To see the other types of publications on this topic, follow the link: Relativistic Optics.

Journal articles on the topic 'Relativistic Optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Relativistic Optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Keitel, Christoph H. "Relativistic quantum optics." Contemporary Physics 42, no. 6 (November 2001): 353–63. http://dx.doi.org/10.1080/00107510110084723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miron, Radu, and Tomoaki Kawaguchi. "Relativistic geometrical optics." International Journal of Theoretical Physics 30, no. 11 (November 1991): 1521–43. http://dx.doi.org/10.1007/bf00675616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Umstadter, Donald, Szu-yuan Chen, Robert Wagner, Anatoly Maksimchuk, and Gennady Sarkisov. "Nonlinear optics in relativistic plasmas." Optics Express 2, no. 7 (March 30, 1998): 282. http://dx.doi.org/10.1364/oe.2.000282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mourou, Gerard A., Toshiki Tajima, and Sergei V. Bulanov. "Optics in the relativistic regime." Reviews of Modern Physics 78, no. 2 (April 28, 2006): 309–71. http://dx.doi.org/10.1103/revmodphys.78.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miron, R., and G. Zet. "Relativistic optics of nondispersive media." Foundations of Physics 25, no. 9 (September 1995): 1371–82. http://dx.doi.org/10.1007/bf02055336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KIM, Chul Min, and Chang Hee NAM. "Relativistic Optics Explored with PW Lasers." Physics and High Technology 24, no. 4 (April 30, 2015): 9. http://dx.doi.org/10.3938/phit.24.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, Robert T. "General relativistic contributions in transformation optics." Journal of Optics 14, no. 1 (December 15, 2011): 015102. http://dx.doi.org/10.1088/2040-8978/14/1/015102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zet, G., and V. Manta. "Post-Newtonian estimation in relativistic optics." International Journal of Theoretical Physics 32, no. 6 (June 1993): 1013–20. http://dx.doi.org/10.1007/bf01215307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janner, A. "Looking for a relativistic crystal optics." Ferroelectrics 161, no. 1 (November 1994): 191–206. http://dx.doi.org/10.1080/00150199408213367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abe, Y., K. F. F. Law, Ph Korneev, S. Fujioka, S. Kojima, S. H. Lee, S. Sakata, et al. "Whispering Gallery Effect in Relativistic Optics." JETP Letters 107, no. 6 (March 2018): 351–54. http://dx.doi.org/10.1134/s0021364018060012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Umstadter, D., and T. B. Norris. "Nonlinear Optics With Relativistic Electrons [Guest Editorial]." IEEE Journal of Quantum Electronics 33, no. 11 (November 1997): 1877–78. http://dx.doi.org/10.1109/jqe.1997.641304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mourou, Gérard A., and Victor Yanovsky. "Relativistic Optics: A Gateway to Attosecond Physics." Optics and Photonics News 15, no. 5 (May 3, 2004): 40. http://dx.doi.org/10.1364/opn.15.5.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mourou, Gérard A. "Ultraintense lasers: relativistic nonlinear optics and applications." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 10 (December 2001): 1407–14. http://dx.doi.org/10.1016/s1296-2147(01)01278-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Atakishiyev, Natig M., Wolfgang Lassner, and Kurt Bernardo Wolf. "The relativistic coma aberration. I. Geometrical optics." Journal of Mathematical Physics 30, no. 11 (November 1989): 2457–62. http://dx.doi.org/10.1063/1.528524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zheng, Qianbing, and Takayoshi Kobayashi. "Quantum Optics as a Relativistic Theory of Light." Physics Essays 9, no. 3 (September 1996): 447–59. http://dx.doi.org/10.4006/1.3029255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kaplan, A. E. "Relativistic nonlinear optics of a single cyclotron electron." Physical Review Letters 56, no. 5 (February 3, 1986): 456–59. http://dx.doi.org/10.1103/physrevlett.56.456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ribeiro, M. A., and C. R. Paiva. "Relativistic optics in moving media with spacetime algebra." European Physical Journal Applied Physics 49, no. 3 (February 3, 2010): 33003. http://dx.doi.org/10.1051/epjap/2009146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Echkina, E. Yu, and I. N. Inovenkov. "Current State and Development Prospects of Relativistic Optics." Computational Mathematics and Modeling 31, no. 1 (January 2020): 13–18. http://dx.doi.org/10.1007/s10598-020-09472-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Atakishiyev, Natig M., Wolfgang Lassner, and Kurt Bernardo Wolf. "The relativistic coma aberration. II. Helmholtz wave optics." Journal of Mathematical Physics 30, no. 11 (November 1989): 2463–68. http://dx.doi.org/10.1063/1.528525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chyla, W. T. "I. Geometrical optics of variable-frequency light rays:Theoretical basis." Canadian Journal of Physics 78, no. 8 (August 1, 2000): 721–45. http://dx.doi.org/10.1139/p00-023.

Full text
Abstract:
A variable-frequency light ray (VF ray) is a new concept in optics; it is a ray that is monochromatic at every point of the path (no frequency spread) but its frequency changes along the path due to interactions occurring along that path. For example, the frequency of the light ray can be affected by gravitational time dilation, reflection from a moving mirror, or coherent Raman scattering. Since the Fermat principle of least time (PLT) implicitly assumes that the frequency of the light ray is an irrelevant constant, the PLT-based geometrical optics is insufficient to handle propagation of VF rays. In this paper, we derive a new extremum principle (NEP) that is sensitive to changes of frequency along the path of the light ray and constitutes a basis for geometrical optics of VF rays. The NEP is derived directly from the principle of least action applied to the quantized electromagnetic field associated with the light ray propagating in a vacuum or in a transparent material medium in the presence of the gravitational field. The relationship between the NEP, the classical version of the Fermat principle, and the general relativistic generalization of the Fermat principle (the extremum principle for null geodesics) is discussed in detail. Applications of the NEP are suggested in the nonrelativistic, special relativistic, and general relativistic regimes. PACS Nos.: 42.15-i, 12.20-m, 04.20-q
APA, Harvard, Vancouver, ISO, and other styles
21

Moskvin, Alexander. "Charge Transfer Transitions and Circular Magnetooptics in Ferrites." Magnetochemistry 8, no. 8 (July 28, 2022): 81. http://dx.doi.org/10.3390/magnetochemistry8080081.

Full text
Abstract:
The concept of charge transfer (CT) transitions in ferrites is based on the cluster approach and takes into account the relevant interactions, such as the low-symmetry crystal field, spin–orbital, Zeeman, exchange and exchange-relativistic interactions. For all its simplicity, this concept yields a reliable qualitative and quantitative microscopic explanation of spectral, concentration, temperature and field dependencies of optic and magneto-optic properties ranging from the isotropic absorption and optical anisotropy to circular magneto-optics. In this review paper, starting with a critical analysis of the fundamental shortcomings of the “first-principles” density functional theory (DFT-based) band theory, we present the main ideas and techniques of the cluster theory of the CT transitions to be main contributors to circular magneto-optics of ferrites. Numerous examples of comparison of cluster theory with experimental data for orthoferrites, iron garnets and other ferrites are given.
APA, Harvard, Vancouver, ISO, and other styles
22

Veisz, Laszlo. "Author Correction: Plasma optics: Reflections off a relativistic mirror." Nature Physics 17, no. 8 (June 25, 2021): 975. http://dx.doi.org/10.1038/s41567-021-01303-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Grado-Caffaro, M. A., and M. Grado-Caffaro. "Refractive index and material dispersion in relativistic electron optics." Optik 116, no. 11 (October 2005): 551–52. http://dx.doi.org/10.1016/j.ijleo.2005.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Umstadter, D. P., C. Barty, M. Perry, and G. A. Mourou. "Tabletop, Ultrahigh-Intensity Lasers: Dawn of Nonlinear Relativistic Optics." Optics and Photonics News 9, no. 7 (July 1, 1998): 40. http://dx.doi.org/10.1364/opn.9.7.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bulanov, S. V., T. Zh Esirkepov, D. Habs, F. Pegoraro, and T. Tajima. "Relativistic laser-matter interaction and relativistic laboratory astrophysics." European Physical Journal D 55, no. 2 (May 1, 2009): 483–507. http://dx.doi.org/10.1140/epjd/e2009-00138-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Boyd, T. J. M., and R. Ondarza-Rovira. "Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"." European Physical Journal D 58, no. 1 (April 13, 2010): 137–38. http://dx.doi.org/10.1140/epjd/e2010-00096-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vigoureux, J. M., and Ph Grossel. "A relativistic‐like presentation of optics in stratified planar media." American Journal of Physics 61, no. 8 (August 1993): 707–12. http://dx.doi.org/10.1119/1.17198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xia, Guoqiang, Weijian Zheng, Zhenggang Lei, and Ruolan Zhang. "Rigorous coupled wave analysis of acousto-optics with relativistic considerations." Journal of the Optical Society of America A 32, no. 9 (August 3, 2015): 1594. http://dx.doi.org/10.1364/josaa.32.001594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pukhov, A., and D. an der Brügge. "Reply to Comment on “Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror"." European Physical Journal D 58, no. 1 (April 20, 2010): 139–40. http://dx.doi.org/10.1140/epjd/e2010-00100-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lamprou, Theocharis, Rodrigo Lopez-Martens, Stefan Haessler, Ioannis Liontos, Subhendu Kahaly, Javier Rivera-Dean, Philipp Stammer, et al. "Quantum-Optical Spectrometry in Relativistic Laser–Plasma Interactions Using the High-Harmonic Generation Process: A Proposal." Photonics 8, no. 6 (May 29, 2021): 192. http://dx.doi.org/10.3390/photonics8060192.

Full text
Abstract:
Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
APA, Harvard, Vancouver, ISO, and other styles
31

Curcio, Alessandro, Maria Pia Anania, Fabrizio Giuseppe Bisesto, Massimo Ferrario, Francesco Filippi, Danilo Giulietti, and Massimo Petrarca. "Ray optics hamiltonian approach to relativistic self focusing of ultraintense lasers in underdense plasmas." EPJ Web of Conferences 167 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201816701003.

Full text
Abstract:
The relativistic self focusing of an ultraintense laser propagating through an underdense plasma is analyzed from a geometrical optics point of view, exploiting the classical hamiltonian formalism. The distribution of the laser intensity along the self-generated plasma channel is studied and compared to measurements.
APA, Harvard, Vancouver, ISO, and other styles
32

Eisenstaedt, Jean. "From Newton to Einstein: A forgotten relativistic optics of moving bodies." American Journal of Physics 75, no. 8 (August 2007): 741–46. http://dx.doi.org/10.1119/1.2742398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jahn, Olga, Vyacheslav E. Leshchenko, Paraskevas Tzallas, Alexander Kessel, Mathias Krüger, Andreas Münzer, Sergei A. Trushin, et al. "Towards intense isolated attosecond pulses from relativistic surface high harmonics." Optica 6, no. 3 (March 4, 2019): 280. http://dx.doi.org/10.1364/optica.6.000280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Polyzou, W. N. "Relativistic Few-Body Physics." Few-Body Systems 55, no. 8-10 (December 18, 2013): 589–97. http://dx.doi.org/10.1007/s00601-013-0761-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nayak, Malaya K., and Rajat K. Chaudhuri. "Relativistic coupled cluster method." European Physical Journal D 37, no. 2 (October 25, 2005): 171–76. http://dx.doi.org/10.1140/epjd/e2005-00279-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Afanasjev, A. V. "Superdeformations in Relativistic and Non-Relativistic Mean Field Theories." Physica Scripta T88, no. 1 (2000): 10. http://dx.doi.org/10.1238/physica.topical.088a00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kessel, Alexander, Vyacheslav E. Leshchenko, Olga Jahn, Mathias Krüger, Andreas Münzer, Alexander Schwarz, Vladimir Pervak, et al. "Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA." Optica 5, no. 4 (April 9, 2018): 434. http://dx.doi.org/10.1364/optica.5.000434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hacyan, Shahen. "Relativistic accelerating electromagnetic waves." Journal of Optics 13, no. 10 (September 29, 2011): 105710. http://dx.doi.org/10.1088/2040-8978/13/10/105710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Безбородов, С. В., И. И. Тупицын, А. В. Малышев, Д. В. Миронова, and В. М. Шабаев. "Расчеты релятивистских, корреляционных, ядерных и квантово-электродинамических поправок к энергиям и потенциалам ионизации основного состояния литиеподобных ионов." Оптика и спектроскопия 130, no. 10 (2022): 1471. http://dx.doi.org/10.21883/os.2022.10.53615.4056-22.

Full text
Abstract:
This paper presents all the leading contributions to the relativistic total energies and ionization potentials of the ground state of lithium-like ions with a nuclear charge in the range Z = 3 − 20. Correlation, relativistic and quantum-electrodynamics corrections as well as contributions due to the finite size of the nucleus (field shift) and finite mass of the nucleus (recoil effect) are evaluated. Relativistic calculations are performed by means of the configuration-interaction method in the basis of the Dirac-Fock-Sturm orbitals using the Dirac-Coulomb-Breit Hamiltonian.
APA, Harvard, Vancouver, ISO, and other styles
40

Kapteyn, Henry C., and Margaret M. Murnane. "Relativistic pulse compression." Journal of the Optical Society of America B 8, no. 8 (August 1, 1991): 1657. http://dx.doi.org/10.1364/josab.8.001657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Umstadter, D., S. Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner. "Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons." Science 273, no. 5274 (July 26, 1996): 472–75. http://dx.doi.org/10.1126/science.273.5274.472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, Jinpu, James H. Easter, Karl Krushelnick, Mark Mathis, Jian Dong, A. G. R. Thomas, and John Nees. "Focus optimization at relativistic intensity with high numerical aperture and adaptive optics." Optics Communications 421 (August 2018): 79–82. http://dx.doi.org/10.1016/j.optcom.2018.03.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Evans, M. W. "On the observability of the fieldB (3): Relativistic effects in magneto-optics." Foundations of Physics Letters 8, no. 5 (October 1995): 459–66. http://dx.doi.org/10.1007/bf02186581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rideout, David, Thomas Jennewein, Giovanni Amelino-Camelia, Tommaso F. Demarie, Brendon L. Higgins, Achim Kempf, Adrian Kent, et al. "Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities." Classical and Quantum Gravity 29, no. 22 (October 18, 2012): 224011. http://dx.doi.org/10.1088/0264-9381/29/22/224011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gordon, D. F., B. Hafizi, and M. H. Helle. "Solution of relativistic quantum optics problems using clusters of graphical processing units." Journal of Computational Physics 267 (June 2014): 50–62. http://dx.doi.org/10.1016/j.jcp.2014.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Widom, A., J. Swain, Y. N. Srivastava, M. Blasone, and G. Vitiello. "Zero-point energy and photon spin-induced diffraction phenomena." International Journal of Geometric Methods in Modern Physics 17, supp01 (March 20, 2020): 2040006. http://dx.doi.org/10.1142/s021988782040006x.

Full text
Abstract:
A brief review of our previously introduced forward and backward in time formalism for non-relativistic electron diffraction and its relativistic extension to study photons in time and space is presented. The zero-point energy in the Planck black body spectrum emerges naturally once time-symmetric motion — inherent in Maxwell equations — is invoked for photons. A study of two-slit experiments for slits smaller than the wavelength of the photon unravels novel phenomena due to the spin of the photon. Our proposed experiments are within reach of present technology and could be of interest for modern imaging and quantum optics.
APA, Harvard, Vancouver, ISO, and other styles
47

ZHOU, H. Q., and B. S. ZOU. "RELATIVISTIC EFFECTS IN TWO PHOTON DECAY OF 0-+ QUARKONIUM." International Journal of Modern Physics A 20, no. 08n09 (April 10, 2005): 1939–42. http://dx.doi.org/10.1142/s0217751x05023682.

Full text
Abstract:
Relativistic effects in two photon decay of 0-+ quarkonium are investigated with a relativistic phenomenological approach. Comparing with the non-relativistic approximation, the relativistic phenomenological approach gives corrections coming from three sources: [Formula: see text] relative momentum distribution, [Formula: see text] relative energy distribution and description of quark spinors in the meson. These relativistic effects are studied in detail for [Formula: see text] and [Formula: see text] systems.
APA, Harvard, Vancouver, ISO, and other styles
48

Tudor, Tiberiu, and Gabriel Voitcu. "Revisiting Poincaré Sphere and Pauli Algebra in Polarization Optics." Photonics 11, no. 4 (April 17, 2024): 379. http://dx.doi.org/10.3390/photonics11040379.

Full text
Abstract:
We present one of the main lines of development of Poincaré sphere representation in polarization optics, by using largely some of our contributions in the field. We refer to the action of deterministic devices, specifically the diattenuators, on the partial polarized light. On one hand, we emphasize the intimate connection between the Pauli algebraic analysis and the Poincaré ball representation of this interaction. On the other hand, we bring to the foreground the close similarity between the law of composition of the Poincaré vectors of the diattenuator and of polarized light and the law of composition of relativistic admissible velocities. These two kinds of vectors are isomorphic, and they are “imprisoned” in a sphere of finite radius, standardizable at a radius of one, i.e., Poincaré sphere.
APA, Harvard, Vancouver, ISO, and other styles
49

Blackman, Eric G., and George B. Field. "Relativistic magnetic reconnection." Physica Scripta T52 (January 1, 1994): 93–95. http://dx.doi.org/10.1088/0031-8949/1994/t52/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ashfaque, J., J. Lynch, and P. Strange. "Relativistic quantum backflow." Physica Scripta 94, no. 12 (October 30, 2019): 125107. http://dx.doi.org/10.1088/1402-4896/ab265c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography