Academic literature on the topic 'Renewable energy sources – Ontario – Mathematical models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Renewable energy sources – Ontario – Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Renewable energy sources – Ontario – Mathematical models"

1

Alnahdi, Amani, Ali Elkamel, Munawar A. Shaik, Saad A. Al-Sobhi, and Fatih S. Erenay. "Optimal Production Planning and Pollution Control in Petroleum Refineries Using Mathematical Programming and Dispersion Models." Sustainability 11, no. 14 (July 10, 2019): 3771. http://dx.doi.org/10.3390/su11143771.

Full text
Abstract:
Oil refineries, producing a large variety of products, are considered as one of the main sources of air contaminants such as sulfur oxides (SOx), hydrocarbons, nitrogen oxides (NOx), and carbon dioxide (CO2), which are primarily caused by fuel combustion. Gases emanated from the combustion of fuel in an oil refinery need to be reduced, as it poses an environmental hazard. Several strategies can be applied in order to mitigate emissions and meet environmental regulations. This study proposes a mathematical programming model to derive the optimal pollution control strategies for an oil refinery, considering various reduction options for multiple pollutants. The objective of this study is to help decision makers select the most economic pollution control strategy, while satisfying given emission reduction targets. The proposed model is tested on an industrial scale oil refinery sited in North Toronto, Ontario, Canada considering emissions of NOx, SOx, and CO2. In this analysis, the dispersion of these air pollutants is captured using a screening model (SCREEN3) and a non-steady state CALPUFF model based on topographical and meteorological conditions. This way, the impacts of geographic location on the concentration of pollutant emissions were examined in a realistic way. The numerical experiments showed that the optimal production and pollution control plans derived from the proposed optimization model can reduce NOx, SOx, and CO2 emission by up to 60% in exchange of up to 10.7% increase in cost. The results from the dispersion models verified that these optimal production and pollution control plans may achieve a significant reduction in pollutant emission in a large geographic area around the refinery site.
APA, Harvard, Vancouver, ISO, and other styles
2

Marchenko, Oleg V., and Sergei V. Solomin. "Efficiency Assessment of Renewable Energy Sources." E3S Web of Conferences 114 (2019): 05001. http://dx.doi.org/10.1051/e3sconf/201911405001.

Full text
Abstract:
A review of the methods and models used at the ESI SB RAS to assess the effectiveness of renewable energy sources (RES) was carried out. Criteria were formulated and calculation formulas were given for a preliminary assessment of the competitiveness of renewable energy sources as compared to alternative energy supply options. A mathematical model of the world energy system was considered, where renewable energy sources were described by averaged indicators. The model allows for different scenarios of external conditions to explore the prospects for the development of energy technologies, including renewable energy sources. For the analysis of autonomous energy systems with RES, a simulation model was developed so as to treat the processes of production, consumption, and energy storage in their dynamics. The optimization version of the mathematical model eliminates the need for a pre-assignment of the energy flow control algorithm. In this case, it is possible to study systems with the simultaneous presence of several units of energy storage of various types. For the study of renewable energy sources under market conditions, a model was developed so as to take into account the presence of various decision-making hubs, as well as the impact of governmental regulatory bodies in the market. It was shown that the most efficient mechanism for encouraging the development of renewable energy sources is the creation of a market for "green certificates", with the least efficient renewable energy sources to be subsidized.
APA, Harvard, Vancouver, ISO, and other styles
3

Issa, H. I., H. J. Mohammed, L. M. Abdali, A. G. Al Bairmani, and M. Ghachim. "Mathematical Modeling and Controller for PV System by Using MPPT Algorithm." Bulletin of Kalashnikov ISTU 24, no. 1 (April 6, 2021): 96. http://dx.doi.org/10.22213/2413-1172-2021-1-96-101.

Full text
Abstract:
In this research, the study theory of system includes the use of an important source of renewable energy sources (solar source) and linking this system with an electrical load. The world is witnessing a significant rise in fossil fuel prices since the ending of the 20th century and now, this rise in price increases with the decrease in inventory day after day. Therefore, it turned that the field of attention to researchers of power generation to expand in non-conventional energy sources (new and renewable energy sources).New and renewable energy is inexhaustible in use because they rely on renewable natural resources. The mathematical model is an important part of the detailed study for PV systems. As well as study models for photovoltaic systems via the MATLAB/Simulink, this programming environment contains many models for renewable systems intended to perform simulation and analysis.Solar cells system needs to apply the MPPT algorithm due to the instability of external circumstances such as solar radiation and temperature.At a constant temperature of 25 °C, as the radiation level increases, the current and voltage of the module increase, this leads to an increase in output power. At a constant radiation level of 100 W/m2, as the module temperature increases, the current increases and the voltage decreases, this causes the output power to decrease. The maximum power is reached at 17 V and 3.5 A by the MPPT method. The Perturb and Observe algorithm is used to achieve maximum power.
APA, Harvard, Vancouver, ISO, and other styles
4

Pavić, Ivan, Tomislav Capuder, and Igor Kuzle. "Generation scheduling in power systems with high penetration of renewable energy." Journal of Energy - Energija 66, no. 1-4 (June 23, 2022): 150–64. http://dx.doi.org/10.37798/2017661-4102.

