Academic literature on the topic 'Renewable energy sources – Risk assessment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Renewable energy sources – Risk assessment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Renewable energy sources – Risk assessment"
Barykina, Y. N., and Y. Shao. "Integration of renewable energy sources into energy systems." IOP Conference Series: Earth and Environmental Science 1212, no. 1 (July 1, 2023): 012018. http://dx.doi.org/10.1088/1755-1315/1212/1/012018.
Full textHoballah, Ayman, Salah Kamal EL-Sayed, Sattam Al Otaibi, Essam Hendawi, Nagy Elkalashy, and Yasser Ahmed. "Risk assessment of power system transient instability incorporating renewable energy sources." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 5 (October 1, 2022): 4649. http://dx.doi.org/10.11591/ijece.v12i5.pp4649-4660.
Full textLee, Sang Hun, and Hyun Gook Kang. "Integrated societal risk assessment framework for nuclear power and renewable energy sources." Nuclear Engineering and Technology 47, no. 4 (June 2015): 461–71. http://dx.doi.org/10.1016/j.net.2015.01.009.
Full textGHOSE, Tirthadip, Harsh Wardhan PANDEY, and Kumar Raja GADHAM. "Risk assessment of microgrid aggregators considering demand response and uncertain renewable energy sources." Journal of Modern Power Systems and Clean Energy 7, no. 6 (March 14, 2019): 1619–31. http://dx.doi.org/10.1007/s40565-019-0513-x.
Full textRiemersma, Ben, Rolf Künneke, Genserik Reniers, and Aad Correljé. "Upholding Safety in Future Energy Systems: The Need for Systemic Risk Assessment." Energies 13, no. 24 (December 10, 2020): 6523. http://dx.doi.org/10.3390/en13246523.
Full textSzpytko, Janusz, and Yorlandys Salgado Duarte. "Markov Chain Monte Carlo Simulation Model for Risk Assessment the Power Systems for Electromobility Use." Journal of KONBiN 50, no. 1 (March 1, 2020): 15–28. http://dx.doi.org/10.2478/jok-2020-0002.
Full textNefedova, L. V., and Yu Yu Rafikova. "Optimization of risk assessment in renewable energy of Russia by applying statistical calculations of climatic characteristics and GIS technologies." IOP Conference Series: Materials Science and Engineering 1235, no. 1 (March 1, 2022): 012061. http://dx.doi.org/10.1088/1757-899x/1235/1/012061.
Full textBiernat-Jarka, Agnieszka, Paulina Trębska, and Sławomir Jarka. "The Role of Renewable Energy Sources in Alleviating Energy Poverty in Households in Poland." Energies 14, no. 10 (May 20, 2021): 2957. http://dx.doi.org/10.3390/en14102957.
Full textJiang, Yao, Xu Zhao, Yaochi Wang, and Jinyu Wang. "Multi-Risk Source Oil Spill Risk Assessment Based on a Fuzzy Inference System." Sustainability 14, no. 7 (April 2, 2022): 4227. http://dx.doi.org/10.3390/su14074227.
Full textZhao, Zhenyu, and Huijia Yang. "Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective." Sustainability 12, no. 24 (December 9, 2020): 10299. http://dx.doi.org/10.3390/su122410299.
Full textDissertations / Theses on the topic "Renewable energy sources – Risk assessment"
Ahame, Edmund. "Statistical model for risk diversification in renewable energy." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1008399.
Full textChehaita, Julie. "Apport de l’approche écosystémique dans la gestion des risques de la transition énergétique : cas de l’éolien." Electronic Thesis or Diss., Troyes, 2021. http://www.theses.fr/2021TROY0039.
