Academic literature on the topic 'Remote Sensing Image Data Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Remote Sensing Image Data Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Remote Sensing Image Data Analysis"
Fu, N., L. Sun, H. Z. Yang, J. Ma, and B. Q. Liao. "RESEARCH ON MULTI-SOURCE SATELLITE IMAGE DATABASE MANAGEMENT SYSTEM." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (February 7, 2020): 565–68. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-565-2020.
Full textLi, Runya, and Shenglian Li. "Multimedia Image Data Analysis Based on KNN Algorithm." Computational Intelligence and Neuroscience 2022 (April 12, 2022): 1–8. http://dx.doi.org/10.1155/2022/7963603.
Full textKarimov, B., G. Karimova, and N. Amankulova. "Land Cover Classification Improvements by Remote Sensing Data Fusion." Bulletin of Science and Practice, no. 2 (February 15, 2023): 66–74. http://dx.doi.org/10.33619/2414-2948/87/07.
Full textVeljanovski, Tatjana, Urša Kanjir, and Krištof Oštir. "Object-based image analysis of remote sensing data." Geodetski vestnik 55, no. 04 (2011): 641–64. http://dx.doi.org/10.15292/geodetski-vestnik.2011.04.641-664.
Full textBazi, Yakoub, Gabriele Cavallaro, Begüm Demir, and Farid Melgani. "Learning from Data for Remote Sensing Image Analysis." International Journal of Remote Sensing 43, no. 15-16 (August 18, 2022): 5527–33. http://dx.doi.org/10.1080/01431161.2022.2131481.
Full textLukáš Brodský and Luboš, Borůvka. "Object-oriented Fuzzy Analysis of Remote Sensing Data for Bare Soil Brightness Mapping." Soil and Water Research 1, No. 3 (January 7, 2013): 79–84. http://dx.doi.org/10.17221/6509-swr.
Full textYu, Songyi, and Guotao Wang. "Study on the example segmentation method of remote sensing image based on neural network." Advances in Engineering Technology Research 6, no. 1 (June 12, 2023): 129. http://dx.doi.org/10.56028/aetr.6.1.129.2023.
Full textKhare, Smriti. "Remote Sensing Imagery Sensors and Image Interpretation." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 606–7. http://dx.doi.org/10.22214/ijraset.2021.38019.
Full textHutapea, Destri Yanti, and Octaviani Hutapea. "WATERMARKING METHOD OF REMOTE SENSING DATA USING STEGANOGRAPHY TECHNIQUE BASED ON LEAST SIGNIFICANT BIT HIDING." International Journal of Remote Sensing and Earth Sciences (IJReSES) 15, no. 1 (July 6, 2018): 63. http://dx.doi.org/10.30536/j.ijreses.2018.v15.a2824.
Full textTang, Yang, Jiongchao Yan, Yueqi Wu, Jie Hong, Lei Xu, and Zhangrui Lin. "Design of Remote Sensing Image Data Analysis and Processing Platform Based on Environmental Monitoring." Journal of Physics: Conference Series 2136, no. 1 (December 1, 2021): 012056. http://dx.doi.org/10.1088/1742-6596/2136/1/012056.
Full textDissertations / Theses on the topic "Remote Sensing Image Data Analysis"
Fountanas, Leonidas. "Principal components based techniques for hyperspectral image data." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FFountanas.pdf.
Full textCheriyadat, Anil Meerasa. "Limitations of principal component analysis for dimensionality-reduction for classification of hyperspectral data." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-11072003-133109.
Full textRobert, Denis J. "Selection and analysis of optimal textural features for accurate classification of monochrome digitized image data /." Online version of thesis, 1989. http://hdl.handle.net/1850/11364.
Full textKHALIQ, ALEEM. "Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2839838.
Full textMarcellin, Michael W., Naoufal Amrani, Serra-Sagristà Joan, Valero Laparra, and Jesus Malo. "Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621311.
Full textFischer, Manfred M., Sucharita Gopal, Petra Staufer-Steinnocher, and Klaus Steinocher. "Evaluation of Neural Pattern Classifiers for a Remote Sensing Application." WU Vienna University of Economics and Business, 1995. http://epub.wu.ac.at/4184/1/WSG_DP_4695.pdf.
Full textSeries: Discussion Papers of the Institute for Economic Geography and GIScience
Linden, Sebastian van der. "Investigating the potential of hyperspectral remote sensing data for the analysis of urban imperviousness." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15757.
Full textUrbanization is one of the most powerful and irreversible processes by which humans modify the Earth''s surface. Optical remote sensing is a main source of Earth observation products which help to better understand this dynamic process and its consequences. This work investigates the potential of airborne hyperspectral data to provide information on urban imperviousness that is needed for an integrated analysis of the coupled natural and human systems therein. For this purpose the complete processing workflow from preprocessing of the raw image to the generation of geocoded maps on land cover and impervious surface coverage is performed using Hyperspectral Mapper data acquired over Berlin, Germany. The traditional workflow for hyperspectral data is extended or modified at several points: a normalization of brightness gradients that are caused by directional reflectance properties of urban surfaces is included into radiometric preprocessing; support vector machines are used to classify five spectrally complex land cover classes without previous feature extraction or the definition of sub-classes. A detailed assessment of such maps is performed based on various reference products. Results show that the accuracy of derived maps depends on several steps within the processing workflow. For example, the support vector machine classification of hyperspectral data itself is accurate but geocoding without detailed terrain information introduces critical errors; impervious surface estimates correlate well with ground data but trees covering impervious surface below generally causes offsets; image segmentation does not enhance spectral classification accuracy of the spatially heterogeneous area but offers an interesting way of data compression and more time effective processing. Findings from this work help judging the reliability of data products and in doing so advance a possible extension of urban remote sensing approaches to areas where only little additional data exists.
Parshakov, Ilia. "Automatic class labeling of classified imagery using a hyperspectral library." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, c2012, 2012. http://hdl.handle.net/10133/3372.
Full textvii, 93 leaves : ill., maps (some col.) ; 29 cm
Magnini, Luigi. "Remote sensing e object-based image analysis: metodologie di approccio per la creazione di standard archeologici." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423260.
Full textIl campo del remote sensing ha vissuto un incredibile sviluppo negli ultimi anni per merito della crescente qualità e varietà dei sensori e dell’abbattimento dei costi strumentali. Le potenzialità archeologiche sono state ben presto evidenti. Finora, l’interpretazione dei dati è rimasta però prerogativa dell’operatore umano, mediata dalle sue competenze e dalla sua esperienza. Il progressivo aumento di volume dei dataset (cd. “big data explosion”) e la necessità di lavorare su progetti territoriali ad ampia scala hanno reso ora indispensabile una revisione delle modalità di studio tradizionalmente impiegate in ambito archeologico. In questo senso, la ricerca presentata di seguito contribuisce alla valutazione delle potenzialità e dei limiti dell’emergente campo d’indagine dell’object-based image analysis (OBIA). Il lavoro si è focalizzato sulla definizione di protocolli OBIA per il trattamento di dati tridimensionali acquisiti tramite laser scanner aviotrasportato e terrestre attraverso l’elaborazione di un variegato spettro di casi di studio in grado di esemplificare le possibilità offerte dal metodo in archeologia. I risultati ottenuti hanno consentito di identificare, mappare e quantificare in modo automatico e semi-automatico le tracce del paesaggio di guerra nell’area intorno a Forte Luserna (TN) e il tessuto osteologico ricalcificato sui crani di due inumati della necropoli protostorica dell’Olmo di Nogara (VR). Infine, il metodo è stato impiegato per lo sviluppo di un modello predittivo per la localizzazione dei “punti di controllo” in ambiente montano, che è stato studiato per l’area occidentale dell’Altopiano di Asiago (VI) e in seguito riapplicato con successo nella conca di Bressanone (BZ). L’accuratezza dei risultati, verificati di volta in volta tramite ricognizioni a terra, validazione incrociata tramite analisi da remoto e comparazione con i dati editi in letteratura, ha confermato il potenziale della metodologia, consentendo di introdurre il concetto di Archaeological Object-Based Image Analysis (ArchaeOBIA), per rimarcare le specificità delle applicazioni object-based nell’ambito della disciplina archeologica.
Gapper, Justin J. "Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images." Chapman University Digital Commons, 2019. https://digitalcommons.chapman.edu/cads_dissertations/2.
Full textBooks on the topic "Remote Sensing Image Data Analysis"
Processing of remote sensing data. Lisse: Balkema, 2003.
Find full textGirard, Michel-Claude. Processing of remote sensing data. Lisse: Balkema, 2001.
Find full textCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textIEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (2003 Greenbelt, Md.). 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (a workshop honoring Professor David A. Landgrebe): NASA Goddard Space Flight Visitor Center, Greenbelt, Maryland, USA, 27-28 October 2003. Piscataway, NJ: IEEE, 2004.
Find full textJ, Lavreau, and Bardinet Claude, eds. Image analysis, geological control, and radiometric survey of LAND[S]AT TM data in Tanzania. Tervuren, Belgique: Musee royal de l'Afrique centrale, 1988.
Find full textDigital analysis of remotely sensed imagery. New York: McGraw-Hill, 2009.
Find full textImage analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full text2-D and 3-D image registration for medical, remote sensing, and industrial applications. Hoboken, NJ: J. Wiley & Sons, 2005.
Find full textA hierarchical object-based approach for urban land-use classification from remote sensing data. Enschede, Netherlands: ITC, 2003.
Find full textBook chapters on the topic "Remote Sensing Image Data Analysis"
Richards, John A., and Xiuping Jia. "Data Fusion." In Remote Sensing Digital Image Analysis, 293–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_12.
Full textRichards, John A. "Multispectral Transformations of Image Data." In Remote Sensing Digital Image Analysis, 127–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_6.
Full textRichards, John A. "Fourier Transformation of Image Data." In Remote Sensing Digital Image Analysis, 148–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_7.
Full textRichards, John A. "Multispectral Transformations of Image Data." In Remote Sensing Digital Image Analysis, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_6.
Full textRichards, John A. "Fourier Transformation of Image Data." In Remote Sensing Digital Image Analysis, 155–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_7.
Full textRichards, John A., and Xiuping Jia. "Interpretation of Hyperspectral Image Data." In Remote Sensing Digital Image Analysis, 313–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_13.
Full textRichards, John A., and Xiuping Jia. "Multispectral Transformations of Image Data." In Remote Sensing Digital Image Analysis, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_6.
Full textRichards, John A., and Xiuping Jia. "Fourier Transformation of Image Data." In Remote Sensing Digital Image Analysis, 155–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03978-6_7.
Full textRichards, John A. "The Interpretation of Digital Image Data." In Remote Sensing Digital Image Analysis, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02462-1_3.
Full textRichards, John A. "The Interpretation of Digital Image Data." In Remote Sensing Digital Image Analysis, 75–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88087-2_3.
Full textConference papers on the topic "Remote Sensing Image Data Analysis"
Teillet, P. M., Brian L. Markham, and Richard R. Irish. "Landsat radiometric cross-calibration: extended analysis of tandem image data sets." In Remote Sensing, edited by Roland Meynart, Steven P. Neeck, and Haruhisa Shimoda. SPIE, 2005. http://dx.doi.org/10.1117/12.626324.
Full textLiu, Zhigang, and Zhichao Sun. "Active one-class classification of remote sensing image." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.816115.
Full textSoergel, Uwe, and Ulrich Thoennessen. "Automatic geocoding of high-value targets using structural image analysis and GIS data." In Remote Sensing, edited by Sebastiano B. Serpico. SPIE, 1999. http://dx.doi.org/10.1117/12.373246.
Full textShao, Zhenfeng, and Deren Li. "A strategy of using remote sensing image to update the geographical data." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.654553.
Full textZhang, Hongsheng, and Yan Li. "Shape-adaptive neighborhood classification method for remote sensing image." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815857.
Full textDu, Qian. "Noise estimation for remote sensing image data analysis." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Sylvia S. Shen and Paul E. Lewis. SPIE, 2004. http://dx.doi.org/10.1117/12.508101.
Full textLiu, Liangming, and Deren Li. "Drought analysis based on remote sensing and ancillary data." In Multispectral Image Processing and Pattern Recognition, edited by Qingxi Tong, Yaoting Zhu, and Zhenfu Zhu. SPIE, 2001. http://dx.doi.org/10.1117/12.441382.
Full textHe, Hui, and Xianchuan Yu. "A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.652298.
Full textLiu, Tingting, Pingxiang Li, Liangpei Zhang, and Xu Chen. "Multi-spectral remote sensing image retrieval based on semantic extraction." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815899.
Full textJackson, Philip T. G., Carl J. Nelson, Jens Schiefele, and Boguslaw Obara. "Runway detection in High Resolution remote sensing data." In 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2015. http://dx.doi.org/10.1109/ispa.2015.7306053.
Full textReports on the topic "Remote Sensing Image Data Analysis"
Falconer, David G. L51774 Remote Sensing of Hazardous Ground Movement about Buried Gas Transmission Lines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 1997. http://dx.doi.org/10.55274/r0011973.
Full textKholoshyn, Ihor V., Olga V. Bondarenko, Olena V. Hanchuk, and Iryna M. Varfolomyeyeva. Cloud technologies as a tool of creating Earth Remote Sensing educational resources. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3885.
Full textCohen, Yafit, Carl Rosen, Victor Alchanatis, David Mulla, Bruria Heuer, and Zion Dar. Fusion of Hyper-Spectral and Thermal Images for Evaluating Nitrogen and Water Status in Potato Fields for Variable Rate Application. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7594385.bard.
Full textDucey, Craig. Hierarchical Image Analysis and Characterization of Scaling Effects in Remote Sensing. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.399.
Full textLasko, Kristofer, and Elena Sava. Semi-automated land cover mapping using an ensemble of support vector machines with moderate resolution imagery integrated into a custom decision support tool. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42402.
Full textSaltus, Allen, Maygarden Jr., Saucier Benjamin, and Roger T. Analysis and Technical Report of Remote Sensing Data for the USS Kinsman. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada375666.
Full textBorrett, Veronica, Melissa Hanham, Gunnar Jeremias, Jonathan Forman, James Revill, John Borrie, Crister Åstot, et al. Science and Technology for WMD Compliance Monitoring and Investigations. The United Nations Institute for Disarmament Research, December 2020. http://dx.doi.org/10.37559/wmd/20/wmdce11.
Full textCarroll, Herbert B., and Genliang Guo. A New Methodology for Oil and Gas Exploration Using Remote Sensing Data and Surface Fracture Analysis. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/3244.
Full textSeginer, Ido, Louis D. Albright, and Robert W. Langhans. On-line Fault Detection and Diagnosis for Greenhouse Environmental Control. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7575271.bard.
Full textScott R. Reeves and Randal L. Billingsley. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/925463.
Full text