Full text
Abstract:
Share of renewable energy sources increased rapidly over last two decades primary as wind and solar power plants. Their increase was driven by governmental subsidies and priority access and dispatch regarding conventional units. Wind and solar power plants are inflexible sources because their generation depends on exterior, weather conditions and they cannot be controlled as conventional units. This paper will define term power system flexibility and provide an insight into flexibility of conventional and modern power systems. Detailed mathematical model of power system and all its components has been created and explained. Modeling has been executed as mixed integer linear program using Fico Xpress optimization suite. Using those models, flexibility analyses of power systems with different renewable energy sources share has been conducted
APA, Harvard, Vancouver, ISO, and other styles
5

Kuznietsov, Mykola, Olha Lysenko, and Oleksandr Melnyk. "OPTIMAL REGULATION OF LOCAL ENERGY SYSTEM WITH RENEWABLE ENERGY SOURCES." Bulletin of the National Technical University "KhPI". Series: Energy: Reliability and Energy Efficiency, no. 1 (2) (July 2, 2021): 52–61. http://dx.doi.org/10.20998/2224-0349.2021.01.08.

Full text
Abstract:
The paper is devoted to solving the balancing problem in local power systems with renewable energy sources. For a power system optimization problem, whose operation depends on random weather factors, a convex parameter optimization or optimal control problem was solved using controlled generation, for each individual realization of a random process as a deterministic function, and then statistical processing of results over a set of random realizations was performed and distribution density functions of the desired target function were constructed, followed by estimation of expected values and their confidence intervals. The process describing current deviations of generated power from mean value is modelled as discrete stray model and has properties of Ornstein-Uhlenbeck process, which allowed varying the duration of unit interval, in particular to select data bases of operating objects with inherent temporal discreteness of their monitoring systems. Random components are investigated and modelled, while the average values are considered to be deterministic and are provided within a predictable schedule using also traditional energy sources (centralised power grid). A mathematical model of the combined operation of renewable energy sources in a system with variable load, electric storage device and auxiliary regulating generator is implemented as a scheme of sequential generation and consumption models and random processes describing the current state of the power system. The operation of the electricity accumulators is dependent on the processes mentioned, but in the full balance, it appears together with generation or load losses, which are cumulative sums of unbalanced power and may have a different distribution from the normal one. However, these processes are internal, relating to the redistribution of energy within a generation system whose capacity is generally described satisfactorily, given the relevant criteria, by a normal law. Under this condition, it is possible to estimate the probability of different circumstances - over- or under-generation, that is, to give a numerical estimate of the reliability of energy supply.
APA, Harvard, Vancouver, ISO, and other styles
6

Chernozomov, Y. S. "Polarization Models of Radiation in a Solar Energy Concentrator System." Èlektronnoe modelirovanie 43, no. 5 (October 4, 2021): 93–107. http://dx.doi.org/10.15407/emodel.43.05.093.

Full text
Abstract:
The possibility of using renewable energy sources (RES) for the production of hydrogen fuel, in particular solar radiation energy, without using the stage of generating electricity is considered. A mathematical model of a reflector with anisotropy of electrodynamic properties is presented. According to the analysis, using the described model, conclusions were drawn about the possibility of using this effect to ensure the transmission capacity of the energy component of solar radiation with partial or complete retention of polarization. Based on the data obtained, variants of collimating optical systems of energy concentrators are proposed that are potentially capable of realizing the photolysis process.
APA, Harvard, Vancouver, ISO, and other styles
7

Sudharshan, Konduru, C. Naveen, Pradeep Vishnuram, Damodhara Venkata Siva Krishna Rao Krishna Rao Kasagani, and Benedetto Nastasi. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction." Energies 15, no. 17 (August 28, 2022): 6267. http://dx.doi.org/10.3390/en15176267.

Full text
Abstract:
As non-renewable energy sources are in the verge of exhaustion, the entire world turns towards renewable sources to fill its energy demand. In the near future, solar energy will be a major contributor of renewable energy, but the integration of unreliable solar energy sources directly into the grid makes the existing system complex. To reduce the complexity, a microgrid system is a better solution. Solar energy forecasting models improve the reliability of the solar plant in microgrid operations. Uncertainty in solar energy prediction is the challenge in generating reliable energy. Employing, understanding, training, and evaluating several forecasting models with available meteorological data will ensure the selection of an appropriate forecast model for any particular location. New strategies and approaches emerge day by day to increase the model accuracy, with an ultimate objective of minimizing uncertainty in forecasting. Conventional methods include a lot of differential mathematical calculations. Large data availability at solar stations make use of various Artificial Intelligence (AI) techniques for computing, forecasting, and predicting solar radiation energy. The recent evolution of ensemble and hybrid models predicts solar radiation accurately compared to all the models. This paper reviews various models in solar irradiance and power estimation which are tabulated by classification types mentioned.
APA, Harvard, Vancouver, ISO, and other styles
8

Handam, Ahmed, and Takialddin Al Smadi. "Multivariate analysis of efficiency of energy complexes based on renewable energy sources in the system power supply of autonomous consumer." International Journal of ADVANCED AND APPLIED SCIENCES 9, no. 5 (May 2022): 109–18. http://dx.doi.org/10.21833/ijaas.2022.05.014.

