To see the other types of publications on this topic, follow the link: Relativistic mean field.

Journal articles on the topic 'Relativistic mean field'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Relativistic mean field.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Afanasjev, A. V. "Superdeformations in Relativistic and Non-Relativistic Mean Field Theories." Physica Scripta T88, no. 1 (2000): 10. http://dx.doi.org/10.1238/physica.topical.088a00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, S. J., and W. Cassing. "Extended relativistic mean field theory and relativistic transport equations." Nuclear Physics A 495, no. 1-2 (April 1989): 371–80. http://dx.doi.org/10.1016/0375-9474(89)90334-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rego, R. A. "Mean free path in the relativistic mean field." Physical Review C 44, no. 5 (November 1, 1991): 1944–46. http://dx.doi.org/10.1103/physrevc.44.1944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ROTA NODARI, SIMONA. "THE RELATIVISTIC MEAN-FIELD EQUATIONS OF THE ATOMIC NUCLEUS." Reviews in Mathematical Physics 24, no. 04 (May 2012): 1250008. http://dx.doi.org/10.1142/s0129055x12500080.

Full text
Abstract:
In nuclear physics, the relativistic mean-field theory describes the nucleus as a system of Dirac nucleons which interact via meson fields. In a static case and without nonlinear self-coupling of the σ meson, the relativistic mean-field equations become a system of Dirac equations where the potential is given by the meson and photon fields. The aim of this work is to prove the existence of solutions of these equations. We consider a minimization problem with constraints that involve negative spectral projectors and we apply the concentration-compactness lemma to find a minimizer of this problem. We show that this minimizer is a solution of the relativistic mean-field equations considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Del Zanna , Luca, Niccolò Tomei, Kevin Franceschetti, Matteo Bugli, and Niccolò Bucciantini. "General Relativistic Magnetohydrodynamics Mean-Field Dynamos." Fluids 7, no. 2 (February 21, 2022): 87. http://dx.doi.org/10.3390/fluids7020087.

Full text
Abstract:
Large-scale, ordered magnetic fields in several astrophysical sources are supposed to be originated, and maintained against dissipation, by the combined amplifying action of rotation and small-scale turbulence. For instance, in the solar interior, the so-called α−Ω mean-field dynamo is known to be responsible for the observed 22-years magnetic cycle. Similar mechanisms could operate in more extreme environments, like proto neutron stars and accretion disks around black holes, for which the physical modelling needs to be translated from the regime of magnetohydrodynamics (MHD) and Newtonian gravity to that of a plasma in a general relativistic curved spacetime (GRMHD). Here we review the theory behind the mean field dynamo in GRMHD, the strategies for the implementation of the relevant equations in numerical conservative schemes, and we show the most important applications to the mentioned astrophysical compact objects obtained by our group in Florence. We also present novel results, such as three-dimensional GRMHD simulations of accretion disks with dynamo and the application of our dynamo model to a super massive neutron star, remnant of a binary neutron star merger as obtained from full numerical relativity simulations.
APA, Harvard, Vancouver, ISO, and other styles
6

Diakonov, Dmitri. "Relativistic mean field approximation to baryons." European Physical Journal A 24, S1 (February 2005): 3–8. http://dx.doi.org/10.1140/epjad/s2005-05-001-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WARRIER, LATHA S., J. P. MAHARANA, and Y. K. GAMBHIR. "ALPHA STAGGERING: RELATIVISTIC MEAN FIELD DESCRIPTION." Modern Physics Letters A 09, no. 26 (August 30, 1994): 2371–80. http://dx.doi.org/10.1142/s0217732394002240.

Full text
Abstract:
The α-staggering for the nuclei in the 2p−1f region is investigated in the relativistic mean field approach. The observed behavior similar to the well known odd-even staggering is well reproduced. The decomposition of densities for these nuclei shows almost identical characteristics beyond the rms radii indicating that the alpha cluster, if exists, is confined to the surface, as expected.
APA, Harvard, Vancouver, ISO, and other styles
8

Gambhir, Y. K., and A. Bhagwat. "Relativistic mean field for nuclear periphery." Nuclear Physics A 722 (July 2003): C354—C359. http://dx.doi.org/10.1016/s0375-9474(03)01389-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fogaça, D. A., and F. S. Navarra. "Solitons in relativistic mean field models." Physics Letters B 639, no. 6 (August 2006): 629–34. http://dx.doi.org/10.1016/j.physletb.2006.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BARRIOS, S. CRUZ, and M. C. NEMES. "ANATOMY OF RELATIVISTIC MEAN-FIELD APPROXIMATIONS." Modern Physics Letters A 07, no. 21 (July 10, 1992): 1915–21. http://dx.doi.org/10.1142/s0217732392001622.