Full textEnergy companies are faced with the need to transform their business model to integrate environmental concerns and ensure an energy transition. According to the transitions literature, addressing the risks of this process requires innovative, long-term oriented approaches, as well as thoughtful and adaptive policy design. In this framework, the business ecosystem approach plays an important role in the discovery of new solutions during the energy transition. The main objective of this thesis is to examine the contribution of applying the ecosystem approach in reducing the underlying risks of this process. Through exhaustive in-depth interviews and literature reviews, extensive stakeholder engagement, and interrogation of the characteristics of energy actors in a range of contexts, the potential for the role of the emerging renewable energy ecosystem in reducing the risks of the energy transition is explored. The research conducted provides insight into the holistic nature of the relationship between energy actors and explores common barriers encountered such as social acceptability, market risks and stakeholder management. The results suggest that companies are aware of the potential of an emerging renewable energy ecosystem and that most companies view the ecosystem approach positively. Many characteristics of this potential ecosystem, which is in its nascent stage, were found in the current partnership strategies of the interviewed stakeholders. More broadly, a mapping of the emerging renewable energy ecosystem was presented
Musango, Josephine Kaviti. "Technology assessment of renewable energy sustainability in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18149.
Full textPlease download the required VENSIM software from: http://www.vensim.com/freedownload.html
ENGLISH ABSTRACT: Technology assessment has changed in nature over the last four decades. It changed from an analytical tool for technology evaluation, which depends heavily on quantitative and qualitative modelling methodologies, into a strategic planning tool for policy-making concerning acceptable new technologies, which depends on participative policy problem analysis. The goal of technology assessment today is to generate policy options for solutions of organisational and societal problems, which at the operational level, utilise new technologies that are publicly acceptable; that is, viable policy options. Energy technology assessment for sustainability is inherently a complex and dynamic process that requires a holistic and transdisciplinary approach. In the South Africa context, specifically, there is no formal and coherent approach to energy technology assessment from a sustainability perspective. Without a formal comprehensive or well integrated technology assessment approach to evaluate the sustainability of any technology, the policy-makers, technology designers, and decision-makers are faced with difficulty in terms of making reasoned decisions about the appropriate technology options. This study developed a framework that incorporates a technology assessment approach, namely, system dynamics, within the broader scope of technology development for sustainability. The framework, termed the Systems Approach to Technology Sustainability Assessment (SATSA), integrates three key elements: technology development, sustainable development, and a dynamic systems approach. The study then provides a guiding process of applying the framework to energy technology assessment theory and practice within the context of sustainable development. Biodiesel, a cleaner burning replacement fuel, argued to potentially contribute to sustainable development, is used for the demonstration. Biodiesel development entails complex interactions of actors such as the technology developers, government at different levels, communities, as well as the natural environment. Different actions or responses in the greater system might hinder or undermine the positive effects of such a development. Based on the SATSA framework, a Bioenergy Technology Sustainability Assessment (BIOTSA) model was developed. The BIOTSA model was used to test the outcomes of a proposed biodiesel production development in the Eastern Cape Province of South Africa on selected sustainability indicators. In addition, some policy scenarios were tested to compare how they assist in improving the selected indicators. The BIOTSA model results are useful in comparing dynamic consequences resulting from a proposed biodiesel production development and the respective policies and decisions that may arise from such a development. The testing and validation of the BIOTSA model was carried out based on structural validity, behavioural validity, and expert opinion. Potential policy scenario outcomes and their implication, on the selected sustainability indicators, were also tested. The opinions of the selected stakeholders indicated that the BIOTSA model was useful in providing an understanding of the potential impacts of the biodiesel development on selected sustainability indicators in the Eastern Cape Province. Thus, the SATSA framework can be applied for assessing sustainability of other renewable energy technologies. In addition, system dynamics provide a useful and a feasible dynamic systems approach for energy technology sustainability assessment. Finally, the model building process and transdisciplinary nature of this study enabled the identification of the potential problems that could arise during the biodiesel production development. In addition, gaps in data and knowledge were identified and the recommendation for future work in this field is highlighted. Nevertheless, the findings of the BIOTSA model could inform policy- and decision-making in biodiesel production development in South Africa. The development of similar models for other renewable energy development efforts is thus recommended. The current efforts to facilitate the large-scale roll out of concentrated solar thermal technologies in Southern Africa, for example, would require the development of a Solar Thermal Technology Sustainability Assessment (SOTTSA) model.