Full text
Abstract:
The aim of this study is a multivariate analysis of energy pools based on renewable energy sources in the energy supply system for the independent consumer. The research provides the mathematical formula for optimizing the main parameters and processes of the energy complex (EC) on the basis of renewable energy sources (RES) to supply energy to many independent rural consumers in the Hashemite Kingdom of Jordan. Methodology and computation models can take into account additional conditions and constraints, data, which give flexibility and versatility to the computation models. The use of methods and guidelines at the design stage will increase the competitiveness and cost-effectiveness of the Jordanian government based on reliance on alternative energy sources, and improve the overall cost to independent consumers of low energy in rural areas. The article is devoted to the solution of the problem of developing technical solutions for multivariate analysis efficiency of energy complexes based on renewable energy sources in the system power supply of autonomous consumers. However, current global trends are such that the cost of electrolyzes and fuel elements decrease, and their reliability increases. To study the economic efficiency of the application of the hydrogen accumulation system, two models were included in the calculation program. In the first of the model, the increase in diesel fuel prices corresponded to inflation, in the second, the increase in diesel prices fuel outstripped inflation by 5-10% per year. Paying attention to the first option showed that to use the system accumulation of hydrogen is not economically feasible.
APA, Harvard, Vancouver, ISO, and other styles
9

Duan, Jon, G. Cornelis van van Kooten, and A. T. M. Hasibul Islam. "Calibration of Grid Models for Analyzing Energy Policies." Energies 16, no. 3 (January 23, 2023): 1234. http://dx.doi.org/10.3390/en16031234.

Full text
Abstract:
Intermittent forms of renewable energy destabilize electricity grids unless adequate reliable generating capacity and storage are available, while instability of hybrid electricity grids and cost fluctuations in fossil fuel prices pose further challenges for policymakers. We examine the interaction between renewable and traditional fossil-fuel energy sources in the context of the Alberta electricity grid, where policymakers seek to eliminate coal and reduce reliance on natural gas. We develop a policy model of the Alberta grid and, unlike earlier models, calibrate the cost functions of thermal generation using positive mathematical programming. Rather than employing constant average and marginal costs, calibration determines upward sloping supply (marginal cost) functions. The calibrated model is then used to determine an optimal generation mix under different assumptions regarding carbon prices and policies to eliminate coal-fired capacity. Results indicate that significant wind capacity can enter the Alberta grid if carbon prices are high, but that it remains difficult to eliminate reliable baseload capacity. Adequate baseload coal and/or natural gas capacity is required, which is the case even if battery storage is allowed into the system. Further, significant peak-load gas capacity will also be required to backstop intermittent renewables.
APA, Harvard, Vancouver, ISO, and other styles
10

Yashin, Anton, Andrey Bodylev, Regina Khazieva, and Marat Khakimyanov. "LABORATORY FACILITY FOR STUDYING THE APPLICATION OF RENEWABLE ENERGY SOURCES." Electrical and data processing facilities and systems 18, no. 2 (2022): 82–97. http://dx.doi.org/10.17122/1999-5458-2022-18-2-82-97.

Full text
Abstract:
The relevance The need for electricity among the population is constantly growing, especially among people living far from centralized energy supply centers. In addition, technological processes in the oil and gas industry are very energy intensive. Oil and gas industry enterprises located incl. in remote areas (Far North, etc.) it is easier to provide energy resources, in particular, using renewable energy sources. An important issue is the organization of reliable power supply in offline mode. Also, existing energy supply technologies are not always easily adapted for use in small and medium-sized enterprises. Renewable energy sources can play an important role in this matter. Therefore, research into technologies for autonomous generation of electrical and thermal energy, its rational consumption through the use of energy-saving technologies are very relevant at the present time. Aim of research It is necessary to investigate modern renewable energy sources. It is necessary to review modern power plants using renewable energy sources, to explore the wind and solar energy potential of the Republic of Bashkortostan. It is important to conduct experiments on a laboratory setup. Determine the operating parameters, take the current-voltage characteristics and select the optimal operating modes. Research objects Renewable energy sources, laboratory installation, solar power plant, wind farm. Research methods Computer modeling, mathematical methods of calculation and analysis. Results A laboratory complex for the study of wind-solar power plants was installed. Computer models of all the main elements of the laboratory complex have been developed: wind generator, photoelectric converter, storage batteries. Conducted scientific experiments.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Renewable energy sources – Ontario – Mathematical models"

1

Noudjiep, Djiepkop Giresse Franck. "Feeder reconfiguration scheme with integration of renewable energy sources using a Particle Swarm Optimisation method." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2712.

Full text
Abstract:
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018.
A smart grid is an intelligent power delivery system integrating traditional and advanced control, monitoring, and protection systems for enhanced reliability, improved efficiency, and quality of supply. To achieve a smart grid, technical challenges such as voltage instability; power loss; and unscheduled power interruptions should be mitigated. Therefore, future smart grids will require intelligent solutions at transmission and distribution levels, and optimal placement & sizing of grid components for optimal steady state and dynamic operation of the power systems. At distribution levels, feeder reconfiguration and Distributed Generation (DG) can be used to improve the distribution network performance. Feeder reconfiguration consists of readjusting the topology of the primary distribution network by remote control of the tie and sectionalizing switches under normal and abnormal conditions. Its main applications include service restoration after a power outage, load balancing by relieving overloads from some feeders to adjacent feeders, and power loss minimisation for better efficiency. On the other hand, the DG placement problem entails finding the optimal location and size of the DG for integration in a distribution network to boost the network performance. This research aims to develop Particle Swarm Optimization (PSO) algorithms to solve the distribution network feeder reconfiguration and DG placement & sizing problems. Initially, the feeder reconfiguration problem is treated as a single-objective optimisation problem (real power loss minimisation) and then converted into a multi-objective optimisation problem (real power loss minimisation and load balancing). Similarly, the DG placement problem is treated as a single-objective problem (real power loss minimisation) and then converted into a multi-objective optimisation problem (real power loss minimisation, voltage deviation minimisation, Voltage stability Index maximisation). The developed PSO algorithms are implemented and tested for the 16-bus, the 33-bus, and the 69-bus IEEE distribution systems. Additionally, a parallel computing method is developed to study the operation of a distribution network with a feeder reconfiguration scheme under dynamic loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Yee, Victoria E. "Predicting the renewable energy portfolio for the southern half of the United States through 2050 by matching energy sources to regional needs." Scholarly Commons, 2012. https://scholarlycommons.pacific.edu/uop_etds/808.

