica controlen el nivell de transcripció de cada gen I l’estabilitat dels ARNs produïts. El perfil d’expressió gènica determina la identitat d’una cèl·lula, permetent que es formin teixits diferenciats partint d’exactament el mateix ADN. L’epigenètica és el conjunt de factors que asseguren que es mantingui el patró d’expressió gènica durant les divisions cel·lulars i el temps, i inclouen mecanismes com la metilació de l’ADN i la cromatina. També són responsables del silenciament d’elements repetitius i exògens presents al genoma. En aquesta tesi estudio el rol de l’epigenètica en transmetre informació d’expressió gènica no lligada a la seqüència d’ADN a les següents generacions. En concret, em centro en el paper que juguen l’heterocromatina i els elements repetitius en mantenir i transmetre canvis d’expressió a les següents generacions.
Carter, Andrew T. "VL30 : a mouse retrovirus-like family of repetitive DNA elements." Thesis, University of Warwick, 1985. http://wrap.warwick.ac.uk/67115/.
Full textBooks on the topic "Repetitive element"
Baller, Lisa Maria. Analysis of a dispersed repetitive DNA element in Sclerotinia sclerotiorum. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Find full textCarter, Andrew T. VL30: A mouse retrovirus-like family of repetitive DNA elements. [s.l]: typescript, 1985.
Find full textRobert, Trivers, ed. Genes in conflict: The biology of selfish genetic elements. Cambridge, Mass: Belknap Press of Harvard University Press, 2006.
Find full textJ, Miller Wolfgang, and Capy Pierre, eds. Mobile genetic elements: Protocols and genomic applications. Totowa, N.J: Humana Press, 2004.
Find full textFerraresi, Gisella. Adverbial connectives. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813545.003.0006.
Full textChamberlain, John William. Molecular cloning and characterization of HSAG-1, a middle repetitive genetic element capable of determining a cell surface antigen correlated with human chronic lymphocytic leukemia. 1985.
Find full textTengelsen, Leslie A. Characterization of interferon and retroposon-like repetitive elements in salmonid fish. 1992.
Find full textMiller, Wolfgang J., and Pierre Capy. Mobile Genetic Elements. Humana Press, 2010.
Find full textMullany, Peter, and Adam P. Roberts. Bacterial Integrative Mobile Genetic Elements. Taylor & Francis Group, 2022.
Find full textBacterial Integrative Mobile Genetic Elements. Taylor & Francis Group, 2013.
Find full textBook chapters on the topic "Repetitive element"
Vershinin, Alexander V., Thomas Lux, Heidrun Gundlach, Evgeny A. Elisafenko, Jens Keilwagen, Klaus F. X. Mayer, and Manuel Spannagl. "The Gene and Repetitive Element Landscape of the Rye Genome." In Compendium of Plant Genomes, 117–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83383-1_8.
Full textRasmussen, U., and M. M. Svenning. "Genomic Fingerprinting and Diversity Studies on Cyanobacteria by Repetitive Element PCR." In Biological Nitrogen Fixation for the 21st Century, 588. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_371.
Full textRodriguez-Barradas, M. C. "Characterization of Isolates of Bartonella henselae by Repetitive Element PCR." In Bartonella and Afipia Species Emphasizing Bartonella henselae, 143–53. Basel: KARGER, 1998. http://dx.doi.org/10.1159/000060460.
Full textKaratağ, Hüseyin, Seyhan Firat, and Nihat Sinan Işik. "Evaluation of Flexible Highway Embankment Under Repetitive Wheel Loading Using Finite Element Analysis." In Lecture Notes in Civil Engineering, 705–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63709-9_54.
Full textHiett, Kelli L., and Bruce S. Seal. "Use of Repetitive Element Palindromic PCR (rep-PCR) for the Epidemiologic Discrimination of Foodborne Pathogens." In Methods in Molecular Biology, 49–58. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-999-4_5.
Full textWicaksono, Danar, Arif Wibowo, and Ani Widiastuti. "Genetic Diversity of Pyricularia oryzae, the Causal Agent of Rice Blast Disease, Based on Repetitive Element–Based Polymerase Chain Reaction." In Proceeding of the 1st International Conference on Tropical Agriculture, 41–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60363-6_4.
Full textJachowicz, Joanna W. "Epigenetic Manipulation of Transposable and Repetitive Elements." In Transposable Elements, 355–68. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2883-6_16.
Full textKiefer, Christiane. "Repetitive Elemente und das Pflanzengenom." In Genomevolution bei Pflanzen, 25–28. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33025-5_4.
Full textBao, Lisui, and Zhanjiang Liu. "Analysis of Repetitive Elements in the Genome." In Bioinformatics in Aquaculture, 86–97. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118782392.ch5.
Full textYoshioka, Yasushi, Yoshito Takahashi, Shogo Matsumoto, Shoko Kojima, Ken Matsuoka, Kenzo Nakamura, Kazuhiko Ohshima, Norihiro Okada, and Yasunori Machida. "Mechanisms of T-DNA transfer and integration into plant chromosomes: role of vir B, vir D4 and vir E2 and a short interspersed repetitive element (SINE) from tobacco." In Developments in Plant Pathology, 231–48. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0746-4_17.
Full textConference papers on the topic "Repetitive element"
Borghei, Moein, and Mona Ghassemi. "Partial Discharge Finite Element Analysis under Fast, Repetitive Voltage Pulses." In 2019 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2019. http://dx.doi.org/10.1109/ests.2019.8847797.
Full textVlaicu, Dan, and Mike Stojakovic. "Probabilistic Models to Approximate Highly Repetitive Linear and Nonlinear Finite Element Analyses of Nuclear Components." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77220.
Full textNor, Fethma M., Norhakimin Osman, and Denni Kurniawan. "Finite element analysis of repetitive corrugation and straightening die designs for severe plastic deformation of magnesium alloy." In 1ST INTERNATIONAL SEMINAR ON ADVANCES IN METALLURGY AND MATERIALS (i-SENAMM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015825.
Full textGil-Romero, Jaime, S. Gregori, M. Tur, and F. J. Fuenmayor. "Dynamic response of periodic infinite structure to arbitrary moving load based on the Finite Element Method." In VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12606.
Full textGomez, Stephanie, James I. McDonald, Elisa Arthofer, Noor Diab, Aneil Srivastava, Paul Austin, and Katherine B. Chiappinelli. "Abstract B58: The role of mutant P53 in repetitive element regulation and the immune response in ovarian cancer." In Abstracts: AACR Special Conference on Advances in Ovarian Cancer Research; September 13-16, 2019; Atlanta, GA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.ovca19-b58.
Full textKypuros, Javier A., and Raul G. Longoria. "Variable Fidelity Modeling of Vehicle Ride Dynamics Using an Element Activity Metric." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39288.
Full textXu, H., and K. Komvopoulos. "Fracture Mechanics Analysis of Asperity Cracking Due to Repetitive Sliding Contact." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41162.
Full textPe´rez Arancibia, Ne´stor O., Chi-Ying Lin, Tsu-Chin Tsao, and James S. Gibson. "Adaptive and Repetitive Control for Rejecting Repeatable and Non-Repeatable Runout in Rotating Devices." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43534.
Full textAminfar, Omid, and Amir Khajepour. "Torsional Vibration Analysis of Drillstrings in Blasthole Drilling." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67418.
Full textZare, Saeid, Hao Wei Lo, Shrabanti Roy, and Omid Askari. "Flame Stability in Inverse Coaxial Injector Using Repetitive Nanosecond Pulsed Plasma." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10991.
Full text