AFRIKAANSE OPSOMMING: Die aard van tegnologie assessering het in die afgelope vier dekades verander. Dit het verander ten opsigte van ’n analitiese hulpmiddel vir tegnologie evaluering, wat hoofsaaklik staatmaak op kwalitatiewe en kwantitatiewe modelleringsmetodiek, na ’n strategiese beplanningshulpmiddel vir beleidvorming met betrekking tot nuwe aanvaarbare tegnologieë, wat afhanklik is van ’n deelnemende beleidsprobleem analise. Vandag se doel vir tegnologie assessering is om beleidsopsies vir oplossings van organisatoriese en sosiale probleme te genereer, wat op operasionele vlak gebruik maak van nuwe tegnologieë wat deur die publiek aanvaar is; met ander woorde, lewensvatbare beleidsopsies. Energie tegnologie assessering vir volhoubaarheid is sonder twyfel ’n komplekse en dinamiese proses wat ’n holistiese en transdisiplinêre benadering benodig. In die Suid- Afrikaanse konteks is daar geen formele en samehangende benadering tot tegnologie assessering vanaf ’n volhoubaarheidsperspektief nie. Beleidsmakers, tegnologie ontwerpers en besluitnemers mag sukkel om beredenerende besluite te neem oor die toepaslike tegnologie opsies sonder ’n formele omvattende of goed geïntegreerde tegnologie assesseringsbenadering om die volhoubaarheid van enige tegnologie te evalueer. Hierdie studie het ’n raamwerk ontwerp wat die tegnologie assesseringsbenadering inkorporeer binne die breë bestek van tegnologiese ontwikkeling vir volhoubaarheid naamlik, stelsel dinamika. Die raamwerk, genoem die Sisteem Benadering tot Tegnologie Volhoubaarheidsassessering (SBTVA) integreer drie sleutelelemente: tegnologiese ontwikkeling, volhoubaarheidsontwikkeling, en ʼn dinamiese stelsels benadering. Verder verskaf die studie ’n leidende proses te opsigte van die toepassing van die raamwerk tot energie tegnologie assesseringsteorie en praktyk binne die konteks van volhoubaarheidsontwikkeling. Biodiesel word gebruik vir die demonstrasie omdat dit gereken word as ’n skoner plaasvervanger vir brandstof en daar aangevoer word dat dit ’n potensiële bydraer tot volhoubaarheidsontwikkeling is. Die ontwikkeling van biodiesel behels komplekse interaksie tussen verskeie akteurs soos tegnologiese ontwikkelaars, die regering op verskillende vlakke, gemeenskappe asook die natuurlike omgewing. Verskeie aksies of reaksies in die groter sisteem mag dalk die positiewe effek van so ontwikkeling ondermyn of verhinder. ’n Biodiesel Tegnologiese Volhoubaarheidsassessering (BIOTVA) model is ontwerp gebaseer op die SBTVA raamwerk. Die BIOTVA model is gebruik om die uitkomste op geselekteerde volhoubaarheidsaanduiders van ’n voorgestelde biodiesel produksie ontwikkeling in die Oos- Kaap Provinsie van Suid-Afrika te toets. Buiten vir die voorafgaande is sekere beleidtoekomsblikke ook getoets om te vergelyk hoe hulle sal help om die geselekteerde aanwysers te verbeter. Die BIOTVA model resultate is behulpsaam in die vergelyking van dinamiese gevolge wat voortspruit uit die voorgestelde biodiesel produksie ontwikkeling asook die onderskeie beleide en besluite wat mag ontstaan van so ’n ontwikkeling. Die toetsing en bekragtiging van die BIOTVA model was uitgevoer gebaseer op strukturele geldigheid, gedragsgeldigheid, en kundige opinie. Potensiële beleidtoekomsblikke uitkomste en die nagevolge, ten opsigte van die geselekteerde volhoubaarheidsaanduiders, is ook getoets. Die opinies van die geselekteerde aandeelhouers het aangedui dat die BIOTVA model bruikbaar is om ’n beter begrip te verskaf ten opsigte van