Full text
Abstract:
In the present work we have set up a scheme to treat field theoretical Lagrangians in the same bases of the well known non-relativistic many-body techniques. We show here that fermions and bosons can be treated quantum mechanically in a symmetric way and obtain results for the mean field approximation.
APA, Harvard, Vancouver, ISO, and other styles
11

Bodmer, A. R., and C. E. Price. "Relativistic mean field theory for nuclei." Nuclear Physics A 505, no. 1 (December 1989): 123–44. http://dx.doi.org/10.1016/0375-9474(89)90419-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mareš, J., and B. K. Jennings. "Relativistic mean field theory and hypernuclei." Nuclear Physics A 585, no. 1-2 (March 1995): 347–48. http://dx.doi.org/10.1016/0375-9474(94)00600-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yan-Song, Li, and Long Gui-Lu. "Relativistic Consistent Angular-Momentum Projected Shell-Model: Relativistic Mean Field." Communications in Theoretical Physics 41, no. 3 (March 15, 2004): 429–34. http://dx.doi.org/10.1088/0253-6102/41/3/429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jiang, W. Z., Z. Z. Ren, T. T. Wang, Y. L. Zhao, and Z. Y. Zhu. "Relativistic mean-field study for Zn isotopes." European Physical Journal A 25, no. 1 (June 6, 2005): 29–39. http://dx.doi.org/10.1140/epja/i2004-10235-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pannert, W., P. Ring, and J. Boguta. "Relativistic Mean-Field Theory and Nuclear Deformation." Physical Review Letters 59, no. 21 (November 23, 1987): 2420–22. http://dx.doi.org/10.1103/physrevlett.59.2420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yao-song, Shen, and Ren Zhong-zhou. "Relativistic mean-field approaches for light hypernuclei." Acta Physica Sinica (Overseas Edition) 7, no. 4 (April 1998): 258–70. http://dx.doi.org/10.1088/1004-423x/7/4/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Meng, J., K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima. "Pseudospin symmetry in relativistic mean field theory." Physical Review C 58, no. 2 (August 1, 1998): R628—R631. http://dx.doi.org/10.1103/physrevc.58.r628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Afanasjev, A. V. "Superheavy nuclei: a relativistic mean field outlook." Physica Scripta T125 (June 28, 2006): 62–67. http://dx.doi.org/10.1088/0031-8949/2006/t125/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

SULAKSONO, A., KASMUDIN, T. J. BÜRVENICH, P. G. REINHARD, and J. A. MARUHN. "INSTABILITIES CONSTRAINT AND RELATIVISTIC MEAN FIELD PARAMETRIZATION." International Journal of Modern Physics E 20, no. 01 (January 2011): 81–100. http://dx.doi.org/10.1142/s021830131101734x.

Full text
Abstract:
Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors.
APA, Harvard, Vancouver, ISO, and other styles
20

Gambhir, Y. K., and A. Bhagwat. "Relativistic mean field and some recent applications." Physics of Particles and Nuclei 37, no. 2 (March 2006): 194–239. http://dx.doi.org/10.1134/s106377960602002x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Furnstahl, R. J., and Brian D. Serot. "Parameter counting in relativistic mean-field models." Nuclear Physics A 671, no. 1-4 (May 2000): 447–60. http://dx.doi.org/10.1016/s0375-9474(99)00839-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gambhir, Y. K., and C. S. Warke. "Nuclear magnetic moment: Relativistic mean field description." Pramana 53, no. 2 (August 1999): 279–88. http://dx.doi.org/10.1007/s12043-999-0128-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ring, P. "Relativistic mean field theory in finite nuclei." Progress in Particle and Nuclear Physics 37 (January 1996): 193–263. http://dx.doi.org/10.1016/0146-6410(96)00054-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gambhir, Y. K., P. Ring, and A. Thimet. "Relativistic mean field theory for finite nuclei." Annals of Physics 198, no. 1 (February 1990): 132–79. http://dx.doi.org/10.1016/0003-4916(90)90330-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ren, Zhongzhou, Z. Y. Zhu, Y. H. Cai, and Gongou Xu. "Relativistic mean-field study of Mg isotopes." Physics Letters B 380, no. 3-4 (July 1996): 241–46. http://dx.doi.org/10.1016/0370-2693(96)00462-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Patra, S. K. "Relativistic mean field study of light nuclei." Nuclear Physics A 559, no. 2 (June 1993): 173–92. http://dx.doi.org/10.1016/0375-9474(93)90185-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gambhir, Y. K. "Relativistic Mean Field description of exotic nuclei." Nuclear Physics A 570, no. 1-2 (March 1994): 101–8. http://dx.doi.org/10.1016/0375-9474(94)90273-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thies, M. "On the relation between relativistic and non-relativistic mean-field theories." Physics Letters B 166, no. 1 (January 1986): 23–26. http://dx.doi.org/10.1016/0370-2693(86)91147-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Q. L., L. Dang, X. H. Zhong, C. Y. Song, and P. Z. Ning. "The hyperon mean free paths in the relativistic mean field." Europhysics Letters (EPL) 75, no. 1 (July 2006): 36–41. http://dx.doi.org/10.1209/epl/i2006-10083-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

BARAN, A., and P. MIERZYŃSKI. "NUCLEAR PERIPHERY IN MEAN-FIELD MODELS." International Journal of Modern Physics E 13, no. 01 (February 2004): 337–41. http://dx.doi.org/10.1142/s0218301304002156.

Full text
Abstract:
The halo factor is one of the experimental data which describes a distribution of neutrons in the nuclear periphery. In the presented paper we use Skyrme-Hartree (SH) and the Relativistic Mean Field (RMF) models to calculate the neutron excess factor ΔB which differs slightly from the halo factor f exp . The results of the calculations are compared to the measured data.
APA, Harvard, Vancouver, ISO, and other styles
31

Nishiyama, Seiya. "Resonating Relativistic Mean Field Theory of Finite Nuclei." International Journal of Modern Physics E 07, no. 05 (October 1998): 601–24. http://dx.doi.org/10.1142/s0218301398000348.

Full text
Abstract:
We develop a general theory based on relativistic fields to describe finite nuclei with large quantum fluctuations. The theory is a direct extension of the resonating Hartree-Fock (HF) and resonating Hartree-Bogoliubov (HB) theories to the relativistic mean field case including an effective nucleon mass and an effective potential mediated by mesons. We start from the Walecka model and construct coherent state representations of a system of nucleons described by Dirac spinors and of mesons described in terms of bosons. A state with large quantum fluctuations is approximated by superpositions of non-orthogonal nucleon and meson wave functions with different correlation structures. We derive the variational equations to determine the two kinds of coefficients of fermionic and bosonic configuration mixings and the two kinds of fermionic and bosonic orbitals in the resonating nucleon and meson wave functions.
APA, Harvard, Vancouver, ISO, and other styles
32

Sugimoto, Satoru, Kiyomi Ikeda, and Hiroshi Toki. "Relativistic Mean Field Theory with Pion Field for Finite Nuclei." Progress of Theoretical Physics Supplement 146 (2002): 437–41. http://dx.doi.org/10.1143/ptps.146.437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moreno-Torres, M., M. Grasso, H. Liang, V. De Donno, M. Anguiano, and N. Van Giai. "Tensor effects in shell evolution using non-relativistic and relativistic mean field." Journal of Physics: Conference Series 267 (January 1, 2011): 012039. http://dx.doi.org/10.1088/1742-6596/267/1/012039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gmuca, Stefan. "Halo nuclei studied by relativistic mean-field approach." Acta Physica Hungarica A) Heavy Ion Physics 6, no. 1-4 (October 1997): 99–102. http://dx.doi.org/10.1007/bf03158486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Manka, R., M. Zastawny-Kubica, A. Brzezina, and I. Bednarek. "Protoneutron star in the relativistic mean-field theory." Journal of Physics G: Nuclear and Particle Physics 27, no. 9 (August 3, 2001): 1917–38. http://dx.doi.org/10.1088/0954-3899/27/9/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yanjun, Chen, and Guo Hua. "Quasielastic electron scattering in relativistic mean-field theory." European Physical Journal A 24, no. 2 (April 19, 2005): 211–16. http://dx.doi.org/10.1140/epja/i2004-10141-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lü, H. F., L. S. Geng, and J. Meng. "Constrained relativistic mean-field approach with fixed configurations." European Physical Journal A 31, no. 3 (February 28, 2007): 273–78. http://dx.doi.org/10.1140/epja/i2006-10224-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ang, Li, Zuo Wei, Mi Ai-Jun, and G. Burgio. "Hyperon–hyperon interaction in relativistic mean field model." Chinese Physics 16, no. 7 (July 2007): 1934–40. http://dx.doi.org/10.1088/1009-1963/16/7/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sheikh, J. A., and P. Ring. "Exotic nuclei in a relativistic mean-field approach." Physical Review C 47, no. 5 (May 1, 1993): R1850—R1853. http://dx.doi.org/10.1103/physrevc.47.r1850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gervino, G., A. Lavagno, and D. Pigato. "Nonlinear statistical effects in relativistic mean field theory." Journal of Physics: Conference Series 306 (July 8, 2011): 012070. http://dx.doi.org/10.1088/1742-6596/306/1/012070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Madokoro, Hideki, and Masayuki Matsuzaki. "General relativistic mean field theory for rotating nuclei." Physical Review C 56, no. 6 (December 1, 1997): R2934—R2937. http://dx.doi.org/10.1103/physrevc.56.r2934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Delfino, A., Lizardo H. C. M. Nunes, and J. S. Sá Martins. "Dimensional effects in a relativistic mean-field approach." Physical Review C 57, no. 2 (February 1, 1998): 857–65. http://dx.doi.org/10.1103/physrevc.57.857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lalazissis, G. A., Y. K. Gambhir, J. P. Maharana, C. S. Warke, and P. Ring. "Relativistic mean field approach and the pseudospin symmetry." Physical Review C 58, no. 1 (July 1, 1998): R45—R48. http://dx.doi.org/10.1103/physrevc.58.r45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vretenar, D., T. Nikšić, N. Paar, and P. Ring. "Exotic nuclear structure: Relativistic mean-field and beyond." European Physical Journal Special Topics 150, no. 1 (November 2007): 193–96. http://dx.doi.org/10.1140/epjst/e2007-00302-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Serra, M., T. Otsuka, Y. Akaishi, P. Ring, and S. Hirose. "Relativistic Mean Field Models and Nucleon-Nucleon Interactions." Progress of Theoretical Physics 113, no. 5 (May 1, 2005): 1009–46. http://dx.doi.org/10.1143/ptp.113.1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shen, H., F. Yang, and H. Toki. "Double- Hypernuclei in the Relativistic Mean-Field Theory." Progress of Theoretical Physics 115, no. 2 (February 1, 2006): 325–35. http://dx.doi.org/10.1143/ptp.115.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ogawa, Y., H. Toki, S. Tamenaga, and A. Haga. "Relativistic Chiral Mean Field Model for Finite Nuclei." Progress of Theoretical Physics 122, no. 2 (August 1, 2009): 477–98. http://dx.doi.org/10.1143/ptp.122.477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lourenço, O., M. Dutra, O. Hen, E. Piasetzky, and D. P. Menezes. "Consistent relativistic mean-field models: symmetry energy parameter." Journal of Physics: Conference Series 1291 (July 2019): 012043. http://dx.doi.org/10.1088/1742-6596/1291/1/012043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Song, C. Y., X. H. Zhong, L. Li, and P. Z. Ning. "η-mesic nuclei in relativistic mean-field theory." EPL (Europhysics Letters) 81, no. 4 (January 24, 2008): 42002. http://dx.doi.org/10.1209/0295-5075/81/42002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li-Gang, Cao, and Ma Zhong-Yu. "Resonant Continuum in the Relativistic Mean-Field Theory." Communications in Theoretical Physics 38, no. 3 (September 15, 2002): 347–50. http://dx.doi.org/10.1088/0253-6102/38/3/347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography