Academic literature on the topic 'Remote photoplethysmography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Remote photoplethysmography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Remote photoplethysmography"
van Gastel, Mark, Sander Stuijk, and Gerard de Haan. "Robust respiration detection from remote photoplethysmography." Biomedical Optics Express 7, no. 12 (November 3, 2016): 4941. http://dx.doi.org/10.1364/boe.7.004941.
Full textLaurie, Jordan, Niall Higgins, Thierry Peynot, and Jonathan Roberts. "Dedicated Exposure Control for Remote Photoplethysmography." IEEE Access 8 (2020): 116642–52. http://dx.doi.org/10.1109/access.2020.3003548.
Full textKim, Seung-Hyun, Su-Min Jeon, and Eui Chul Lee. "Face Biometric Spoof Detection Method Using a Remote Photoplethysmography Signal." Sensors 22, no. 8 (April 16, 2022): 3070. http://dx.doi.org/10.3390/s22083070.
Full textBoccignone, Giuseppe, Donatello Conte, Vittorio Cuculo, Alessandro D’Amelio, Giuliano Grossi, Raffaella Lanzarotti, and Edoardo Mortara. "pyVHR: a Python framework for remote photoplethysmography." PeerJ Computer Science 8 (April 15, 2022): e929. http://dx.doi.org/10.7717/peerj-cs.929.
Full textBobbia, Serge, Richard Macwan, Yannick Benezeth, Alamin Mansouri, and Julien Dubois. "Unsupervised skin tissue segmentation for remote photoplethysmography." Pattern Recognition Letters 124 (June 2019): 82–90. http://dx.doi.org/10.1016/j.patrec.2017.10.017.
Full textPo, Lai-Man, Litong Feng, Yuming Li, Xuyuan Xu, Terence Chun-Ho Cheung, and Kwok-Wai Cheung. "Block-based adaptive ROI for remote photoplethysmography." Multimedia Tools and Applications 77, no. 6 (March 13, 2017): 6503–29. http://dx.doi.org/10.1007/s11042-017-4563-7.
Full textPeng, Rong-Chao, Wen-Rong Yan, Ning-Ling Zhang, Wan-Hua Lin, Xiao-Lin Zhou, and Yuan-Ting Zhang. "Investigation of Five Algorithms for Selection of the Optimal Region of Interest in Smartphone Photoplethysmography." Journal of Sensors 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/6830152.
Full textLee, Kunyoung, Jaemu Oh, Hojoon You, and Eui Chul Lee. "Improving Remote Photoplethysmography Performance through Deep-Learning-Based Real-Time Skin Segmentation Network." Electronics 12, no. 17 (September 4, 2023): 3729. http://dx.doi.org/10.3390/electronics12173729.
Full textBok, Jin Yeong, Kun Ha Suh, and Eui Chul Lee. "Detecting Fake Finger-Vein Data Using Remote Photoplethysmography." Electronics 8, no. 9 (September 11, 2019): 1016. http://dx.doi.org/10.3390/electronics8091016.
Full textYu, Su-Gyeong, So-Eui Kim, Na Hye Kim, Kun Ha Suh, and Eui Chul Lee. "Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals." Sensors 21, no. 18 (September 17, 2021): 6241. http://dx.doi.org/10.3390/s21186241.
Full textDissertations / Theses on the topic "Remote photoplethysmography"
Soleimani, Vahid. "Remote depth-based photoplethysmography in pulmonary function testing." Thesis, University of Bristol, 2018. http://hdl.handle.net/1983/f6a6f7b6-943f-43f7-b684-1612161aee1a.
Full textBotina, Monsalve Deivid. "Remote photoplethysmography measurement and filtering using deep learning based methods." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2022. http://www.theses.fr/2022UBFCK061.
Full textRPPG is a technique developed to measure the blood volume pulse signal and then estimate physiological data such as pulse rate, breathing rate, and pulse rate variability.Due to the multiple sources of noise that deteriorate the quality of the RPPG signal, conventional filters are commonly used. However, some alterations remain, but interestingly, an experienced eye can easily identify them. In the first part of this thesis, we propose the Long Short-Term Memory Deep-Filter (LSTMDF) network in the RPPG filtering task. We use different protocols to analyze the performance of the method. We demonstrate how the network can be efficiently trained with a few signals. Our study demonstrates experimentally the superiority of the LSTM-based filter compared with conventional filters. We found a network sensitivity related to the average signal-to-noise ratio on the RPPG signals.Approaches based on convolutional networks such as 3DCNNs have recently outperformed traditional hand-crafted methods in the RPPG measurement task. However, it is well known that large 3DCNN models have high computational costs and may be unsuitable for real-time applications. As the second contribution of this thesis, we propose a study of a 3DCNN architecture, finding the best compromise between pulse rate measurement precision and inference time. We use an ablation study where we decrease the input size, propose a custom loss function, and evaluate the impact of different input color spaces. The result is the Real-Time RPPG (RTRPPG), an end-to-end RPPG measurement framework that can be used in GPU and CPU. We also proposed a data augmentation method that aims to improve the performance of deep learning networks when the database has specific characteristics (e.g., fitness movement) and when there is not enough data available
Zaunseder, Sebastian, Alexander Trumpp, Hannes Ernst, Michael Förster, and Hagen Malberg. "Spatio-temporal analysis of blood perfusion by imaging photoplethysmography." SPIE, 2018. https://tud.qucosa.de/id/qucosa%3A35157.
Full textTrumpp, Alexander, Johannes Lohr, Daniel Wedekind, Martin Schmidt, Matthias Burghardt, Axel R. Heller, Hagen Malberg, and Sebastian Zaunseder. "Camera-based photoplethysmography in an intraoperative setting." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234950.
Full textUggla, Lingvall Kristoffer. "Remote heart rate estimation by evaluating measurements from multiple signals." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210303.
Full textEn människas puls säger en hel del om dennes hälsa. För att mäta pulsenanvänds vanligtvis metoder som vidrör människan, vilket iblandär en nackdel. I det här examensarbetet tas en metod för pulsmätningpå avstånd fram, som endast använder klipp från en vanlig videokamera. Färgen i pannan mäts och utifrån den genereras flera signalersom analyseras, vilket resulterar i olika mätvärden för pulsen. Genomatt värdera dessa mätvärden med avseende på hur tydliga signalernaär, beräknas ett viktat medelvärde som ett slutgiltigt estimat på medelpulsen. Metoden testas på videoklipp med varierande svårighetsgrad,beroende på hur mycket rörelser som förekommer och på vilketavstånd från kameran försökspersonen står. Resultaten visar att metodenhar mycket god potential och att man kan man förvänta sig finaresultat med bättre, mindre brusiga signaler.
Ghanadian, Hamideh. "A Machine Learning Method to Improve Non-Contact Heart Rate Monitoring Using RGB Camera." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38563.
Full textAlghoul, Karim. "Heart Rate Variability Extraction from Video Signals." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33003.
Full textTrumpp, Alexander. "Remote Assessment of the Cardiovascular Function Using Camera-Based Photoplethysmography." Doctoral thesis, 2019. https://tud.qucosa.de/id/qucosa%3A36758.
Full textBook chapters on the topic "Remote photoplethysmography"
Lempe, Georg, Sebastian Zaunseder, Tom Wirthgen, Stephan Zipser, and Hagen Malberg. "ROI Selection for Remote Photoplethysmography." In Bildverarbeitung für die Medizin 2013, 99–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36480-8_19.
Full textHe, Lin, Kazi Shafiul Alam, Jiachen Ma, Richard Povinelli, and Sheikh Iqbal Ahamed. "Dynamics Reconstruction of Remote Photoplethysmography." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 96–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99194-4_8.
Full textKalinin, Konstantin, Yuriy Mironenko, Mikhail Kopeliovich, and Mikhail Petrushan. "Towards Collecting Big Data for Remote Photoplethysmography." In Lecture Notes in Networks and Systems, 70–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80129-8_6.
Full textKalinin, Konstantin, Yuriy Mironenko, Mikhail Kopeliovich, and Mikhail Petrushan. "Towards Collecting Big Data for Remote Photoplethysmography." In Lecture Notes in Networks and Systems, 70–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80129-8_6.
Full textLiu, Siqi, Pong C. Yuen, Shengping Zhang, and Guoying Zhao. "3D Mask Face Anti-spoofing with Remote Photoplethysmography." In Computer Vision – ECCV 2016, 85–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46478-7_6.
Full textMonika, Harish Kumar, Sakshi Kaushal, and Varinder Garg. "Remote Photoplethysmography: Digital Disruption in Health Vital Acquisition." In Explainable Machine Learning for Multimedia Based Healthcare Applications, 215–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38036-5_12.
Full textQiu, Zhaolin, Lanfen Lin, Hao Sun, Jiaqing Liu, and Yen-Wei Chen. "Artificial Intelligence in Remote Photoplethysmography: Remote Heart Rate Estimation from Video Images." In Handbook of Artificial Intelligence in Healthcare, 267–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79161-2_11.
Full textZhang, Haoyu, Raghavendra Ramachandra, and Christoph Busch. "Face Presentation Attack Detection Using Remote Photoplethysmography Transformer Model." In Communications in Computer and Information Science, 558–71. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31417-9_42.
Full textSinhal, Ruchika, Kavita Singh, and M. M. Raghuwanshi. "An Overview of Remote Photoplethysmography Methods for Vital Sign Monitoring." In Computer Vision and Machine Intelligence in Medical Image Analysis, 21–31. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8798-2_3.
Full textLee, Kunyoung, Hojoon You, Jaemu Oh, and Eui Chul Lee. "Extremely Lightweight Skin Segmentation Networks to Improve Remote Photoplethysmography Measurement." In Intelligent Human Computer Interaction, 454–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27199-1_45.
Full textConference papers on the topic "Remote photoplethysmography"
Mironenko, Yuriy, Konstantin Kalinin, Mikhail Kopeliovich, and Mikhail Petrushan. "Remote Photoplethysmography: Rarely Considered Factors." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00156.
Full textMacwan, Richard, Yannick Benezeth, Alamin Mansouri, Keisuke Nakamura, and Randy Gomez. "Remote Photoplethysmography measurement using constrained ICA." In 2017 E-Health and Bioengineering Conference (EHB). IEEE, 2017. http://dx.doi.org/10.1109/ehb.2017.7995453.
Full textWang, Wenjin, Albertus C. den Brinker, Sander Stuijk, and Gerard de Haan. "Color-Distortion Filtering for Remote Photoplethysmography." In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017. http://dx.doi.org/10.1109/fg.2017.18.
Full textDemirezen, Halil, and Cigdem Eroglu Erdem. "Remote Photoplethysmography Using Nonlinear Mode Decomposition." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462538.
Full textHarbawi, Malek A., Muhammad I. Ibrahimy, and S. M. A. Motakabber. "Photoplethysmography based remote health monitoring system." In 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). IEEE, 2013. http://dx.doi.org/10.1109/icsima.2013.6717955.
Full textRubins, Uldis, Zbignevs Marcinkevics, Robert Andrianirina Muckle, Ieva Henkuzena, Andris Roze, and Andris Grabovskis. "Remote photoplethysmography for assessment of oral mucosa." In Preclinical and Clinical Optical Diagnostics, edited by J. Quincy Brown and Ton G. van Leeuwen. SPIE, 2019. http://dx.doi.org/10.1117/12.2526979.
Full textMarcinkevics, Zbignevs, Kapil Ilango, Paula Balode, Uldis Rubins, and Andris Grabovskis. "The assessment of gingivitis using remote photoplethysmography." In Third International Conference Biophotonics Riga 2020, edited by Janis Spigulis. SPIE, 2020. http://dx.doi.org/10.1117/12.2581969.
Full textFeng, Litong, Lai-Man Po, Xuyuan Xu, and Yuming Li. "Motion artifacts suppression for remote imaging photoplethysmography." In 2014 International Conference on Digital Signal Processing (DSP). IEEE, 2014. http://dx.doi.org/10.1109/icdsp.2014.6900813.
Full textWu, Bing-Fei, Po-Wei Huang, Da-Hong He, Chung-Han Lin, and Kuan-Hung Chen. "Remote Photoplethysmography Enhancement with Machine Leaning Methods." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914554.
Full textKossack, Benjamin, Eric Wisotzky, Peter Eisert, Sebastian P. Schraven, Brigitta Globke, and Anna Hilsmann. "Perfusion assessment via local remote photoplethysmography (rPPG)." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00238.
Full text