die potensiële impak wat die biodiesel ontwikkeling op geselekteerde volhoubaarheidsaanduiders in die Oos-Kaap Provinsie sal hê. As gevolg hiervan kan die SBTVA raamwerk toegepas word om die volhoubaarheid van ander herwinbare energie tegnologieë te assesseer. Buiten die voorafgaande kan stelsel dinamika ’n bruikbare en uitvoerbare dinamiese stelselbenadering vir energie tegnologie volhoubaarheidsassessering verskaf. Ten slotte, die model bouproses en transdisiplinêre aarde van die studie het gehelp om potensiële probleme wat kan voorkom tydens die biodiesel produksie ontwikkeling te identifiseer. Daarby is gapings in data en kennis ook geïdentifiseer en die aanbevelings vir verdere studie in die veld is uitgelig. Nieteenstaande kan die bevindings van die BIOTVA model beleidmakers en besluitnemers in die biodiesel produksie ontwikkeling van Suid- Afrika inlig. Die ontwikkeling van soortgelyke modelle vir ander herwinbare energie ontwikkelingspogings word aanbeveel. As voorbeeld sal die huidige pogings om die grootskaalse uitrol van gekonsentreerde son termiese tegnologieë in Suider-Afrika te fasiliteer die ontwikkeling van ’n Son Termiese Tegnologie Volhoubaarheidsassesering (SOTTVA) model benodig.
Aldabesh, Abdulmajeed. "Solar energy potential in the Kingdom of Saudi Arabia : a comparative analysis, assessment and exploitation for power generation." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/36250/.
Full textBanerjee, S. "Ocean energy assessment : an integrated methodology." Thesis, Coventry University, 2011. http://curve.coventry.ac.uk/open/items/16196d0d-e671-489a-ba71-f20cdb6c8df3/1.
Full textSchmitt, Andreas Joachim. "Power System Parameter Estimation for Enhanced Grid Stability Assessment in Systems with Renewable Energy Sources." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83459.
Full textPh. D.
Bruder, Brittany Lynn. "Assessment of hydrokinetic renewable energy devices and tidal energy potential at Rose Dhu Island, GA." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41198.
Full textKošútová, Katarína. "Energy assessment of building for education." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225438.
Full textDefne, Zafer. "Multi-criteria assessment of wave and tidal power along the Atlantic coast of the southeastern USA." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33864.
Full textBarbu, Anca-Diana. "Investing in renewable energy sources an assessment of non-technological issues in Central and Eastern Europe." Hamburg Kovač, 2006. http://www.verlagdrkovac.de/978-3-8300-2899-4.htm.
Full textBooks on the topic "Renewable energy sources – Risk assessment"
Platform Li-lon battery risk assessment tool: Cooperative research and development final report. Golden, CO]: National Renewable Energy Laboratory, 2012.
Find full textGenpatsunuki, chiiki saisei no ondanka taisaku e. Tōkyō: Shin Nihon Shuppansha, 2010.
Find full textMichael, Kahn, White Kevin, Long Richard Thomas, and SpringerLink (Online service), eds. Lithium-Ion Batteries Hazard and Use Assessment. Boston, MA: Springer US, 2011.
Find full textColombari, Viviana. Reliability Data Collection and Use in Risk and Availability Assessment: Proceedings of the 6th EuReDatA Conference Siena, Italy, March 15 - 17, 1989. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textKriesberg, Joseph. Shifting to shutdown: Keeping nuclear plants on line is proving to be too costly as well as too risky. Washington, D.C: Public Citizen, Critical Mass Energy Project, 1987.
Find full textSingh, Anoop, Deepak Pant, and Stig Irving Olsen, eds. Life Cycle Assessment of Renewable Energy Sources. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1.
Full textRenewable energy readiness assessment Fiji: Background paper. Fiji?]: Secretariat of the International Renewable Energy Agency (IRENA), Country Support and Partnership (CSP), 2014.
Find full textLeng, Gregory J. Renewable energy technologies project assessment tool: RETScreen. [Varennes, Québec]: CANMET Energy Diversification Research Laboratory, 1998.
Find full textCanada. CANMET Energy Diversification Research Laboratory. Renewable energy technologies project assessment tool: RETScreen. Varennes, Quebec: Natural and Resources Canada, 1998.
Find full textAssociates, Virtus Energy Research, and Texas Sustainable Energy Development Council., eds. Texas renewable energy resource assessment: Survey, overview & recommendations. Austin, Tex: VERA, 1995.
Find full textBook chapters on the topic "Renewable energy sources – Risk assessment"
Ife-Adediran, Oluwatobi Ololade, and Oluyemi Bright Aboyewa. "Climate Change Resistant Energy Sources for Global Adaptation." In African Handbook of Climate Change Adaptation, 1955–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_106.
Full textEhrlich, Robert, Harold A. Geller, and John R. Cressman. "Data Analytics and Risk Assessment." In Renewable Energy, 471–95. 3rd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172673-15.
Full textEerkens, Jeff W. "“Renewable” Energy Sources and Their Limitations." In Topics in Safety, Risk, Reliability and Quality, 65–75. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8667-9_4.
Full textMahapatra, Diptiranjan, Sumita Sindhi, and Avilasha Tripathy. "India’s Renewables Commitments: A Political Risk Assessment." In Renewable Energy Transition in Asia, 41–60. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8905-8_3.
Full textKucukali, Serhat. "Risk Assessment in Hydroenergy Projects: Learning from Experts and Data." In Handbook of Renewable Energy, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39487-4_5-1.
Full textMartínez Cámara, E., E. Jiménez Macías, and J. Blanco Fernández. "Life-Cycle Assessment of Wind Energy." In Life Cycle Assessment of Renewable Energy Sources, 195–209. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1_9.
Full textNizami, Abdul-Sattar, and Iqbal Mohammed Ismail. "Life-Cycle Assessment of Biomethane from Lignocellulosic Biomass." In Life Cycle Assessment of Renewable Energy Sources, 79–94. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1_4.
Full textLee, Keat Teong, and Cynthia Ofori-Boateng. "Life Cycle Assessment of Biodiesel from Palm Oil." In Life Cycle Assessment of Renewable Energy Sources, 95–129. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1_5.
Full textSingh, Anoop, Stig Irving Olsen, and Deepak Pant. "Importance of Life Cycle Assessment of Renewable Energy Sources." In Life Cycle Assessment of Renewable Energy Sources, 1–11. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1_1.
Full textLaleman, Ruben, Johan Albrecht, and Jo Dewulf. "Comparing Various Indicators for the LCA of Residential Photovoltaic Systems." In Life Cycle Assessment of Renewable Energy Sources, 211–39. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1_10.
Full textConference papers on the topic "Renewable energy sources – Risk assessment"
CHEBOTAREVA, GALINA. "RISK-ORIENTED APPROACH TO COMPETITION ASSESSMENT IN THE GLOBAL RENEWABLE ENERGY SOURCES MARKET." In URBAN GROWTH 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/ug180321.
Full textHorn, Matthew, Tara Franey, and Jeremy Fontenault. "Adapting Existing Quantitative Risk Assessment Tools for the Energy Transition." In 2022 14th International Pipeline Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipc2022-84761.