Full text
Abstract:
Worldwide energy consumption is estimated to double between 2008 and 2035. Over-dependence on energy imports from a few, often politically unstable countries, and unpredictable oil and gas prices, pushes energy to a critical agenda. While there is an agreement that we need to change the production and consumption of energy, there is still disagreement about the specific changes that are needed and how they can be achieved. The conventional energy plans relying primarily on fossil fuels and nuclear technologies, which are in need of transformation due to limited resources and carbon dioxide emissions. Energy efficiency improvements and renewable energy should play a leading role in the America's energy future. Energy and environmental organizations believe that renewable energy and energy efficiency can meet half of the world's energy needs by 2050. This thesis describes a model that predicts renewable energy portfolios for the Southern portion of the United States, by evaluating multiple renewable energy sources such as solar, wind, hydropower, biomass, and geothermal. The Southern US is divided into three regions: Southwest, South Central, and Southeast, which are chosen given their location and the level of abundance of renewable resources, thereby minimizing inefficiencies and losses associated to the present generation system. A mathematical predictor takes into account variables such as supply/demand, non-renewable/renewable sources, and time. From the results, the Southwest and South Central regions confirm an surplus of renewable electricity by 2050, but the Southeast region does not have enough renewable resources to detach itself from the use of fossil fuels. The South Central region begins producing a surplus of renewable energy in 2014 and reaches an excess amount of 14,552 billion KWh by 2050. This means there will be no need to transfer electricity over long distances, which will increase the overall efficiency of electrical generation.
APA, Harvard, Vancouver, ISO, and other styles
3

Parsa, Maryam. "Optimum Decision Policy for Gradual Replacement of Conventional Power Sources by Clean Power Sources." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24015.

Full text
Abstract:
With the increase of world population and industrial growth of developing countries, demand for energy, in particular electric power, has gone up at an unprecedented rate over the last decades. To meet the demand, electric power generation by use of fossil fuel has increased enormously thereby producing increased quantity of greenhouse gases. This contributes more and more to atmospheric pollution, which climate scientists believe can adversly affect the global climate, as well as health and the welfare of the world population. In view of these issues, there is global awareness to look for alternate sources of energy such as natural gas, hydropower, wind, solar, geothermal and biomass. It is recognized that this requires replacement of existing infrastructure with new systems, which cannot be achieved overnight. Optimal control theory has been widely used in diverse areas of physical sciences, medicine, engineering and economics. The main motivation of this thesis is to use this theory to find the optimum strategy for integration of all currently available renewable energy sources with the existing electric power generating systems. The ultimate goal is to eliminate fossil fuels. Eight main energy sources namely, Coal, Petroleum, Natural Gas, Conventional Hydro, Wind, Solar, Geothermal and Biomass are considered in a dynamic model. The state of the dynamic model represents the level of energy generation from each of the sources. Different objective functions are proposed in this thesis. These range from meeting the desired target level of power generation from each of the available sources at the end of a given plan period, to reducing the implementation and investment costs; from minimizing the production from polluted energy sources to meeting the electricity demand during a whole plan period. Official released data from the U.S. Energy Information Administration have been used as a case study. Based on real life data and the mathematics of optimal control theory, we present an optimal policy for integration of renewable energy sources to the national power grid.
APA, Harvard, Vancouver, ISO, and other styles
4

Staschus, Konstantin. "Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/53898.

