Journal articles on the topic 'Renal progenitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Renal progenitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hasegawa, Sho, Tetsuhiro Tanaka, and Masaomi Nangaku. "Recent advances in renal regeneration." F1000Research 8 (February 25, 2019): 216. http://dx.doi.org/10.12688/f1000research.17127.1.
Full textAl-Marsoummi, Sarmad, Aaron A. Mehus, Swojani Shrestha, Rayna Rice, Brooke Rossow, Seema Somji, Scott H. Garrett, and Donald A. Sens. "Proteasomes Are Critical for Maintenance of CD133+CD24+ Kidney Progenitor Cells." International Journal of Molecular Sciences 24, no. 17 (August 27, 2023): 13303. http://dx.doi.org/10.3390/ijms241713303.
Full textHolmes, David. "Budding renal progenitors." Nature Reviews Nephrology 10, no. 1 (December 3, 2013): 4. http://dx.doi.org/10.1038/nrneph.2013.245.
Full textSequeira-Lopez, Maria Luisa S., Eugene E. Lin, Minghong Li, Yan Hu, Curt D. Sigmund, and R. Ariel Gomez. "The earliest metanephric arteriolar progenitors and their role in kidney vascular development." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 308, no. 2 (January 15, 2015): R138—R149. http://dx.doi.org/10.1152/ajpregu.00428.2014.
Full textPeired, Anna Julie, Maria Elena Melica, Alice Molli, Cosimo Nardi, Paola Romagnani, and Laura Lasagni. "Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle?" Cells 10, no. 1 (January 2, 2021): 59. http://dx.doi.org/10.3390/cells10010059.
Full textPhua, Yu Leng, Kevin Hong Chen, Shelby L. Hemker, April K. Marrone, Andrew J. Bodnar, Xiaoning Liu, Andrew Clugston, Dennis Kostka, Michael B. Butterworth, and Jacqueline Ho. "Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors." American Journal of Physiology-Renal Physiology 316, no. 5 (May 1, 2019): F993—F1005. http://dx.doi.org/10.1152/ajprenal.00450.2018.
Full textVolovelsky, Oded, Thi Nguyen, Alison E. Jarmas, Alexander N. Combes, Sean B. Wilson, Melissa H. Little, David P. Witte, Eric W. Brunskill, and Raphael Kopan. "Hamartin regulates cessation of mouse nephrogenesis independently of Mtor." Proceedings of the National Academy of Sciences 115, no. 23 (May 21, 2018): 5998–6003. http://dx.doi.org/10.1073/pnas.1712955115.
Full textPeired, Anna Julie, Giulia Antonelli, Maria Lucia Angelotti, Marco Allinovi, Francesco Guzzi, Alessandro Sisti, Roberto Semeraro, et al. "Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells." Science Translational Medicine 12, no. 536 (March 25, 2020): eaaw6003. http://dx.doi.org/10.1126/scitranslmed.aaw6003.
Full textRymer, Christopher, Jose Paredes, Kimmo Halt, Caitlin Schaefer, John Wiersch, Guangfeng Zhang, Douglas Potoka, et al. "Renal blood flow and oxygenation drive nephron progenitor differentiation." American Journal of Physiology-Renal Physiology 307, no. 3 (August 1, 2014): F337—F345. http://dx.doi.org/10.1152/ajprenal.00208.2014.
Full textChu, Jessica Y. S., Sunder Sims-Lucas, Daniel S. Bushnell, Andrew J. Bodnar, Jordan A. Kreidberg, and Jacqueline Ho. "Dicer function is required in the metanephric mesenchyme for early kidney development." American Journal of Physiology-Renal Physiology 306, no. 7 (April 1, 2014): F764—F772. http://dx.doi.org/10.1152/ajprenal.00426.2013.
Full textMeyer-Schwesinger, Catherine. "The Role of Renal Progenitors in Renal Regeneration." Nephron 132, no. 2 (2016): 101–9. http://dx.doi.org/10.1159/000442180.
Full textGupta, Ashwani Kumar, David Z. Ivancic, Bilal A. Naved, Jason A. Wertheim, and Leif Oxburgh. "An efficient method to generate kidney organoids at the air-liquid interface." Journal of Biological Methods 8, no. 2 (June 29, 2021): e150. http://dx.doi.org/10.14440/jbm.2021.357.
Full textBussolati, Benedetta, Aldo Moggio, Federica Collino, Giulia Aghemo, Giuseppe D'Armento, Cristina Grange, and Giovanni Camussi. "Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance." American Journal of Physiology-Renal Physiology 302, no. 1 (January 1, 2012): F116—F128. http://dx.doi.org/10.1152/ajprenal.00184.2011.
Full textTanigawa, Shunsuke, and Alan O. Perantoni. "Modeling renal progenitors – defining the niche." Differentiation 91, no. 4-5 (April 2016): 152–58. http://dx.doi.org/10.1016/j.diff.2016.01.007.
Full textSchrankl, Julia, Bjoern Neubauer, Michaela Fuchs, Katharina Gerl, Charlotte Wagner, and Armin Kurtz. "Apparently normal kidney development in mice with conditional disruption of ANG II-AT1 receptor genes in FoxD1-positive stroma cell precursors." American Journal of Physiology-Renal Physiology 316, no. 6 (June 1, 2019): F1191—F1200. http://dx.doi.org/10.1152/ajprenal.00305.2018.
Full textRossbach, Bella, Krithika Hariharan, Nancy Mah, Su-Jun Oh, Hans-Dieter Volk, Petra Reinke, and Andreas Kurtz. "Human iPSC-Derived Renal Cells Change Their Immunogenic Properties during Maturation: Implications for Regenerative Therapies." Cells 11, no. 8 (April 13, 2022): 1328. http://dx.doi.org/10.3390/cells11081328.
Full textTakahashi, Takamune, Keiko Takahashi, Sebastian Gerety, Hai Wang, David J. Anderson, and Thomas O. Daniel. "Temporally Compartmentalized Expression of Ephrin-B2 during Renal Glomerular Development." Journal of the American Society of Nephrology 12, no. 12 (December 2001): 2673–82. http://dx.doi.org/10.1681/asn.v12122673.
Full textLazzeri, Elena, Clara Crescioli, Elisa Ronconi, Benedetta Mazzinghi, Costanza Sagrinati, Giuseppe Stefano Netti, Maria Lucia Angelotti, et al. "Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure." Journal of the American Society of Nephrology 18, no. 12 (October 31, 2007): 3128–38. http://dx.doi.org/10.1681/asn.2007020210.
Full textBussolati, Benedetta, Alessia Brossa, and Giovanni Camussi. "Resident Stem Cells and Renal Carcinoma." International Journal of Nephrology 2011 (2011): 1–6. http://dx.doi.org/10.4061/2011/286985.
Full textTan, Zenglai, Aleksandra Rak-Raszewska, Ilya Skovorodkin, and Seppo J. Vainio. "Mouse Embryonic Stem Cell-Derived Ureteric Bud Progenitors Induce Nephrogenesis." Cells 9, no. 2 (January 31, 2020): 329. http://dx.doi.org/10.3390/cells9020329.
Full textLindström, Nils O., Jinjin Guo, Albert D. Kim, Tracy Tran, Qiuyu Guo, Guilherme De Sena Brandine, Andrew Ransick, et al. "Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney." Journal of the American Society of Nephrology 29, no. 3 (February 15, 2018): 806–24. http://dx.doi.org/10.1681/asn.2017080890.
Full textDessypris, E., SE Graber, SB Krantz, and WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo." Blood 72, no. 6 (December 1, 1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.2060.
Full textDessypris, E., SE Graber, SB Krantz, and WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo." Blood 72, no. 6 (December 1, 1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.bloodjournal7262060.
Full textChambers, Brooke E., and Rebecca A. Wingert. "Renal progenitors: Roles in kidney disease and regeneration." World Journal of Stem Cells 8, no. 11 (2016): 367. http://dx.doi.org/10.4252/wjsc.v8.i11.367.
Full textRonconi, Elisa, Costanza Sagrinati, Maria Lucia Angelotti, Elena Lazzeri, Benedetta Mazzinghi, Lara Ballerini, Eliana Parente, et al. "Regeneration of Glomerular Podocytes by Human Renal Progenitors." Journal of the American Society of Nephrology 20, no. 2 (December 17, 2008): 322–32. http://dx.doi.org/10.1681/asn.2008070709.
Full textRomagnani, Paola, and Giuseppe Remuzzi. "Renal progenitors in non-diabetic and diabetic nephropathies." Trends in Endocrinology & Metabolism 24, no. 1 (January 2013): 13–20. http://dx.doi.org/10.1016/j.tem.2012.09.002.
Full textBecherucci, Francesca, Elena Lazzeri, Laura Lasagni, and Paola Romagnani. "Renal progenitors and childhood: from development to disorders." Pediatric Nephrology 29, no. 4 (January 4, 2014): 711–19. http://dx.doi.org/10.1007/s00467-013-2686-2.
Full textSheybani-Deloui, Sepideh, Lijun Chi, Marian V. Staite, Jason E. Cain, Brian J. Nieman, R. Mark Henkelman, Brandon J. Wainwright, et al. "Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction." Journal of the American Society of Nephrology 29, no. 2 (November 6, 2017): 532–44. http://dx.doi.org/10.1681/asn.2017050482.
Full textDionne, Lai Kuan, Kyuhwan Shim, Masato Hoshi, Tao Cheng, Jinzhi Wang, Veronique Marthiens, Amanda Knoten, Renata Basto, Sanjay Jain, and Moe R. Mahjoub. "Centrosome amplification disrupts renal development and causes cystogenesis." Journal of Cell Biology 217, no. 7 (June 12, 2018): 2485–501. http://dx.doi.org/10.1083/jcb.201710019.
Full textVinsonneau, C., A. Girshovich, M. Ben M'rad, J. Perez, L. Mesnard, S. Vandermersch, S. Placier, E. Letavernier, L. Baud, and J. P. Haymann. "Intrarenal urothelium proliferation: an unexpected early event following ischemic injury." American Journal of Physiology-Renal Physiology 299, no. 3 (September 2010): F479—F486. http://dx.doi.org/10.1152/ajprenal.00585.2009.
Full textNag, Sparshita, and Ashleigh S. Boyd. "Decellularization of Mouse Kidneys to Generate an Extracellular Matrix Gel for Human Induced Pluripotent Stem Cell Derived Renal Organoids." Organoids 2, no. 1 (March 22, 2023): 66–78. http://dx.doi.org/10.3390/organoids2010005.
Full textDrummond, Bridgette E., Brooke E. Chambers, Hannah M. Wesselman, Shannon Gibson, Liana Arceri, Marisa N. Ulrich, Gary F. Gerlach, et al. "osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2." Biomedicines 10, no. 11 (November 9, 2022): 2868. http://dx.doi.org/10.3390/biomedicines10112868.
Full textUrbach, A., A. Yermalovich, J. Zhang, C. S. Spina, H. Zhu, A. R. Perez-Atayde, R. Shukrun, et al. "Lin28 sustains early renal progenitors and induces Wilms tumor." Genes & Development 28, no. 9 (April 14, 2014): 971–82. http://dx.doi.org/10.1101/gad.237149.113.
Full textRomagnani, Paola, Laura Lasagni, and Giuseppe Remuzzi. "Renal progenitors: an evolutionary conserved strategy for kidney regeneration." Nature Reviews Nephrology 9, no. 3 (January 22, 2013): 137–46. http://dx.doi.org/10.1038/nrneph.2012.290.
Full textBarasch, J., J. Yang, and K. Mori. "INDUCTION OF NEPHRONS FROM RENAL PROGENITORS BY MULTIPLE SIGNALS." ASAIO Journal 49, no. 2 (March 2003): 198. http://dx.doi.org/10.1097/00002480-200303000-00230.
Full textBarak, Y., L. Sinai-Treiman, Y. Karov, A. Abrahamov, and A. Drukker. "Hematopoietic Progenitors in Children with End-Stage Renal Disease." Pediatric Hematology and Oncology 11, no. 6 (January 1994): 633–39. http://dx.doi.org/10.3109/08880019409141810.
Full textWang, Honghe, Yili Yang, Nirmala Sharma, Nadya I. Tarasova, Olga A. Timofeeva, Robin T. Winkler-Pickett, Shunsuke Tanigawa, and Alan O. Perantoni. "STAT1 activation regulates proliferation and differentiation of renal progenitors." Cellular Signalling 22, no. 11 (November 2010): 1717–26. http://dx.doi.org/10.1016/j.cellsig.2010.06.012.
Full textOsafune, Kenji. "iPSC technology-based regenerative medicine for kidney diseases." Clinical and Experimental Nephrology 25, no. 6 (March 3, 2021): 574–84. http://dx.doi.org/10.1007/s10157-021-02030-x.
Full textJackson, Ashley R., Monica L. Hoff, Birong Li, Christina B. Ching, Kirk M. McHugh, and Brian Becknell. "Krt5+ urothelial cells are developmental and tissue repair progenitors in the kidney." American Journal of Physiology-Renal Physiology 317, no. 3 (September 1, 2019): F757—F766. http://dx.doi.org/10.1152/ajprenal.00171.2019.
Full textDe Filippo, Roger E., Ilenia Zanusso, Stefano Da Sacco, Scott Leslie, Astgik Petrosyan, Kevin V. Lemley, and Laura Perin. "Amniotic fluid renal progenitors and renal extracellular matrix: a new approach for kidney regeneration." Journal of the American College of Surgeons 219, no. 4 (October 2014): e55. http://dx.doi.org/10.1016/j.jamcollsurg.2014.07.531.
Full textYosypiv, Ihor V., Maria Luisa S. Sequeira-Lopez, Renfang Song, and Alexandre De Goes Martini. "Stromal prorenin receptor is critical for normal kidney development." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 316, no. 5 (May 1, 2019): R640—R650. http://dx.doi.org/10.1152/ajpregu.00320.2018.
Full textAtala, Anthony. "Re: Lin28 Sustains Early Renal Progenitors and Induces Wilms Tumor." Journal of Urology 193, no. 2 (February 2015): 730–31. http://dx.doi.org/10.1016/j.juro.2014.11.021.
Full textFranzin, Rossana, Alessandra Stasi, Giuseppe De Palma, Angela Picerno, Claudia Curci, Serena Sebastiano, Monica Campioni, et al. "Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles." Cells 12, no. 12 (June 17, 2023): 1655. http://dx.doi.org/10.3390/cells12121655.
Full textChan, Charles, Ching-Cheng Chen, Daniel L. Kraft, Cynthia Luppen, Jae-Beom Kim, Anthony DeBoer, Kevin Wei Wei, and Irving L. Weissman. "Identification and Isolation of the Hematopoietic Stem Cell Niche Initiating Cell Population." Blood 112, no. 11 (November 16, 2008): 3574. http://dx.doi.org/10.1182/blood.v112.11.3574.3574.
Full textMukherjee, Elina, Katherine Maringer, Emily Papke, Daniel Bushnell, Caitlin Schaefer, Rafael Kramann, Jacqueline Ho, Benjamin D. Humphreys, Carlton Bates, and Sunder Sims-Lucas. "Endothelial marker-expressing stromal cells are critical for kidney formation." American Journal of Physiology-Renal Physiology 313, no. 3 (September 1, 2017): F611—F620. http://dx.doi.org/10.1152/ajprenal.00136.2017.
Full textBombelli, Silvia, Chiara Meregalli, Chiara Grasselli, Maddalena M. Bolognesi, Antonino Bruno, Stefano Eriani, Barbara Torsello, et al. "PKHhigh/CD133+/CD24− Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency." Cells 9, no. 8 (July 29, 2020): 1805. http://dx.doi.org/10.3390/cells9081805.
Full textNamdarian, Benjamin, Kevin V. S. Tan, Matthew J. Fankhauser, Thanh T. Nguyen, Niall M. Corcoran, Anthony J. Costello, and Christopher M. Hovens. "Circulating endothelial cells and progenitors: potential biomarkers of renal cell carcinoma." BJU International 106, no. 7 (September 14, 2010): 1081–87. http://dx.doi.org/10.1111/j.1464-410x.2010.09245.x.
Full textDolt, Karamjit Singh, David Edgar, Simon Kenny, and Patricia Murray. "14-P007 Differentiation of human embryonic stem cells towards renal progenitors." Mechanisms of Development 126 (August 2009): S241. http://dx.doi.org/10.1016/j.mod.2009.06.626.
Full textBecherucci, Francesca, Benedetta Mazzinghi, Marco Allinovi, Maria Lucia Angelotti, and Paola Romagnani. "Regenerating the kidney using human pluripotent stem cells and renal progenitors." Expert Opinion on Biological Therapy 18, no. 7 (July 3, 2018): 795–806. http://dx.doi.org/10.1080/14712598.2018.1492546.
Full textZhang, Jiong, Jeffrey W. Pippin, Ronald D. Krofft, Shokichi Naito, Zhi-Hong Liu, and Stuart J. Shankland. "Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS." American Journal of Physiology-Renal Physiology 304, no. 11 (June 1, 2013): F1375—F1389. http://dx.doi.org/10.1152/ajprenal.00020.2013.
Full text