Full textMeckler, Milton, and Amip J. Shah. "Use of Thermodynamics, Engineering Economics and Probabilistic Risk Assessment in Evaluating Climate Change Decisions." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10182.
Full textShao, Yanbo, Xuewen Cao, Hao Li, Wenzhu Xia, Weibing Zhang, Zhigui Zhang, Zilong Nan, and Jiang Bian. "Numerical Study on Diffusion Law and Risk Assessment of Indoor Hydrogen Leakage." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96464.
Full textRobinson, Nigel J., and Scott M. Rosie. "Mooring Integrity in Electrification Projects - Learning from the Floating Production Sector in Early Years of Harsh Environment Operations." In SPE Offshore Europe Conference & Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205451-ms.
Full textAlmeida, Lucas Ribeiro de, Joaquim Rocha dos Santos, Marco Aurélio Pestana, and Marcelo Ramos Martins. "Offshore Oil Wells Integrity: Safety Analysis of an Offshore Oil Well at the Production Phase Using STPA (System-Theoretic Process Analysis)." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-105039.
Full textTomescu, Cristian, Ion Gherghe, Florin Radoi, Adrian Matei, and Alexandru Camarasescu. "ROMANIAN COAL BETWEEN DECARBONIZATION PROGRAMS, EXPLOITATION CLOSURE AND ENERGY CRISIS." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/1.1/s03.045.
Full textMalathy, S., and R. Ramaprabha. "Reliability and performance assessment of reduced component count multilevel inverter for PV systems." In RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127608.
Full textRivza, Sandija, and Peteris Rivza. "RISK ASSESSMENT IN RENEWABLE ENERGY PRODUCTION USING ANP." In The International Symposium on the Analytic Hierarchy Process. Creative Decisions Foundation, 2011. http://dx.doi.org/10.13033/isahp.y2011.129.
Full textEbner, Michael, Claudia Fiedler, Fabian Jetter, and Tobias Schmid. "Regionalized Potential Assessment of Variable Renewable Energy Sources in Europe." In 2019 16th International Conference on the European Energy Market (EEM). IEEE, 2019. http://dx.doi.org/10.1109/eem.2019.8916317.
Full textReports on the topic "Renewable energy sources – Risk assessment"
Pachauri, Rajendra, Myles R. Allen, Vicente R. Barros, John Broome, Wolfgang Cramer, Renate Christ, John A. Church, et al., eds. Climate Change 2014 - Synthesis Report. IPCC, April 2015. http://dx.doi.org/10.59327/ipcc/ar5-9789291691432.
Full textBarnes, P. R., J. W. Van Dyke, F. M. Tesche, and H. W. Zaininger. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10171039.
Full textTipton, Emma, and Keith Seitter. Actionable Scientific Assessments for the Energy Sector. American Meteorological Society, October 2022. http://dx.doi.org/10.1175/energy-sector-assessment-2022.
Full textLeece, A., and C. Jiang. A preliminary techno-economic assessment of lithium extraction from flowback and produced water from unconventional shale and tight hydrocarbon operations in Western Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331879.
Full textSalonen, Hilma, and Lumi Tomrén. Can local value creation induce a sense of justice during green transitions? A study of six rural areas in Denmark, Finland, and Norway. Nordregio, September 2023. http://dx.doi.org/10.6027/r:2023:91403-2503.
Full textPrice, Roz. Climate Change Risks and Opportunities in Yemen. Institute of Development Studies, May 2022. http://dx.doi.org/10.19088/k4d.2022.096.
Full textVargas-Herrera, Hernando, Juan Jose Ospina-Tejeiro, Carlos Alfonso Huertas-Campos, Adolfo León Cobo-Serna, Edgar Caicedo-García, Juan Pablo Cote-Barón, Nicolás Martínez-Cortés, et al. Monetary Policy Report - April de 2021. Banco de la República de Colombia, July 2021. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr2-2021.
Full text