Full text
Abstract:
Many electric utilities have been tapping such energy sources as wind energy or conservation for years. However, the literature shows few attempts to incorporate such non-dispatchable energy sources as decision variables into the long-range planning methodology. In this dissertation, efficient algorithms for electric utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase which quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of non-dispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The Lagrangian Dual formulation results in a subproblem which can be separated into single-year plantmix problems that are easily solved using a breakeven analysis. The probabilistic second phase uses a Generalized Benders Decomposition approach. A depth-first Branch and Bound algorithm is superimposed on the two-phase algorithm if conventional equipment types are only available in discrete sizes. In this context, computer time savings accrued through the application of the two-phase method are crucial. Extensive computational tests of the algorithms are reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80 percent in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali I results from this implementation.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Vaezi, Masoud. "Modeling and control of hydraulic wind power transfer systems." Thesis, 2014. http://hdl.handle.net/1805/6172.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Hydraulic wind power transfer systems deliver the captured energy by the blades to the generators differently. In the conventional systems this task is carried out by a gearbox or an intermediate medium. New generation of wind power systems transfer the captured energy by means of high-pressure hydraulic fluids. A hydraulic pump is connected to the blades shaft at a high distance from the ground, in nacelle, to pressurize a hydraulic flow down to ground level equipment through hoses. Multiple wind turbines can also pressurize a flow sending to a single hose toward the generator. The pressurized flow carries a large amount of energy which will be transferred to the mechanical energy by a hydraulic motor. Finally, a generator is connected to the hydraulic motor to generate electrical power. This hydraulic system runs under two main disturbances, wind speed fluctuations and load variations. Intermittent nature of the wind applies a fluctuating torque on the hydraulic pump shaft. Also, variations of the consumed electrical power by the grid cause a considerable load disturbance on the system. This thesis studies the hydraulic wind power transfer systems. To get a better understanding, a mathematical model of the system is developed and studied utilizing the governing equations for every single hydraulic component in the system. The mathematical model embodies nonlinearities which are inherited from the hydraulic components such as check valves, proportional valves, pressure relief valves, etc. An experimental prototype of the hydraulic wind power transfer systems is designed and implemented to study the dynamic behavior and operation of the system. The provided nonlinear mathematical model is then validated by experimental result from the prototype. Moreover, this thesis develops a control system for the hydraulic wind power transfer systems. To maintain a fixed frequency electrical voltage by the system, the generator should remain at a constant rotational speed. The fluctuating wind speed from the upstream, and the load variations from the downstream apply considerable disturbances on the system. A controller is designed and implemented to regulate the flow in the proportional valve and as a consequence the generator maintains its constant speed compensating for load and wind turbine disturbances. The control system is applied to the mathematical model as well as the experimental prototype by utilizing MATLAB/Simulink and dSPACE 1104 fast prototyping hardware and the results are compared.
APA, Harvard, Vancouver, ISO, and other styles
6

Pusha, Ayana T. "Multiple turbine wind power transfer system loss and efficiency analysis." 2013. http://hdl.handle.net/1805/3800.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
A gearless hydraulic wind energy transfer system utilizes the hydraulic power transmission principles to integrate the energy of multiple wind turbines in a central power generation location. The gearless wind power transfer technology may replace the current energy harvesting system to reduce the cost of operation and increase the reliability of wind power generation. It also allows for the integration of multiple wind turbines to one central generation unit, unlike the traditional wind power generation with dedicated generator and gearbox. A Hydraulic Transmission (HT) can transmit high power and can operate over a wide range of torque-to-speed ratios, allowing efficient transmission of intermittent wind power. The torque to speed ratios illustrates the relationship between the torque and speed of a motor (or pump) from the moment of start to when full-load torque is reached at the manufacturer recommended rated speed. In this thesis, a gearless hydraulic wind energy harvesting and transfer system is mathematically modeled and verified by experimental results. The mathematical model is therefore required to consider the system dynamics and be used in control system development. Mathematical modeling also provided a method to determine the losses of the system as well as overall efficiency. The energy is harvested by a low speed-high torque wind turbine connected to a high fixed-displacement hydraulic pump, which is connected to hydraulic motors. Through mathematical modeling of the system, an enhanced understanding of the HTS through analysis was gained that lead to a highly efficient hydraulic energy transmission system. It was determined which factors significantly influenced the system operation and its efficiency more. It was also established how the overall system operated in a multiple wind turbine configuration. The quality of transferred power from the wind turbine to the generator is important to maintaining the systems power balance, frequency droop control in grid-connected applications, and to ensure that the maximum output power is obtained. A hydraulic transmission system can transfer large amounts of power and has more flexibility than a mechanical and electrical system. However high-pressure hydraulic systems have shown low efficiency in wind power transfer when interfaced with a single turbine to a ground-level generator. HT’s generally have acceptable efficiency at full load and drop efficiency as the loading changes, typically having a peak around 60%. The efficiency of a HT is dependent on several parameters including volumetric flow rate, rotational speed and torque at the pump shaft, and the pressure difference across the inlet and outlet of the hydraulic pump and motor. It has been demonstrated that using a central generation unit for a group of wind turbines and transferring the power of each turbine through hydraulic system increases the efficiency of the overall system versus one turbine to one central generation unit. The efficiency enhancement depends on the rotational speed of the hydraulic pumps. Therefore, it is proven that the multiple-turbine hydraulic power transfer system reaches higher efficiencies at lower rotational speeds. This suggests that the gearbox can be eliminated from the wind powertrains if multiple turbines are connected to the central generation unit. Computer simulations and experimental results are provided to quantify the efficiency enhancements obtained by adding the second wind turbine hydraulic pump to the system.
APA, Harvard, Vancouver, ISO, and other styles
7

Sajadian, Sally. "Energy conversion unit with optimized waveform generation." Thesis, 2014. http://hdl.handle.net/1805/6109.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
The substantial increase demand for electrical energy requires high efficient apparatus dealing with energy conversion. Several technologies have been suggested to implement power supplies with higher efficiency, such as multilevel and interleaved converters. This thesis proposes an energy conversion unit with an optimized number of output voltage levels per number of switches nL=nS. The proposed five-level four-switch per phase converter has nL=nS=5/4 which is by far the best relationship among the converters presented in technical literature. A comprehensive literature review on existing five-level converter topologies is done to compare the proposed topology with conventional multilevel converters. The most important characteristics of the proposed configuration are: (i) reduced number of semiconductor devices, while keeping a high number of levels at the output converter side, (ii) only one DC source without any need to balance capacitor voltages, (iii) high efficiency, (iv) there is no dead-time requirement for the converters operation, (v) leg isolation procedure with lower stress for the DC-link capacitor. Single-phase and three-phase version of the proposed converter is presented in this thesis. Details regarding the operation of the configuration and modulation strategy are presented, as well as the comparison between the proposed converter and the conventional ones. Simulated results are presented to validate the theoretical expectations. In addition a fault tolerant converter based on proposed topology for micro-grid systems is presented. A hybrid pulse-width-modulation for the pre-fault operation and transition from the pre-fault to post-fault operation will be discussed. Selected steady-state and transient results are demonstrated to validate the theoretical modeling.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Renewable energy sources – Ontario – Mathematical models"

1

ZInthraprawit, Dūangc̆hai Z. Development of analytic methodologies to incorporate renewable energy in domestic energy and economic planning. Honolulu, Hawaii, USA: APEC Secretariat, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hanada, Shin'ichi. Saisei kanō enerugī fukyū seisaku no keizai hyōka. Tōkyō: Mitsubishi Keizai Kenkyūjo, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Farret Felix, ed. Modeling and analysis with induction generators. Boca Raton: CRC Press, Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Innovative Modellierung und Optimierung von Energiesystemen. Berlin: Lit, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vasant, Pandian. Sustaining power resources through energy optimization and engineering. Edited by Voropaĭ, N. I. (Nikolaĭ Ivanovich), editor. Hershey PA: Engineering Science Reference, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Metcalf, Gilbert E. Federal tax policy towards energy. Cambridge, Mass: National Bureau of Economic Research, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaiser, Mark J. Offshore wind energy cost modeling: Installation and decommissioning. London: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Modeling and control of sustainable power systems: Towards smarter and greener electric grids. Berlin: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

G, Wilson David, and SpringerLink (Online service), eds. Nonlinear Power Flow Control Design: Utilizing Exergy, Entropy, Static and Dynamic Stability, and Lyapunov Analysis. London: Springer-Verlag London Limited, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Katsutoshi, Komeya, Matsuo Yohtaro, Goto Takashi, Nihon Seramikkusu Kyōkai, and Nihon Gakujutsu Shinkōkai. Kōbutsu Shinkatsuyō Dai 124 Iinkai., eds. Innovation in ceramic science and engineering: Selected, peer reviewed papers from the 3rd International Symposium on Advanced Ceramics, Grand Copthorne Waterfront Hotel, December 11-15, 2006, Singapore. Stafa-Zurich, Switzerland: Trans Tech Publications, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Renewable energy sources – Ontario – Mathematical models"

1

Nurgaliev, Ildus Saetgalievich. "Solar Energy in Agro-Ecologic Micrometeorology Measurements." In Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, 141–48. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3867-7.ch006.

Full text
Abstract:
New approach to the measurements in agro-ecologic micrometeorology is suggested on the bases of renewable solar panels for energy supply to instruments at the remote sites and new turbulent model of the flow of the gases. Analytical dynamic model of the turbulent multi-component flow in the three-layer boundary system is presented. Turbulence is simulated by the non-zero vorticity, but not only. Other mathematical aspects of the turbulence are an introducing new model of the material point and considering a torsion of their trajectories. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flow. The flows in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers and space scales. The same models of mass and energy transfer are instrumental in simulation rural electrification concepts in general on the bases renewable sources.
APA, Harvard, Vancouver, ISO, and other styles
2

Brahimi, Tayeb, and Ion Paraschivoiu. "Aerodynamic Analysis and Performance Prediction of VAWT and HAWT Using CARDAAV and Qblade Computer Codes." In Entropy and Exergy in Renewable Energy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96343.

Full text
Abstract:
Wind energy researchers have recently invited the scientific community to tackle three significant wind energy challenges to transform wind power into one of the more substantial, low-cost energy sources. The first challenge is to understand the physics behind wind energy resources better. The second challenge is to study and investigate the aerodynamics, structural, and dynamics of large-scale wind turbine machines. The third challenge is to enhance grid integration, network stability, and optimization. This chapter book attempts to tackle the second challenge by detailing the physics and mathematical modeling of wind turbine aerodynamic loads and the performance of horizontal and vertical axis wind turbines (HAWT & VAWT). This work underlines success in the development of the aerodynamic codes CARDAAV and Qbalde, with a focus on Blade Element Method (BEM) for studying the aerodynamic of wind turbines rotor blades, calculating the induced velocity fields, the aerodynamic normal and tangential forces, and the generated power as a function of a tip speed ration including dynamic stall and atmospheric turbulence. The codes have been successfully applied in HAWT and VAWT machines, and results show good agreement compared to experimental data. The strength of the BEM modeling lies in its simplicity and ability to include secondary effects and dynamic stall phenomena and require less computer time than vortex or CFD models. More work is now needed for the simulation of wind farms, the influence of the wake, the atmospheric wind flow, the structure and dynamics of large-scale machines, and the enhancement of energy capture, control, stability, optimization, and reliability.
APA, Harvard, Vancouver, ISO, and other styles
3

Mahto, Rakeshkumar, and Reshma John. "Modeling of Photovoltaic Module." In Solar Cells [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97082.

Full text
Abstract:
A Photovoltaic (PV) cell is a device that converts sunlight or incident light into direct current (DC) based electricity. Among other forms of renewable energy, PV-based power sources are considered a cleaner form of energy generation. Due to lower prices and increased efficiency, they have become much more popular than any other renewable energy source. In a PV module, PV cells are connected in a series and parallel configuration, depending on the voltage and current rating, respectively. Hence, PV modules tend to have a fixed topology. However, in the case of partial shading, mismatching or failure of a single PV cell can lead to many anomalies in a PV module’s functioning. If proper attention is not given, it can lead to the forward biasing of healthy PV cells in the module, causing them to consume the electricity instead of producing it, hence reducing the PV module’s overall efficiency. Hence, to further the PV module research, it is essential to have an approximate way to model them. Doing so allows for understanding the design’s pros and cons before deploying the PV module-based power system in the field. In the last decade, many mathematical models for PV cell simulation and modeling techniques have been proposed. The most popular among all the techniques are diode based PV modeling. In this book chapter, the author will present a double diode based PV cell modeling. Later, the PV module modeling will be presented using these techniques that incorporate mismatch, partial shading, and open/short fault. The partial shading and mismatch are reduced by incorporating a bypass diode along with a group of four PV cells. The mathematical model for showing the effectiveness of bypass diode with PV cells in reducing partial shading effect will also be presented. Additionally, in recent times besides fixed topology of series–parallel, Total Cross-Tied (TCT), Bridge Link (BL), and Honey-Comb (H-C) have shown a better capability in dealing with partial shading and mismatch. The book chapter will also cover PV module modeling using TCT, BL, and H-C in detail.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Renewable energy sources – Ontario – Mathematical models"

1

Ortiz-Rivera, Eduardo I., Yazmin Torres-Feliciano, and Angelymar Sanchez Del Valle. "Mathematical Models of Renewable Energy Sources developed at UPRM useful for Microgrid Analysis." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Antoniou, Antonios, Cesar Celis, and Arturo Berastain. "A Mathematical Model to Predict Alkaline Electrolyzer Performance Based on Basic Physical Principles and Previous Models Reported in Literature." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-68815.

Full text
Abstract:
Abstract Hydrogen production through electrolysis is an important research topic since the use of hydrogen as a fuel has the potential to significantly reduce gaseous emissions in near future. The electrolytic splitting of water into hydrogen and oxygen can be carried out using for instance electricity generated from renewable energy sources such as solar radiation. Electrolysis processes occurring in electrolyzer cells are complex phenomena and a clear and accurate mathematical representation of the referred processes is vital to accurate predict electrolyzer cells performance. So a comprehensive mathematical model capable of properly describing alkaline electrolyzer cells performance, in terms of efficiency and hydrogen production rate, is proposed in this work. The mathematical model is based on several physical concepts such as energy losses due to electron and ion transfer, entropy increase, electrolyte flow rate, and electrolyzer physical structure and construction material. Compared to existing models, the new proposed one is more complete as it includes more operational parameters (six) affecting cells performance. Once developed, the proposed model has been fine-tuned using experimental data available in literature. The results obtained using the new developed model are in good agreement with Ulleberg’s experimental data. Based on the work carried out here, it is concluded that developing a mathematical model based on physical principles is crucial in the comprehension of electrolysis related processes and how to utilize them in the simplest and most reliable way.
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Shreyas M., Paul T. Freeman, and John R. Wagner. "An Electrical Microgrid: Integration of Solar Panels, Compressed Air Storage, and a Micro-Cap Gas Turbine." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6058.

Full text
Abstract:
Non-renewable energy sources such as coal, oil, and natural gas are being consumed at a brisk pace while greenhouse gases contribute to atmospheric pollution. A global shift is underway toward the inclusion of renewable energy sources, such as solar and wind, for generating electrical and mechanical power. To meet this emerging demand, a solar based electrical microgrid study is underway at Clemson University. Solar energy is harvested from photovoltaic panels capable of producing 15 kW of DC power. Compressed air energy storage has been evaluated using the generated solar power to operate an electric motor driven piston compressor. The compressed air is then stored under pressure and supplied to a natural gas driven Capstone C30 MicroTurbine with attached electric power generator. The compressed air facilitates the turbine’s rotor-blade operated compression stage resulting in direct energy savings. A series of mathematical models have been developed. To evaluate the feasibility and energy efficiency improvements, the experimental and simulation results indicated that 127.8 watts of peak power was delivered at 17.5 Volts and 7.3 Amps from each solar panel. The average power generation over a 24-hour time period from 115 panels was 15 kW DC or 6 kW of AC power at 208/240 VAC and 25 Amps from the inverter. This electrical power could run a 5.2 kW reciprocating compressor for approximately 5 hours storing 1,108 kg of air at a 1.2 MPa pressure. A case study indicated that the microturbine, when operated without compressed air storage, consumed 11.2 kg of gaseous propane for 30 kW·hr of energy generation. In contrast, the microturbine operated in conjunction with solar supplied air storage could generate 50.8 kW·hr of electrical energy for a similar amount of fuel consumption. The study indicated an 8.1% efficiency improvement in energy generated by the system which utilized compressed air energy storage over the traditional approach.
APA, Harvard, Vancouver, ISO, and other styles
4

S. Salles, Rafael, Gabriel C. S. Almeida, Leandro R. M. Silva, Carlos A. Duque, and Paulo F. Ribeiro. "Visualization of Quality PerformanceParameters Using Wavelet Scalograms Images for Power Systems." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1497.

Full text
Abstract:
Power quality problems are not new to power systems, but they cannot be overlooked. In the context of Smart Grids, power systems are undergoing a transformation characterized by the high penetration of renewable sources and electronic devices in the grids, in addition to greater computerization of operations. Thus, alternatives in the representation and visualization of these integrated quality parameters become more and more necessary, both for a better understanding of these phenomena and for advanced applications with the use of images.With this in mind, this paper aims to present an alternative for visualizing PQ disturbances through 2-D images from scalograms based on the continuous wavelet transform (CWT) and multiresolution analysis. For this, signals from three dierent sources, mathematical equations, models of transmission anddistribution of energy in MATLAB / Simulink, and real signals from a database were used. For the creation of the scalogram images, the signal processing technique, and the use of a color map were used to show the performance. The results showed the eciency of the method for visualization and characterization of addressed disturbances. The enkaptics phenomena were also highlighted, which show the simultaneity and relationship between dierent types of signal variation. The work contributes to using signals from dierent sources, synthetic, from simulation or real signals, to oer a methodology that describes tools for a method of visualization.
APA, Harvard, Vancouver, ISO, and other styles
5

Cremanns, Kevin, Dirk Roos, Simon Hecker, Peter Dumstorff, Henning Almstedt, and Christian Musch. "Efficient Multi-Objective Optimization of Labyrinth Seal Leakage in Steam Turbines Based on Hybrid Surrogate Models." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57457.

Full text
Abstract:
The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.
APA, Harvard, Vancouver, ISO, and other styles
6

Ancona, M. A., M. Bianchi, L. Branchini, F. Catena, A. De Pascale, F. Melino, and A. Peretto. "Off-Design Performance Evaluation of a LNG Production Plant Coupled With Renewables." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90495.

Full text
Abstract:
Abstract In the last years, the increased demand of the energy market has led to the increasing penetration of renewable energies, in order to achieve the primary energy supply. Simultaneously, natural gas is predicted to play a vital and strategic role in the energy market, on account of its lower environmental impact than other fossil fuels, both as gaseous fuel for stationary energy generation and as liquefied fuel. In particular, the Liquefied Natural Gas (LNG) is becoming interesting in transports as an alternative to diesel fuel, allowing a decrease in pollutant emissions and a reduction in fuel’s costs for the users. As a consequence, in this context, the LNG production process can be seen as an electrical storage system by the integration with renewables, becoming an interesting solution to avoid the issues related to intermittency and unpredictability of renewables. The aim of the paper is the development of a calculation code and the evaluation of the off-design operation of a LNG production plant coupled with wind renewable energy sources. With this purpose, on the basis of mathematical models from literature, a dedicated calculation code has been developed, able to thermodynamically analyze both design and off-design operation of the integrated process. In addition, in this study the proposed model is employed to investigate the correct integration between renewables and LNG generation, in order to define the optimal choice of the wind size for a given LNG production plant. With this purpose, the LNG plant size of a real prototype has been considered and an economic analysis has been carried out, accounting for the revenue of the LNG sale, the costs for NG purchase, for operation and maintenance and for the initial investment costs, but also with the aim to minimize the electricity introduction into the grid, considered in this study as a penalty.
APA, Harvard, Vancouver, ISO, and other styles
7

Crosa, Giampaolo, Maurizio Lubiano, and Angela Trucco. "Modelling of PV-Powered Water Electrolysers." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90906.

Full text
Abstract:
In the near future the hydrogen production by means of advanced water electrolysers powered by renewable hybrid energy systems (Photovoltaic solar/wind) could help to resolve the electricity supply and environmental problems relating to the use of fossil fuels. In the light of this perspective the hydrogen represents an alternative energy carrier, helping to overcome all the problems related to the intermittent nature of solar and wind sources. A non linear dynamic simulator of a photovoltaic-hydrogen energy system has been realised, aiming to provide a useful instrument for the development of innovative strategies for plant control and plant operating guidance. The lumped parameter physical approach has been used, applying the fundamental conservation laws of mass, energy and momentum to every component of the plant. The water electrolyser model has been tailored on the characteristics of an advanced pressurised system, using a Casale Chemicals S.A. advanced cell bipolar design, with alkaline electrolyte (KOH solution), whose mathematical models was described by the authors in previous papers. A first version of this simulator has been improved by introducing a reliable thermal model, able to predict the solar panel temperature profile that affects the PV array performance; the panel model has been modified in order to reproduce precisely the I/V characteristics of any PV module, starting from its nominal data. Thanks to this model improvement, the simulator allowed to be used to maximise the PV power production, evaluating different control strategies: a Maximum Power Point Tracking (M.P.P.T) block has been then introduced in the model to optimise the generated power by the photovoltaic plant. The Joule losses due to the PV field internal wiring and to its feeding connection with the electrolyser have been also considered: it consents to separately compute the energy losses in the different PV-electrolyser coupling configurations, thus evaluating the best panel disposition in order to minimise the electric power dissipation. The simulator proved to be able to robustly predict the performance of the PV-electrolysis system for different configurations, operating conditions and control strategies. A steady-state analysis not appears in fact to be an adequate tool for these purposes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography