Academic literature on the topic 'Renewable materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Renewable materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Renewable materials"

1

Kim, Hyun Chan, Seongcheol Mun, Hyun-U. Ko, Lindong Zhai, Abdullahil Kafy, and Jaehwan Kim. "Renewable smart materials." Smart Materials and Structures 25, no. 7 (May 25, 2016): 073001. http://dx.doi.org/10.1088/0964-1726/25/7/073001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eichhorn, Stephen J., and Alessandro Gandini. "Materials from Renewable Resources." MRS Bulletin 35, no. 3 (March 2010): 187–93. http://dx.doi.org/10.1557/mrs2010.650.

Full text
Abstract:
AbstractThe drive for greater use of renewable materials is one that has recently gained momentum due to the need to rely less heavily on petroleum. These renewable materials are defined as such since they are derived from plant-based sources. Some renewable materials also offer properties that conventional materials cannot provide: hierarchical structure, environmental compatibility, low thermal expansion, and the ability to be modified chemically to suit custom-made applications. Nature's materials, particularly from plant- and animal-based polysaccharides and proteins, have hierarchical structures, and these structures can be utilized for conventional applications via biomimetic approaches. This issue begins with an article covering renewable polymers or plastics that can be used to generate block copolymers (where two polymers with specific functions are combined) as an alternative to conventional materials. Applications of renewable polymers, such as cellulose from plants, bacteria, and animal sources, are also covered. Also presented are the use of bacterial cellulose and other plant-based nanofibers for transparent electronic display screens and, in a wider sense, the use of cellulose nanofibers for composite materials, where renewable resources are required to generate larger amounts of material. Finally, this issue shows the use of biomimetic approaches to take the multifunctional properties of renewable materials and use these concepts, or the materials themselves, in conventional materials applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Rus, Anika Zafiah M. "Polymers from Renewable Materials." Science Progress 93, no. 3 (August 2010): 285–300. http://dx.doi.org/10.3184/003685010x12797251639519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calvin, Melvin. "Renewable fuels and materials." Cell Biophysics 9, no. 1-2 (June 1986): 189–210. http://dx.doi.org/10.1007/bf02797381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freivalde, Liga, Silvija Kukle, and Stephen Russell. "Renewable Hemp Fibre Insulation Materials." Journal of Biobased Materials and Bioenergy 6, no. 4 (August 1, 2012): 418–23. http://dx.doi.org/10.1166/jbmb.2012.1236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chandrashekhara, K., S. Sundararaman, V. Flanigan, and S. Kapila. "Affordable composites using renewable materials." Materials Science and Engineering: A 412, no. 1-2 (December 2005): 2–6. http://dx.doi.org/10.1016/j.msea.2005.08.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martinz, D., and J. Quadros. "Compounding PVC with renewable materials." Plastics, Rubber and Composites 37, no. 9-10 (December 2008): 459–64. http://dx.doi.org/10.1179/174328908x362917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Shaojun, Yan Yu, and Qiang Zhang. "Innovative materials for renewable energy." Chinese Chemical Letters 28, no. 12 (December 2017): 2169–70. http://dx.doi.org/10.1016/j.cclet.2017.11.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Machhammer, Otto. "“Change to Renewable Raw Materials”." Chemical Engineering & Technology 31, no. 5 (May 2008): 625. http://dx.doi.org/10.1002/ceat.200890018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Guoxiu. "Materials Technology for Renewable Energies." Advanced Materials Technologies 3, no. 9 (September 2018): 1800346. http://dx.doi.org/10.1002/admt.201800346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Renewable materials"

1

Tian, G. "Renewable materials from renewable resources." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/11187/.

Full text
Abstract:
Renewable resources related to biomass, waste materials and recycled materials are an important concept in the principles of green chemistry, development of biorefineries and sustainability development. This thesis reports the repurposing of renewable resources which included wheat straw, biomass ash, waste cardboard (paper) and paper de-inking residues (DIR) to extract, synthesize and produce potentially high value chemicals, materials and composites. Biosilicate solutions were successfully extracted from biomass ash including wheat straw ash and miscanthus ash with aqueous potassium hydroxide solutions. Systematic analyses had been applied on the extraction of biosilicate solutions to obtain different types of silicate solutions for further applications of binder and mesoporous materials. Biosilicate solutions extracted from miscanthus ash were utilized as binders to make bioboards, whilst biosilicate solutions extracted from wheat straw ash were utilized as a silica resource to synthesize biobased mesoporous materials, namely bio-MCM-41 and bio-SBA-15. N2 porosimetry analysis revealed that mesoporous silica made from biosilicate solutions gave a surface area of bio-MCM-41 of >1000 m2 g-1 and a surface area of >800 m2 g-1 for bio-SBA-15. XRD, SEM and TEM analyses for both bio-MCM-41 and bio-SBA-15 revealed significant ordering pores, structure and the hexagonal arrays. Different kinds of renewable resources including wheat straw, pea pod waste and paper de-inking residue with the binder of biosilicate solutions and other chemical additives such as protein and starch were processed to bioboards. Also, wheat straw powder was added into cardboard/paper sheets to decrease the cost of paper manufacture and to improve mechanical properties. De-waxed wheat straw cardboard/paper sheets was successfully incorporated in to paper pulp to give a tensile index of 30-34 Nm/g similar with respect to conventional cardboard paper (tensile index of 30-32 Nm/g). A brief study to elicit sugars to the surface of cardboard/paper thus producing an in-situ sticky surface using low temperature microwave irradiation was conducted. Although it’s not conclusive, an aqueous fraction was expelled that contains organic matter (based on C-H stretch absorption bands noted in FT-IR), which may be due to sugars.
APA, Harvard, Vancouver, ISO, and other styles
2

Zúñiga, Ruiz Camilo Javier. "Polybenzoxazine materials from renewable diphenolic acid." Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/128180.

