Academic literature on the topic 'Relativistic quantum theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Relativistic quantum theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Relativistic quantum theory"
Frolov, P. A., and A. V. Shebeko. "Relativistic Invariance and Mass Renormalization in Quantum Field Theory." Ukrainian Journal of Physics 59, no. 11 (November 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.
Full textGuseinov, I. I. "Quantum Self-Frictional Relativistic Nucleoseed Spinor-Type Tensor Field Theory of Nature." Advances in High Energy Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6049079.
Full textPolyzou, W. N., W. Glöckle, and H. Witała. "Spin in Relativistic Quantum Theory." Few-Body Systems 54, no. 11 (December 29, 2012): 1667–704. http://dx.doi.org/10.1007/s00601-012-0526-8.
Full text't Hooft, Gerard. "Beyond relativistic quantum string theory." Modern Physics Letters A 29, no. 26 (August 27, 2014): 1430030. http://dx.doi.org/10.1142/s0217732314300304.
Full textGreen, H. S. "Quantum Theory of Gravitation." Australian Journal of Physics 51, no. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.
Full textChanyal, B. C. "A relativistic quantum theory of dyons wave propagation." Canadian Journal of Physics 95, no. 12 (December 2017): 1200–1207. http://dx.doi.org/10.1139/cjp-2017-0080.
Full textLUNDBERG, LARS-ERIK. "QUANTUM THEORY, HYPERBOLIC GEOMETRY AND RELATIVITY." Reviews in Mathematical Physics 06, no. 01 (February 1994): 39–49. http://dx.doi.org/10.1142/s0129055x94000043.
Full textShin, Ghi Ryang, and Johann Rafelski. "Relativistic classical limit of quantum theory." Physical Review A 48, no. 3 (September 1, 1993): 1869–74. http://dx.doi.org/10.1103/physreva.48.1869.
Full textAharonov, Yakir, David Z. Albert, and Lev Vaidman. "Measurement process in relativistic quantum theory." Physical Review D 34, no. 6 (September 15, 1986): 1805–13. http://dx.doi.org/10.1103/physrevd.34.1805.
Full textStrocchi, F. "Relativistic Quantum Mechanics and Field Theory." Foundations of Physics 34, no. 3 (March 2004): 501–27. http://dx.doi.org/10.1023/b:foop.0000019625.30165.35.
Full textDissertations / Theses on the topic "Relativistic quantum theory"
Palmer, Matthew. "Relativistic quantum information theory and quantum reference frames." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9891.
Full textRuschhaupt, Andreas. "A relativistic extension of event enhanced quantum theory." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96395864X.
Full textWallace, David. "Issues in the foundations of relativistic quantum theory." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270178.
Full textSomaroo, Shyamal Sewlal. "Applications of the geometric algebra to relativistic quantum theory." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627593.
Full textTagliazucchi, Matteo. "Renormalization in non-relativistic quantum mechanics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21030/.
Full textSkaane, Haakon. "Relativistic quantum theory and its applications to atoms and molecules." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267921.
Full textAl-Naseri, Haidar. "Quantum kinetic relativistic theory of linearized waves in magnetized plasmas." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150292.
Full textAlmoukhalalati, Adel. "Applications of variational perturbation theory in relativistic molecular quantum mechanics." Toulouse 3, 2016. http://www.theses.fr/2016TOU30172.
Full textThe father of relativistic quantum mechan ics P. A. M. Dirac predicted that, the more realistic version of quantum mechanics that he established wouId not offer much more when compared to the non-relativistic formulation of quantum mechanics when applied to ordinary atomic and molecular systems. When the relativistic quantum theory was around forty years old, people had started to recognize how important relativistic effects can beeven for the study of atomic and molecular systems. Relativistic effects are manifested via the contraction of atomics and p orbitais, the expansion of atomic d and 1 orbitais, and spin-orbit coupling. A classical example on t he importance of relativistic effects is the band struct ure of metallic gold for which non-relativistic caleulations will lead to an overestimation of the 5d-6p gap predicting a UV absorption band which is compatible with a metal that looks like silver. The thesis focuses on the atomic and molecular calculations within the 4-component relativistic framework. Ln particular, the use of the variational perturbation theory in relativistic framework. The perturbation theory in quantum mechanics is based on partitioning the Hamiltonian H into zeroth-order Hamiltonian Ho and V that forms the perturbation through a para meter lambda. Ln many-body (Rayleigh-Sch rodinger) perturbation theory, we have an exact solution of t he Hamiltonian l/0 , whereas in the variational perturbation theory, we assume to have anoptimized energy for any value of the parameter À. The thesis contains two principal projects, the first project concerns the description of the electron correlation in the relativistic framework. Ln this project , we focused on the perturbative approach to derive t he relativistic formulas nece~sary for the energy in two-electron atoms. T hecorrelation energy is the difference between the exact eigenvalue of the Ha mi ltonian and its expectation value in the Hartree-Fock approximation. The exact eigenvalue is not avail able, but in the non- relativistic domain t he best solution is a full Cl for a given basis. Our main goal, in this project , will be to show that the best solution of the wave equation for the embedded Dirac-Coulomb Hamil tonian, is not a Full Cl, as in thenon- relativistic case, but a MCSCF which uses a Cl development in positive-energy orbitais only, but which keeps rotations between the positive and negative energy orbitais to optimize the projection operator. The second project concerns a study of the effects of t he nuclear volume in the vibrational spectra of diatomic molecules. Ln the early 80s, Theg roup of Professor Eberhardt Tiemann in Hanover used the rotational spectroscopy with high resolution to study a series of diatomic molecules containing heavy a toms like lead in order to establish spectroscopie constants (R. Bond length, vibrational frequency W c etc. ) with a great precision. A molecule AB has several isotopomers according to isotopes atoms A and B and it was weil known at that t ime only the spectrum of eachisotopomer is slightly d iffe rent because of the mass differences between each isotope of the atoms A and B. Prof. Tiemann and his collaborators discovered that we must also take into account the difference in nuclear volume of each isotope. We provide an independent check on previous experimental and t heoretical studies of nuclear volume effects in rotational spectroscopy, notably re-derivation of theory and benchmark previous calculations by 4-component relativistic state of the art correlated calculations
Bird, Christopher Shane. "Infrared regularization in relativistic chiral perturbation theory." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://hdl.handle.net/1828/1062.
Full textAiello, Gordon J. "An application of the theory of moments to Euclidean relativistic quantum mechanical scattering." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5902.
Full textBooks on the topic "Relativistic quantum theory"
Fanchi, John R. Parametrized relativistic quantum theory. Dordrecht: Kluwer Academic, 1993.
Find full textFanchi, John R. Parametrized Relativistic Quantum Theory. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1944-3.
Full textRelativistic quantum fields. Mineola, N.Y: Dover Publications, 2011.
Find full textRelativistic quantum mechanics. [Dordrecht, Netherlands: Springer, 2011.
Find full textPeter, Schwerdtfeger, ed. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.
Find full textPeter, Schwerdtfeger, ed. Relativistic electronic structure theory. Amsterdam: Elsevier Science, 2002.
Find full textP, Hwang W. Y., ed. Relativistic quantum mechanics and quantum fields. Singapore: World Scientific, 1991.
Find full textLandau, Lev Davidovich 1908. Quantum mechanics: Non-relativistic theory. 3rd ed. Oxford: Butterworth-Heinemann, 1991.
Find full textM, Lifshit͡s E., ed. Quantum mechanics: Non-relativistic theory. 3rd ed. Oxford: Pergamon Press, 1991.
Find full text1908-, Landau Lev Davidovich. Quantum mechanics: Non-relativistic theory. 3rd ed. Oxford: Pergamon, 1991.
Find full textBook chapters on the topic "Relativistic quantum theory"
Fröhlich, Jürg. "Relativistic Quantum Theory." In Fundamental Theories of Physics, 237–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46777-7_19.
Full textRajasekar, S., and R. Velusamy. "Relativistic Quantum Theory." In Quantum Mechanics I, 427–60. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172178-19.
Full textDürr, Detlef, and Dustin Lazarovici. "Relativistic Quantum Theory." In Understanding Quantum Mechanics, 193–216. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40068-2_11.
Full textGhatak, Ajoy, and S. Lokanathan. "Relativistic Theory." In Quantum Mechanics: Theory and Applications, 779–808. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2130-5_28.
Full textBongaarts, Peter. "Towards Relativistic Quantum Theory." In Quantum Theory, 235–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_15.
Full textFolland, Gerald. "Relativistic quantum mechanics." In Quantum Field Theory, 65–96. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/149/04.
Full textGreiner, Walter. "The Hole Theory." In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02634-2_12.
Full textGreiner, Walter. "The Hole Theory." In Relativistic Quantum Mechanics, 233–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88082-7_12.
Full textGreiner, Walter. "The Hole Theory." In Relativistic Quantum Mechanics, 291–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03425-5_12.
Full textAndersen, J. U. "Quantum Theory of Channeling Radiation." In Relativistic Channeling, 163–76. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-6394-2_12.
Full textConference papers on the topic "Relativistic quantum theory"
Elze, Hans-Thomas. "Relativistic Quantum Transport Theory." In NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513683.
Full textPage, Don N. "Can quantum cosmology give observational consequences of many-worlds quantum theory?" In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301589.
Full textNovikov-Borodin, A. V., and Andrei Yu Khrennikov. "Quantum Theories and Relativistic Approach." In QUANTUM THEORY: Reconsideration of Foundations—5. AIP, 2010. http://dx.doi.org/10.1063/1.3431512.
Full textPombo, Claudia, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Comments on a Discrepancy Between the Relativistic and the Quantum Concepts of Light." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827327.
Full textMohr, Peter J. "Quantum electrodynamics perturbation theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38441.
Full textNieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.
Full textNelson, Sky E., and Daniel P. Sheehan. "Retroactive Event Determination and Its Relativistic Roots." In QUANTUM RETROCAUSATION: THEORY AND EXPERIMENT. AIP, 2011. http://dx.doi.org/10.1063/1.3663717.
Full textOJIMA, IZUMI. "NON-EQUILIBRIUM LOCAL STATES IN RELATIVISTIC QUANTUM FIELD THEORY." In Proceedings of the Japan-Italy Joint Workshop on Quantum Open Systems, Quantum Chaos and Quantum Measurement. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704412_0003.
Full textLindgren, Ingvar. "Many-body theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.
Full textLindgren, Ingvar. "Effective potentials in relativistic many-body theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38422.
Full textReports on the topic "Relativistic quantum theory"
Adami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.
Full textGoldin, Gerald A., and David H. Sharp. Diffeomorphism Group Representations in Relativistic Quantum Field Theory. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415360.
Full textSaptsin, Vladimir, and Володимир Миколайович Соловйов. Relativistic quantum econophysics – new paradigms in complex systems modelling. [б.в.], July 2009. http://dx.doi.org/10.31812/0564/1134.
Full textSaptsin, V., Володимир Миколайович Соловйов, and I. Stratychuk. Quantum econophysics – problems and new conceptions. КНУТД, 2012. http://dx.doi.org/10.31812/0564/1185.
Full textSoloviev, V. N., and Y. V. Romanenko. Quantum econophysics of bitcoin crises. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", May 2018. http://dx.doi.org/10.31812/0564/2462.
Full text