Academic literature on the topic 'Reliability of mechanical systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reliability of mechanical systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reliability of mechanical systems"
Manshin, Yu P., and E. Yu Manshina. "Reliability in mechanical systems projects." Journal of Physics: Conference Series 2131, no. 2 (December 1, 2021): 022029. http://dx.doi.org/10.1088/1742-6596/2131/2/022029.
Full textMoss, T. R., and J. D. Andrews. "Reliability Assessment of Mechanical Systems." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 210, no. 3 (October 1996): 205–16. http://dx.doi.org/10.1243/pime_proc_1996_210_315_02.
Full textChegodaev, D. E., and V. N. Samsonov. "Evaluating the reliability of mechanical systems." Strength of Materials 19, no. 12 (December 1987): 1720–23. http://dx.doi.org/10.1007/bf01523136.
Full textBen-Haim, Yakov. "Non-Probabilistic Reliability of Mechanical Systems." IFAC Proceedings Volumes 27, no. 5 (June 1994): 281–86. http://dx.doi.org/10.1016/s1474-6670(17)48041-4.
Full textBernstein, N. "Reliability analysis techniques for mechanical systems." Quality and Reliability Engineering International 1, no. 4 (October 1985): 235–48. http://dx.doi.org/10.1002/qre.4680010405.
Full textKwak, Byung Man. "1704 Algorithms in reliability analysis and optimization for structural and mechanical systems." Proceedings of The Computational Mechanics Conference 2005.18 (2005): 125–26. http://dx.doi.org/10.1299/jsmecmd.2005.18.125.
Full textIvanović, Miloš. "Reliability Distribution in Mechanical Systems for Given Reliability and Cost." Advanced Materials Research 633 (January 2013): 301–11. http://dx.doi.org/10.4028/www.scientific.net/amr.633.301.
Full textAvontuur, G. C., and K. van der Werff. "Systems reliability analysis of mechanical and hydraulic drive systems." Reliability Engineering & System Safety 77, no. 2 (August 2002): 121–30. http://dx.doi.org/10.1016/s0951-8320(02)00039-x.
Full textLv, H., and Y. Zhang. "Gradual reliability analysis of mechanical component systems." Materials Research Innovations 18, sup1 (March 2014): S1–29—S1–32. http://dx.doi.org/10.1179/1432891713z.000000000349.
Full textTelyshev, D. V. "Mechanical Circulatory Support Systems Reliability Prediction and Assessment." Proceedings of Universities. ELECTRONICS 25, no. 1 (February 2020): 58–68. http://dx.doi.org/10.24151/1561-5405-2020-25-1-58-68.
Full textDissertations / Theses on the topic "Reliability of mechanical systems"
Stephenson, John Antony. "Design for reliability in mechanical systems." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/251589.
Full textZhao, Jian-Hua. "The reliability optimization of mechanical systems using metaheuristic approach." Mémoire, École de technologie supérieure, 2005. http://espace.etsmtl.ca/326/1/ZHAO_Jian%2DHua.pdf.
Full textCampean, Ioan Felician. "Product reliability analysis and prediction : applications to mechanical systems." Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714448.
Full textPu, Jun. "Reliability and availability analysis of three-state device systems." Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/10384.
Full textAnude, Okezie. "The analysis of redundant reliability systems with common-cause failures." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6847.
Full textBurnham, Michael Richard. "Three competing risk problems in the study of mechanical systems reliability." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16853.
Full textCrk, Vladimir 1958. "Component and system reliability assessment from degradation data." Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282820.
Full textAzarkhail, Mohammadreza. "Agent autonomy approach to physics-based reliability modeling of structures and mechanical systems." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7680.
Full textThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wei, Frank L. (Frank Lili) 1977. "Effects of mechanical properties on the reliability of Cu/low-k metallization systems." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42026.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 211-217).
Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability degradation in Cu-interconnects. A thorough understanding of the effects of mechanical properties on electromigration induced failures is required for accurate reliability assessments. During electromigration inside Cu-interconnects, a change in atomic concentration correlates with a change in stress through the effective bulk modulus of the materials system, B, which decreases as the moduli of low-k materials used as inter-level dielectrics (ILDs) decrease. This property is at the core of discussions on electromigration-induced failures by all mechanisms. B is computed using finite element modeling analyses, using experimentally determined mechanical properties of the individual constituents. Characterization techniques include nanoindentation, cantilever deflection, and pressurized membrane deflection for elastic properties measurements, and chevron-notched double-cantilever pull structures for adhesion measurements. The dominant diffusion path in Cu-interconnects is the interface between Cu and the capping layer, which is currently a Si3N4-based film. We performed experiments on Cu-interconnect segments to investigate the kinetics of electromigration. A steady resistance increase over time prior to open-circuit failure, a result of void growth, correlates with the electromigration drift velocity. Diffusive measurements made in this fashion are more fundamental than lifetime measurements alone, and correlate with the combined effects of the electron wind and the back stress forces during electromigration induced void growth.
(cont.)Using this method, the electromigration activation energy was determined to be 0.80±0.06eV. We conducted experiments using Cu-interconnects with different lengths to study line length effects. Although a reliability improvement is observed as the segment length decreases, there is no deterministic current-density line-length product, jL, for which all segments are immortal. This is because small, slit-like voids forming directly below vias will cause open-failures in Cu-interconnects. Therefore, the probabilistic jLcrit values obtained from via-above type nterconnects approximate the thresholds for void nucleation. The fact that jLcrit,nuc monotonically decreases with B results from an energy balance between the strain energy released and surface energy cost for void nucleation and the critical stress required for void nucleation is proportional to B. We also performed electromigration experiments using Cu/low-k interconnect trees to investigate the effects of active atomic sinks and reservoirs on interconnect reliability. In all cases, failures were due to void growth. Kinetic parameters were extracted to be ... Quantitative analysis demonstrates that the reliability of the failing segments is modulated by the evolution of stress in the whole interconnect tree. During this process, not only the diffusive parameters but also B play critical roles. However, as B decreases, the positive effects of reservoirs on reliability are diminished, while the negative effects of sinks on reliability are amplified.
(cont.) Through comprehensive failure analyses, we also successfully identified the mechanism of electromigration-induced extrusions in Cu/low-k interconnects to be nearmode-I interfacial fracture between the Si3N4-based capping layer and the metallization/ILD layer below. The critical stress required for extrusion is found to depend not only on B but also on the layout and dimensions of the interconnects. As B decreases, sparsely packed, wide interconnects are most prone to extrusion-induced failures. Altogether, this research accounts for the effects of mechanical properties on all mechanisms of failure due to electromigration. The results provide an improved experimental basis for accurate circuit-level, layout-specific reliability assessments.
by Frank LiLi Wei.
Ph.D.
Singh, Naveen Chandra Lall Pradeep. "Thermo-mechanical reliability models for life prediction of area array electronics in extreme environments." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/SINGH_NAVEEN_54.pdf.
Full textBooks on the topic "Reliability of mechanical systems"
Woo, Seongwoo. Reliability Design of Mechanical Systems. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7236-0.
Full textWoo, Seongwoo. Reliability Design of Mechanical Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50829-0.
Full text1926-, Davidson J. F., and Hunsley Cathy, eds. The Reliability of mechanical systems. 2nd ed. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1994.
Find full textF, Davidson J., ed. The Reliability of mechanical systems. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1988.
Find full text1926-, Davidson J. F., Hunsley Cathy, and Institution of Mechanical Engineers, eds. The reliability of mechanical systems. 2nd ed. London: Mechanical Engineering for the Institution of Mechanical Engineers, 1994.
Find full textTitenok, Aleksandr, V. Sidoro, and A. V. Kirichek. Ensuring the operational reliability of mechanical systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1096388.
Full textUnited States. National Aeronautics and Space Administration., ed. Mechanical system reliability for long life space systems: Final report. Nashville, Tenn: Dept. of Mechanical Engineering, Vanderbilt University, 1994.
Find full textDaniels, B. K. Achieving Safety and Reliability with Computer Systems. Dordrecht: Springer Netherlands, 1987.
Find full textE, Cabrera, Vela Antonio F, and International Course on Improving Efficiency and Reliability in Water Distribution Systems (1994 : Valencia, Spain), eds. Improving efficiency and reliability in water distribution systems. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textMahadevan, Sankaran. Multidisciplinary system reliability analysis. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textBook chapters on the topic "Reliability of mechanical systems"
El Hami, Abdelkhalak, and Bouchaïb Radi. "Reliability in Mechanical Systems." In Uncertainty and Optimization in Structural Mechanics, 17–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118711903.ch2.
Full textWoo, Seongwoo. "Mechanical System Failures." In Reliability Design of Mechanical Systems, 139–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_6.
Full textWoo, Seongwoo. "Mechanical System Failures." In Reliability Design of Mechanical Systems, 249–306. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_7.
Full textCarter, A. D. S. "System or equipment reliability." In Mechanical Reliability, 331–45. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-18478-1_11.
Full textGrynchenko, Oleksandr, and Oleksiy Alfyorov. "Prediction of System Reliability." In Mechanical Reliability, 69–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41564-8_4.
Full textWoo, Seongwoo. "Fluid Motion and Mechanical Vibration." In Reliability Design of Mechanical Systems, 205–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_6.
Full textZhang, Yu, Zhuo Wang, and Yanhui Wang. "Reliability Analysis of Complex Mechanical Systems." In Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021, 354–61. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9913-9_40.
Full textBen-Haim, Yakov. "Robust Reliability of Static Systems." In Robust Reliability in the Mechanical Sciences, 31–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61154-4_3.
Full textWoo, Seongwoo. "Modern Definitions in Reliability Engineering." In Reliability Design of Mechanical Systems, 35–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_3.
Full textWoo, Seongwoo. "Modern Definitions in Reliability Engineering." In Reliability Design of Mechanical Systems, 53–99. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_3.
Full textConference papers on the topic "Reliability of mechanical systems"
Abdelkhalakl, El Hami, and ITMI Mhamed. "Reliability of Mechanical System of Systems." In 5th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center (AIRCC), 2018. http://dx.doi.org/10.5121/csit.2018.80410.
Full textTadigadapa, Srinivas, and Nader Najafi. "Reliability of micro-electro-mechanical systems (MEMS)." In Micromachining and Microfabrication, edited by Rajeshuni Ramesham. SPIE, 2001. http://dx.doi.org/10.1117/12.443002.
Full textHassan, Maguid H. M. "Reliability Evaluation of Smart Structural Systems." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79125.
Full textFarley, D., A. Dasgupta, M. Al-Bassyiouni, and J. W. C. de Vries. "System-Level Reliability Qualification of Complex Electronic Systems." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11762.
Full textXu, Shuzhen, and Enrique A. Susemihl. "Reliability Analysis of Water Mist Systems." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41046.
Full textXU, Wenkai, Jiankang SUN, Bo FAN, and Kunming HONG. "Dynamic Reliability Evaluation of Complex Mechanical System." In The 2015 International Conference on Mechanical Engineering and Control Systems (MECS2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814740616_0011.
Full textRekvava, Paata. "Seismic Reliability Analysis of Structural Systems." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10686.
Full textLall, Pradeep, Robert Hinshaw, Ranjit Pandher, Mahendra Harsha, and Jeff Suhling. "Thermo-mechanical reliability of SAC leadfree alloys." In 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501303.
Full textYin, Chang, Wei Dai, and Yuanxing Huang. "Reliability Improvement of mechanical components based on TRIZ." In 2015 First International Conference on Reliability Systems Engineering (ICRSE). IEEE, 2015. http://dx.doi.org/10.1109/icrse.2015.7366463.
Full textAugusti, G., M. Ciampoli, and F. Petrini. "Reliability of Structural Systems Under Wind Action." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12357.
Full textReports on the topic "Reliability of mechanical systems"
Poerner. PR-015-11211-R02 Mechanical Seal Auxiliary Systems Best Practices Summary. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2014. http://dx.doi.org/10.55274/r0010817.
Full textPoerner. PR-015-11211-R01 Mechanical Seal Auxiliary Systems Guideline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2013. http://dx.doi.org/10.55274/r0010789.
Full textN. Ramirez. Reliability Analysis of the Mechanical System in Selected Portions of the Nuclear HVAC System. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/850443.
Full textGroeneveld, Andrew B., Stephanie G. Wood, and Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39601.
Full textCox, James V., Sam A. Candelaria, Michael Thomas Dugger, Michelle Ann Duesterhaus, Danelle Mary Tanner, Shannon J. Timpe, James Anthony Ohlhausen, et al. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS). Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/923082.
Full textLozev. L52022 Validation of Current Approaches for Girth Weld Defect Sizing Accuracy. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2002. http://dx.doi.org/10.55274/r0011325.
Full textTehrani, Fariborz M., Kenneth L. Fishman, and Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems: An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, July 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Full textSadlon, Richard J. Mechanical Applications in Reliability Engineering. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada363860.
Full textMcHenry, K. D., and B. G. Koepke. Mechanical Reliability of Piezoelectric and Dielectric Ceramics. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada198458.
Full textJadaan, Osama M., and Andrew A. Wereszczak. Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs. Office of Scientific and Technical Information (OSTI), May 2009. http://dx.doi.org/10.2172/953658.
Full text