Full text
Abstract:
La síntesis de polímeros a partir de fuentes renovables como la biomasa es una forma viable de resolver los problemas relacionados con la contaminación del medio ambiente y la escasez de recursos derivados del petróleo usados como materias primas en la industria de los polímeros. Las polibenzoxazinas son una nueva clase de resinas termoestables cuya síntesis es de gran simplicidad y presentan propiedades interesantes de potencial aplicación en diversos campos, entre otros en la industria electrónica. Además, las benzoxazinas eliminan el problema de la liberación de subproductos de condensación, que presentan las resinas fenólicas convencionales, y no necesitan de un catalizador para su entrecruzamiento. También ofrecen una mayor flexibilidad en el diseño estructural al poder utilizar fenoles y aminas de diferente estructura. Tradicionalmente, las benzoxazinas se sintetizan a partir de fuentes derivadas del petróleo como fenoles, aldehídos y aminas primarias. Son escasos los ejemplos de síntesis de benzoxazinas parcial o totalmente derivadas de fuentes renovables. Dentro de ellas, cabe destacar el uso del cardanol, compuesto extraído del aceite de la cáscara del anacardo, y más recientemente el uso de gliceroles parcialmente enriquecidos, provenientes del aceite de girasol, en la síntesis de polibenzoxazinas con buenas propiedades de flexibilidad y adherencia. A partir de procesos de biorefineria de la celulosa se obtiene el ácido levulínico. Este compuesto es de gran interés a nivel industrial debido a que su producción es simple y se obtiene con altos rendimientos. Una de sus aplicaciones es como precursor en la producción industrial del ácido difenólico, que se obtiene mediante una reacción de condensación de éste con fenol. En los últimos años la Organización Mundial de la Salud ha prestado especial atención a aquellas sustancias de uso diario que representan una amenaza para la salud humana. Entre ellas están los ftalatos, las benzofenonas, los parabenos y el bisfenol A (BPA). Actualmente el ácido difenólico se está considerando como una alternativa “green” para sustituir al BPA ya que presenta una estructura química muy similar, es más barato y además posee una funcionalidad extra, que le brinda cierta versatilidad en la síntesis de polímeros. De acuerdo a todo lo mencionado anteriormente la presente tesis aborda la utilización del ácido difenólico como material de partida para la síntesis de nuevas polibenzoxazinas con un alto valor añadido. De esta forma, diferentes estrategias se han desarrollado para explorar las diferentes aplicaciones de estos materiales que se han agrupado en distintos capítulos, que a continuación se mencionan. En la primera parte del capítulo 1 se describe la síntesis y polimerización de dos nuevas polibenzoxazinas: la derivada del ácido difenólico (DPA-Bz) y la derivada del éster del ácido difenólico (MDP-Bz). Además, se describe la caracterización térmica y termomecánica de ambos materiales y se comparan con las de la benzoxazina derivada del bisfenol A (BPA-Bz). Como resultado de las reacciones de esterificación o transesterificación entre los grupos hidroxilos, derivados de la apertura del anillo de oxazina, y los grupos carbonilo y éster, presentes en la estructura de las benzoxazinas, la MDP-Bz y la DPA-Bz presentaron una mayor densidad de entrecruzamiento y por ende una mayor temperatura de transición vítrea (Tg) en comparación con la BPA-Bz. En la segunda parte del capítulo se describe la preparación de mezclas entre el DPA y la MDP-Bz reforzadas con fibra de vidrio. La adición de DPA disminuyó la temperatura de polimerización de las mezclas, la Tg y las propiedades termomecánicas debido a su incorporación en la red de entrecruzamiento. Así mismo, se prepararon polibenzoxazinas retardantes a la llama mediante la adición de una sal de fosfaceno derivada del DPA. Los materiales resultantes exhibieron una buena estabilidad térmica. La primera parte del segundo capítulo trata sobre la preparación y caracterización de espumas rígidas de polibenzoxazina de baja densidad, a partir de la DPA-Bz. A través de un proceso de autoespumado en el cual se genera el agente de espumado (CO2) in situ, debido a una reacción de descarboxilación, se prepararon una serie de espumas controlando la temperatura de espumado. Los materiales resultantes se caracterizaron en función de su morfología, y propiedades térmicas y mecánicas. Un segundo estudio contempló la preparación y caracterización de espumas rígidas de polibenzoxazina retardantes a la llama. Se emplearon 2 compuestos organofosforados y se determinó la incidencia de su adición usando técnicas analíticas. Las espumas demostraron buenas propiedades retardantes y buena estabilidad térmica en comparación con las espumas sin aditivo. Finalmente, usando herramientas analíticas se propusieron modelos matemáticos para ajustar la densidad y las propiedades mecánicas (resistencia y el módulo de compresión) de las espumas retardantes a la llama en términos de las variables de espumado, es decir, la temperatura y el tiempo. En el tercer capítulo se describe la preparación de nanocompuestos poliméricos. Como matrices poliméricas se usaron la MDP-Bz, la BPA-Bz mientras que como nanoaditivos se emplearon nanotubos de carbono de pared múltiple (MWNT) entre 0.1 y 1.0 % en peso. Con el fin de conseguir un método de dispersión que fuera más respetuoso con el medio ambiente no se empleó ningún disolvente. La dispersión de los nanoaditivos en ambos monómeros se evaluó mediante medidas reológicas mientras que la dispersión en los polímeros se observó usando un microscopio electrónico de transmisión (TEM). En general se obtuvo un buen grado de dispersión en los dos sistemas. La adición de nanotubos tuvo un efecto positivo en los nanocompuestos obtenidos ya que éstos exhibieron una alta conductividad eléctrica, una buena estabilidad térmica y una alta resistencia a la llama
Polybenzoxazines are considered a new type of thermosetting phenolic resins whose synthesis is quite simple. Polybenzoxazines present unique features that make them promising candidates for various industrial applications including electronics, aerospace, composites, coatings, adhesives, and encapsulants manufacturing. Two new benzoxazine materials have been synthesized and polymerized from the renewable diphenolic acid. The diphenolic acid-based benzoxazine (DPA-Bz) enables the preparation of rigid foams as well as flame retardant counterparts through a self-induced foaming process. For the methylester derivative benzoxazine (MDP-Bz), fiberglass reinforced materials were obtained with flame retardancy properties. Moreover, by adding neat carbon nanotubes, nanocomposite materials were prepared with low percolation threshold and improved thermal and fire properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Cooper, Emma. "Renewable routes to porous aluminosilicate materials." Thesis, University of York, 2012. http://etheses.whiterose.ac.uk/3936/.

Full text
Abstract:
The objectives of this project were to synthesise zeolites and aluminosilicate materials from silicon sources derived from biomass ashes. These materials will have great potential as catalysts and adsorbents. In order to begin this study it was necessary to find and optimise a technique for extraction of silicon to an alkali silicate solution from biomass ashes. It was then necessary to develop a technique for analysis of the alkali silicate solutions. This was done using calibration of integrals from infrared spectra. An optimisation of the synthesis of Zeolite X from a rice hull ash derived alkali silicate was developed and these materials were analysed and characterised using XRD, N2 Adsorption porosimetry, X‐Ray Fluorescence Spectroscopy, and X‐Ray Photoelectron Spectroscopy. An in‐depth study of the surface of the ash derived and reference Zeolite X was undertaken using in situ small molecule probing FT‐IR. It was found that although the materials were similar there was a significant difference due to the presence of a strongly bonded carbonate species in the pores of the bio‐derived zeolite. Synthesis of a Miscanthus ash derived mesoporous silica, MCM‐41, was successfully achieved which was comparable to its conventionally synthesised equivalent. Both displayed ordered hexagonal pores and high surface areas. A study on addition of different sources of aluminium found that it was possible to introduce aluminium into the structure successfully. Included in this study was the addition of the waste product ‘red clay’ as an aluminium source. Another mesoporous silica, SBA‐15 was synthesised from a Miscanthus ash derived alkali silicate. It was necessary to optimise the synthesis to adapt to the different pH systems of the conventional method and bio‐derived alkali silicate solutions. This was achieved and a bio‐derived SBA‐15 material with ordered hexagonal pores was produced.
APA, Harvard, Vancouver, ISO, and other styles
4

Norström, Emelie. "Terpenes as renewable monomers for biobased materials." Thesis, KTH, Skolan för kemivetenskap (CHE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-49875.

Full text
Abstract:
With the ambition to decrease the utilization of fossil fuels, a development of those raw materials that today only are seen as waste products is necessary. One of those waste products is turpentine. Turpentine is the largest natural source of terpenes in the world today. The main components are the terpenes α-pinene, β-pinene and 3-carene.  In this project, different polymerisation techniques have been evaluated to polymerise limonene with the aim to make a material out of the green raw material, turpentine. Limonene is a terpene that can be found in turpentine. It has a planar structure and should work as a model for other terpenes.   Previous work on polymerising terpenes has focused on succeeding with performing polymerisations of terpenes utilizing the techniques of cationic polymerisation and radical polymerisation. However, this has been done without the aim to make a material out of the polymers. In this project, on the other hand, the main focus has been to obtain a polymer that can be used as a basis for a material. Techniques that have been applied are: radical polymerisation, cationic polymerisation and thiol-ene polymerisation.  In this study, attempts to homopolymerise limonene and also copolymerise it with other synthetic monomers, such as styrene, have been performed with both radical polymerisation and cationic polymerisation. The procedure for the radical polymerisation has been conducted following the work by Sharma and Srivastava. [1] Even though several articles have been published about radical copolymerisations of limonene with other synthetic monomers, the radical polymerisations have not succeeded in this project. Further, the technique of thiol-ene chemistry has shown that limonene can be used in polymerisations; limonene reacts spontaneously with 2-mercaptoethyl ether forming a viscous polymer. The obtained polymers have been characterized with proton nuclear magnetic resonance(1H-NMR), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
5

McElroy, C. R. "Composite materials from copolymers incorporating renewable resources." Thesis, Keele University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491843.

Full text
Abstract:
A robust method for the production of an emulsion polymer based on styrene-acrylic acid-acrylic ester was developed to give enhanced physical properties and/or reduced envhonmental impact. Replacing the methyl methacrylate content with n-butyl acrylate, tert-butyl acrylate and ethyl acrylate all gave stable polymer emulsions. Replacing methyl methacrylate with fatty acid based monomer containing no more than one polymerisable acrylate group per molecule also led to the production of a stable emulsion, with the fatty acid based monomer also acting as a self-emulsifying agent if having sufficient amphiphilic character. All stable emulsions were successfully used to produce composite materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Sellars, Andrew B. "New materials from waste and renewable oils." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/69166/.

Full text
Abstract:
The work presented in this thesis represents the chemical modification of waste and renewable vegetable oils to yield monomers for polyurethane, azide-alkyne click and nitrile-oxide click polymerisations. Chapter 1 provides a brief introduction to use of waste materials for new products, following on to a more detailed overview of triglyceride chemistry, finishing with an introduction to ‘Click’ chemistry. Chapter 2 discusses the optimisation studies of acid catalysed ring-opening of epoxidised cocoa butter followed by polyurethane synthesis. Percentage of ring-opening was found to be influenced by the amount of phase-transfer catalyst, concentration of reaction and equivalents of acid. Mechanical properties (Young’s Modulus (YM), Tensile strength (TS) and Elongation at break (EoB)) were determined and thermal analysis (TGA, DSC) measured on cocoa butter based polyurethanes both with and without food-safe dyes as an alternative more environmentally friendly renewable oil source for polyurethane synthesis. Chapter 3 focuses on the use of azide-alkyne click chemistry to produce renewable polymers from dimeric fatty amides (capable of H bonding) with increasing linker length and azide functionality. Samples were synthesised from purified oleic acid and linoleic acid and cheaper, more commercially available rapeseed oil and soybean oil. Thermal properties (TGA, DSC) of copper mediated and thermally produced polymers were analysed and mechanical properties (YM, TS and EoB) of thermally produced polymers were also investigated showing increasing linker length increased elongation and decreased tensile strength and also showed the importance of H bonding between polymer chains drawn. Chapter 4 expands on azide-alkyne click polymerisation by synthesis of a range of monomers containing both azide and alkyne units therefore capable of homopolymerisation. Increasing chain length, azide functionality and hydrogen bonding possibilities were again tested using the same four starting materials as Chapter 3 as well as increasing cross-linking possibilities and results were found to compare with those established in Chapter 3. Chapter 5 concentrates on using nitrile oxide-alkyne click polymerisations as an alternative and safe method of producing renewable polymers derived from vegetable oils. Two approaches were used for polymerisations, base mediated and thermal mediated polymerisations with polymers produced subjected to thermal analysis (TGA, DSC). Chapter 6 describes the experimental and chemical analysis of the key reactions and processes described in the thesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Cutter, Andrea Gillian. "Development and characterization of renewable resource-structural composite materials." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p1450479.

Full text
Abstract:
Thesis (M.S.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed June 12, 2008). Available via ProQuest Digital Dissertations. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Cooper, Aaron McGill. "Mold susceptibility of rapidly renewable materials used in wall construction." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rus, Anika Zafiah Mohd. "Thermal and photochemical degradation of polyurethanes based on renewable materials." Thesis, University of Warwick, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rühlicke, Stefanie [Verfasser]. "Saccharides as renewable resources for novel functional materials / Stefanie Rühlicke." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1225556015/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Renewable materials"

1

Carraher, Charles E., and L. H. Sperling, eds. Renewable-Resource Materials. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2205-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulber, Roland, Dieter Sell, and Thomas Hirth, eds. Renewable Raw Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Methven, J. M. Polymeric materials from renewable resources. Oxford: Pergamon Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tripathy, Divya Bajpai, Anjali Gupta, Arvind Kumar Jain, and Anuradha Mishra. Surfactants from Renewable Raw Materials. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Yong, ed. Eco- and Renewable Energy Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33497-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fuller, Glenn, Thomas A. McKeon, and Donald D. Bills, eds. Agricultural Materials as Renewable Resources. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liebner, Falk, and Thomas Rosenau, eds. Functional Materials from Renewable Sources. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carraher, Charles E. Renewable-Resource Materials: New Polymer Sources. Boston, MA: Springer US, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Symposium on Polymeric Renewable Resource Materials (2nd 1985 Miami Beach, Fla.). Renewable-resource materials: New polymer sources. New York: Plenum Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bozell, Joseph J., ed. Chemicals and Materials from Renewable Resources. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Renewable materials"

1

Calvin, Melvin. "Renewable Fuels and Materials." In Bioscience at the Physical Science Frontier, 189–210. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-4834-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asif, Muhammad. "Renewable Energy and Materials." In Metal Chalcogenide Nanostructures for Renewable Energy Applications, 23–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119008934.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fröhling, Magnus, Jörg Schweinle, Jörn-Christian Meyer, and Frank Schultmann. "Logistics of Renewable Raw Materials." In Renewable Raw Materials, 49–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Butler, M. M., and K. P. McGrath. "Protein-Based Materials." In Biopolymers from Renewable Resources, 177–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03680-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulber, Roland, Kai Muffler, Nils Tippkötter, Thomas Hirth, and Dieter Sell. "Introduction to Renewable Resources in the Chemical Industry." In Renewable Raw Materials, 1–5. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ulber, Roland, Thomas Hirth, and Dieter Sell. "Conclusion." In Renewable Raw Materials, 217–20. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morris, Peter C., Peter Welters, and Bernward Garthoff. "Plants as Bioreactors: Production and Use of Plant-Derived Secondary Metabolites, Enzymes, and Pharmaceutical Proteins." In Renewable Raw Materials, 7–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hughes, John K. "World Agricultural Capacity." In Renewable Raw Materials, 33–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Syldatk, Christoph, Georg Schaub, Ines Schulze, Dorothea Ernst, and Anke Neumann. "Existing Value Chains." In Renewable Raw Materials, 95–120. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kazmi, Abbas, and James Clark. "Future Biorefineries." In Renewable Raw Materials, 121–41. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634194.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Renewable materials"

1

Frollini, Elisabete, Bruno V. M. Rodrigues, Cristina G. da Silva, Daniele O. Castro, Elaine C. Ramires, Fernando de Oliveira, and Rachel P. O. Santos. "Polymeric materials from renewable resources." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brock, L. "Renewable and durable building materials." In ECO-ARCHITECTURE 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/arc100291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin-Luengo, M. A., L. Gonzalez Gil, A. M. Martinez Serrano, E. Ruiz-Hitzky, M. Yates, M. Ramos, J. L. Salgado, et al. "Renewable Raw Materials for advanced applications." In 2011 World Congress on Sustainable Technologies (WCST). IEEE, 2011. http://dx.doi.org/10.1109/wcst19361.2011.6114229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paisley, Mark A., and Allan Page. "High Efficiency Renewable Energy From Residual Materials." In ASME 2008 Power Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/power2008-60030.

Full text
Abstract:
Recent price increases for various forms of energy along with projected shortages of supply have resulted in renewed interest in alternative fuels. Biomass gasification provides a renewable basis for supplying electric power and also a broad suite of chemicals such as Fisher-Tropsch liquids as well as hydrogen. The Taylor gasification process, being developed by Taylor Biomass Energy is a biomass gasification process that produces a medium calorific value (MCV) gas. The Taylor gasification process provides improvements over currently available gasification processes by integrating improvements to reduce issues with ash agglomeration and provide in-situ destruction of condensable hydrocarbons (tars), an essential element in gas cleanup. The gas conditioning step integrated into the Taylor Gasification Process provides a unique method to convert the tars into additional synthesis gas and to adjust the composition of the synthesis gas. Taylor Biomass Energy has developed and refined a sorting and recycling process that can produce a clean feedstock for energy recovery from abundant residue materials such as construction and demolition residuals and municipal solid wastes (MSW). The sorting and separating process can then be coupled to the Taylor gasification process to produce clean, sustainable energy. The development process including integration with a gas turbine based combined cycle system, connection into the New York ISO, and identification of renewable energy credit options is discussed along with a discussion of the Taylor Gasification Process, its modular design, and implementation into the commercial Biomass Integrated Gasification Combined Cycle (BIGCC) system in Montgomery, NY.
APA, Harvard, Vancouver, ISO, and other styles
5

Budi, Rizki Firmansyah Setya, Sarjiya, and Sasongko Pramono Hadi. "A comprehensive review on uncertainty of renewable energy and its prospect to fulfil Indonesia's renewable target." In INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0013636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jung Woong, Lindong Zhai, Hyun Chan Kim, Young-Min Yun, and Jaehwan Kim. "Feasibility of renewable bulk materials processing with nanocellulose." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Jaehwan Kim. SPIE, 2019. http://dx.doi.org/10.1117/12.2513860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Staat, Albrecht, Kathrin Harre, and Reinhard Bauer. "Materials made of renewable resources in electrical engineering." In 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. http://dx.doi.org/10.1109/isse.2017.8000963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Wei, and Longxia Zhen. "Research about Renewable Materials in Indoor Decorate Engineering." In 5th International Conference on Information Engineering for Mechanics and Materials. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icimm-15.2015.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jiangyong. "The Use of Renewable Materials in Interior Design." In 2016 International Conference on Economics, Social Science, Arts, Education and Management Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/essaeme-16.2016.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jacobsson, Michael. "Increasing Renewable Materials in Rubber and Tire Applications." In Technical Meeting of the Rubber Division, ACS. Akron, Ohio, USA: Rubber Division, ACS, 2022. http://dx.doi.org/10.52202/067657-0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Renewable materials"

1

Dai, Hongjie. Novel materials for renewable energy. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1854064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parsons, Gregory. Nanostructured Materials for Renewable Alternative Energy. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1121733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berry, K. Joel, and Susanta K. Das. 21st Century Renewable Fuels, Energy, and Materials. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1056041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Akpalu, Yvonne A. Advancing Renewable Materials by Light and X-ray Scattering. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1124658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akpalu, Yvonne A. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1126892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balandrin, M. F., J. R. Martineau, and G. A. Stone. Whole Plant Utilization of Sunflowers as a Renewable Source of Strategic Materials (Rubber). Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada155833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Eugene. Catalytic Upgrading of Key Biorefining Building Blocks to Renewable Chemicals, Polymeric Materials, and Liquid Fuels. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1399341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crandall, R. S., B. P. Nelson, P. D. Moskowitz, and V. M. Fthenakis. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7169482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Crandall, R. S., B. P. Nelson, P. D. Moskowitz, and V. M. Fthenakis. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7004191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crandall, R. S., B. P. Nelson, P. D. Moskowitz, and V. M. Fthenakis. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10174199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography