Academic literature on the topic 'Relativist plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Relativist plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Relativist plasma":

1

MELROSE, D. B., M. E. GEDALIN, M. P. KENNETT, and C. S. FLETCHER. "Dispersion in an intrinsically relativistic, one-dimensional, strongly magnetized pair plasma." Journal of Plasma Physics 62, no. 2 (August 1999): 233–48. http://dx.doi.org/10.1017/s0022377899007795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The properties of a relativistic plasma dispersion function (RPDF) for an intrinsically extremely relativist, strongly magnetized, one-dimensional, electron–positron plasma are discussed in detail. For a plasma with a mean Lorentz factor 〈γ〉 [Gt ] 1 in its rest frame, the RPDF has a large peak >〈γ〉 at a phase speed a fraction of order 1/〈γ〉 below the speed of light, and the asymptotic value (infinite phase speed) is 〈γ−3〉 ∼ 1/〈γ〉. These features are not particularly sensitive to the choice of distribution function. The RPDF is used to discuss the properties of waves in such plasmas. Particular points discussed are the implications of the RPDF for the maximum frequency for parallel Langmuir waves, and for the reconnection between the Langmuir mode and the Alfvén mode.
2

Shapakidze, David, and George Machabeli. "Plasma Theory of Two Synchrotron Knots’ formation Discovered in the Crab Nebula." International Astronomical Union Colloquium 177 (2000): 505–6. http://dx.doi.org/10.1017/s0252921100060425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe plasma mechanism of synchrotron knots’ formation discovered in the Crab Nebula at the distances 0″.65 (1016cm) and 3″.8 (6 × 1016cm) from the Crab pulsar is presented. The mechanism is based on exitation of cyclotron and Cherenkov-drift instabilities in the relativist s electron-positron plasma of the nebula. The higher luminosity of the knots is supposed due to the orientation of the direction of motion of the synchrotron radiation sources (Larmor circles) relative to the observer.
3

NAKASHIMA, Ken-ichi, and Thomas E. COWAN. "Relativistic Plasma Physics. Relativistic Electron-Positron Pair Plasmas." Journal of Plasma and Fusion Research 78, no. 6 (2002): 568–74. http://dx.doi.org/10.1585/jspf.78.568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Siddique, M., M. Jamil, A. Rasheed, F. Areeb, Asif Javed, and P. Sumera. "Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas." Zeitschrift für Naturforschung A 73, no. 2 (January 26, 2018): 135–41. http://dx.doi.org/10.1515/zna-2017-0275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractWe studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.
5

Chen, Hui, and Frederico Fiuza. "Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers." Physics of Plasmas 30, no. 2 (February 2023): 020601. http://dx.doi.org/10.1063/5.0134819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The study of relativistic electron–positron pair plasmas is both of fundamental physics interest and important to understand the processes that shape the magnetic field dynamics, particle acceleration, and radiation emission in high-energy astrophysical environments. Although it is highly desirable to study relativistic pair plasmas in the laboratory, their generation and control constitutes a critical challenge. Significant experimental and theoretical progress has been made over recent years to explore the use of intense lasers to produce dense relativistic pair plasma in the laboratory and study the basic collective plasma processes associated with these systems. Important challenges remain in terms of improving the number of pairs, system size, and control over the charge neutrality required to establish laboratory platforms that can expand our understanding of relativistic pair plasma and help validate underlying models in conditions relevant to high-energy astrophysical phenomena. We highlight recent progress in this field, discuss the main challenges, and the exciting prospects for studying relativistic pair plasmas and astrophysics relevant instabilities in the laboratory in the near future.
6

BINGHAM, R., R. A. CAIRNS, and J. T. MENDONÇA. "Particle acceleration in plasmas by perpendicularly propagating waves." Journal of Plasma Physics 64, no. 4 (October 2000): 481–87. http://dx.doi.org/10.1017/s0022377800008722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The acceleration of particles to high energy by relativistic plasma waves has received a great deal of attention lately. Most of the particle-acceleration schemes using relativistic plasma waves rely either on intense terawatt or petawatt lasers or on electron beams as the driver of the acceleration wave. These laboratory experiments have attained accelerating fields as high as 1 GeV cm−1 with the electrons being accelerated to about 100 MeV in millimetre distances. In space and astrophysical plasmas, relativistic plasma waves can also be important for acceleration. A process that is common to both laboratory and space plasmas is the surfatron concept, which operates as a wave acceleration mechanism in a magnetized plasma. In this paper, we present test-particle results for the surfatron process.
7

BALIKHIN, M., and M. GEDALIN. "Generalization of the Harris current sheet model for non-relativistic, relativistic and pair plasmas." Journal of Plasma Physics 74, no. 6 (December 2008): 749–63. http://dx.doi.org/10.1017/s002237780800723x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractReconnection is believed to be responsible for plasma acceleration in a large number of space and astrophysical objects. Onset of reconnection is usually related to instabilities of current sheet equilibria. Analytical self-consistent models of an equilibrium current sheet (Harris equilibrium) are known for non-relativistic plasmas and some special cases of relativistic plasmas. We develop a description of generalized Harris equilibria in collisionless non-relativistic and relativistic plasmas. Possible shapes of the magnetic field are analyzed.
8

Pietrini, P., and J. H. Krolik. "Do Fluid Waves Propagate in Mildly Relativistic Thermal Pair Plasmas?" Symposium - International Astronomical Union 159 (1994): 357. http://dx.doi.org/10.1017/s0074180900175552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Relativistic pair plasmas are implicated in the physics of the central regions of AGNs, and the observed variability of these sources can be related to the dynamics and changes in structure of these plasmas. To this respect a study of the behaviour of waves to which the pair plasma reacts as a fluid is quite relevant. We analyze the linear response to perturbations of a simple thermal mildly relativistic pair plasma system.
9

CHAUDHARY, ROZINA, NODAR L. TSINTSADZE, and P. K. SHUKLA. "Nonlinear propagation of intense electromagnetic waves in a hot electron–positron plasma." Journal of Plasma Physics 76, no. 6 (August 17, 2010): 875–86. http://dx.doi.org/10.1017/s0022377810000498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe creation and annihilation of relativistically hot electron–positron (EP) pair plasmas in the presence of intense electromagnetic (EM) waves, which are not in thermal equilibrium, are studied by formulating a new plasma particle distribution functions, which are valid for both relativistic temperatures and relativistic amplitudes of the EM waves. It is found that intense EM waves in a collisionless EP plasma damp via nonlinear Landau damping. Accounting for the latter, we have obtained relativistic kinetic nonlinear Schrödinger equation (NLSE) with local and non-local nonlinearities. The NLSE depicts nonlinear Landau damping rates for intense EM waves. The damping rates are examined for dense and tenuous pair plasmas. Furthermore, we have studied the modulational instabilities of intense EM waves in the presence of nonlinear Landau damping. Our results reveal a new class of the modulational instability that is triggered by the inverse Landau damping in a relativistically hot EP plasma. Finally, we discuss localization of intense EM waves due to relativistic electron and positron mass increase in a hot pair plasma.
10

MELROSE, D. B. "Generalized Trubnikov functions for unmagnetized plasmas." Journal of Plasma Physics 62, no. 2 (August 1999): 249–53. http://dx.doi.org/10.1017/s0022377899007898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A class of relativistic dispersion functions for unmagnetized thermal plasmas is defined by generalizing functions first defined by Trubnikov in 1958. Recursion relations are derived that allow one to generate explicit expressions for the class of functions in terms of the relativistic plasma dispersion function T(z, ρ) introduced by Godfrey et al. in 1975. These functions are relevant to the description of the response of a weakly mangetized, highly relativistic, thermal plasma.

Dissertations / Theses on the topic "Relativist plasma":

1

Oubrerie, Kosta. "Amélioration de l'efficacité des accélérateurs laser-plasma." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pour générer des faisceaux d'électrons à hautes énergies, les accélérateurs conventionnels utilisent des ondes radiofréquences pour accélérer des particules chargées à des vitesses relativistes. Cependant, le champ électrique accélérateur produit est limité à quelques dizaines de mégavolts par mètre, dû notamment à un phénomène de claquage. Il faut donc des installations de très grande taille pour atteindre des énergies suffisamment élevées. Ainsi, l'accélérateur linéaire de Stanford (SLAC), qui est l'accélérateur linéaire le plus long au monde, accélère des électrons jusqu'à 50GeV sur 3.2km. Les accélérateurs laser-plasma peuvent produire des champs électriques dépassant 100 GV/m, soit environ trois ordres de grandeur plus grands que ceux obtenus par les accélérateurs à cavités radiofréquences. Ils pourraient ainsi permettre une diminution drastique de la taille des accélérateurs pour des applications scientifiques, médicales et industrielles. Cependant, plusieurs verrous devront être levés avant que ces applications puissent voir le jour. Il sera notamment nécessaire de démontrer la production efficace de faisceaux d'électrons de haute qualité, à des énergies de plusieurs GeV et à un taux de répétition élevé.Le projet doctoral s’attaque à cette problématique en explorant de nouvelles méthodes pour augmenter l'énergie des faisceaux d'électrons grâce à des techniques qui sont compatibles avec des puissances laser et des taux de répétition élevés et qui peuvent être alliées avec des méthodes d'injection contrôlée. En effet, des faisceaux d'électrons à haute énergie ou avec une injection contrôlée ont été obtenus séparément durant les quinze dernières années, mais jamais de manière combinée. Cette thèse présente les travaux réalisés sur les techniques de guidage ainsi que sur celles d'injection des électrons qui ont permis d'obtenir expérimentalement des faisceaux de bonne qualité à hautes énergies. Ce travail s'est fait notamment au travers de l'optimisation d'une optique nouvellement conçue au Laboratoire d'Optique Appliquée, l'axiparabole, ainsi que sur le développement de jets de gaz spécifiques à l'accélération laser-plasma
To generate high energy electron beams, conventional accelerators use radio frequency waves to accelerate charged particles to relativistic speeds. However, the accelerating electric field produced is limited to a few tens of megavolts per metre, mainly due to a breakdown phenomenon. Very large facilities are therefore needed to reach sufficiently high energies. For example, the Stanford Linear Accelerator (SLAC), which is the world's longest linear accelerator, accelerates electrons up to 50 GeV over a distance of 3.2 km. Laser-Plasma Accelerators can produce electric fields exceeding 100 GV/m, that are about three orders of magnitude larger than those obtained by radiofrequency-cavity accelerators. They could thus allow for a drastic decrease of the size of accelerators for scientific, medical and industrial applications. Yet, several bottlenecks have to be solved before these applications can be really implemented. It is notably necessary to demonstrate the efficient production of high-quality, multi-GeV electron beams at a high-repetition rate.The doctoral project tackles this problem by exploring new methods for increasing the energy of the electron beams thanks to techniques that are compatibles with arbitrarily high laser powers and repetition rates and that can be combined with controlled injection methods. Indeed, high energy or controlled injection electron beams have been obtained separately during the last fifteen years, but never combined. This thesis presents the work carried out on the guiding techniques as well as on the electron injection techniques which allowed to obtain experimentally good quality beams at high energies. This work was done in particular through the optimisation of a new optic designed at the Laboratoire d'Optique Appliquée, the axiparabola, as well as the development of gas jets specific to laser-plasma acceleration
2

Bocoum, Maïmouna. "Harmonic and electron generation from laser-driven plasma mirrors." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX023/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dans cette thèse expérimentale, nous nous intéressons à la réponse non-linéaire d’un miroir plasma sous l’influence d’un laser d’intensité sous-relativiste (~10^18 W/cm^2), et de très courte durée (~30fs). Nous avons en particulier étudié la génération d’impulsions attosecondes (1as=10^(-18) s) et de faisceaux d’électrons en effectuant des expériences dites de « pompe-sonde » contrôlées. Un premier résultat important est l’observation d’une anti-corrélation entre l’émission X-UV attoseconde et l’accélération d’électron lorsque l’on change la longueur caractéristique du plasma, résultats confirmés par des simulations numériques. Un second résultat important concerne le diagnostique de l’expansion du plasma sous vide par « interférométrie en domaine spatial » (SDI), technique élaborée dans le cadre de cette thèse. Enfin nous discutons à deux reprises l’utilisation d’algorithmes de reconstruction de phase dans le domaine spatiale ou temporel.De manière plus générale, nous avons cherché à replacer ce travail de thèse dans un contexte scientifique plus général. En particulier, nous tentons de convaincre le lecteur qu’à travers l’intéraction laser-miroir plasma, il devient concevable de fournir un jour aux utilisateurs des sources peu onéreuses d’impulsions X-UV et de faisceaux d’électrons de résolutions temporelles inégalées
The experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions
3

Mollica, Florian. "Interaction laser-plasma ultra-intense à densité proche-critique pour l'accélération d'ions." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX058/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'interaction d'un laser ultra-intense et ultra-court avec la matière donne naissance à une grande variété de processus issus du couplage des ondes électromagnétiques associées au laser avec les modes du plasma. Ce couplage hautement non-linéaire excite des phénomènes plasmas collectifs capables de produire des champs intenses pouvant atteindre le TV/m. Ces champs ouvrent la possibilité de réaliser des accélérateurs de particules compacts, aussi bien d'électrons que d'ions. Des sources laser-plasma d'ions de plusieurs dizaines de MeV ont été démontré au début des années 2000 et de nombreux mécanismes ont été suggérés depuis afin d'en améliorer les propriétés. Historiquement, les sources d'ions par laser ont été obtenues à partir de cibles solides dîtes sur-denses. L’innovation sur les cibles a été un moteur majeur de l’amélioration de ces sources. Dans la continuité de cette dynamique, l’utilisation de cibles gazeuses a été proposé afin d’alléger les contraintes de contraste laser et de taux de répétition. De récentes démonstrations expérimentales sont venus renforcer l’intérêt pour ces cibles, dîtes sous-denses ou proche critiques, dont la valeur est propice à la propagation, à l’absorption du laser et à la création de structures accélératrices que sont les chocs plasmas et les vortex magnétiques. Les travaux présentés dans cette thèse constituent une exploration expérimentale des paramètres plasmas nécessaires à l’accélération d’ions dans des cibles gazeuses de densité proche-critique. Pour la première fois ces régimes sont explorés avec un laser ultra-intense femtoseconde de 150TW. Une partie des travaux a été consacrée à la réalisation d’une cible innovante, adaptée aux contraintes de densité et de gradients plasma requises par ces régimes. Suivent, les travaux expérimentaux décrivant la propagation du laser et l’accélération d’électrons dans des cibles proche-critiques. Enfin une dernière partie décrit la production d’un faisceau d’atome issue d’une source d’ion laser
Interaction of ultra-intense, ultra-short laser with matter gives rise to a wealth of phenomena, due to the coupling between the electromagnetic field and the plasma. The non-linear coupling excites collective plasma processes able to sustain intense electric fields up to 1TV/m. This property spurred early interest in laser accelerator as compact, next-generation source of accelerated electrons and ions. Laser-driven ion source of several MeV was demonstrated in early 2000 an various mechanisms had been suggest to improve the their properties. These first ion sources have been obtained on solid targets, called “overdense”. Target innovation has driven the improvement of these sources. In the continuity of this dynamic, new gaseous targets had been proposed in order to relax the constraints that solid targets impose on laser contrast and repetition rate. Recent experimental demonstrations of monoenergetic ion acceleration in gas renew the interest in such targets, called under-dense or near-critical because of their intermediate densities. At near-critical density the laser can propagate, but undergoes significant absorbtion, giving rise to the accelerating structures of plasma shocks and magnetic vortex.The work presented in this thesis is an experimental exploration of the plasma conditions required to drive ion acceleration in gaseous near-critical target. For the first time, these regimes are explored with an ultra-intense, femtosecond laser of 150TW. A part of this work has been dedicated to the design of an innovative gas target, suited for plasma density and gradient constraints set by these regimes. Then the experimental works describe laser propagation and electron acceleration in near-critical targets. Finally the last part report the efficient production of an atomic beam from a laser-driven ion source
4

Leblanc, Adrien. "Miroirs et réseaux plasmas en champs lasers ultra-intenses : génération d’harmoniques d’ordre élevé et de faisceaux d’électrons relativistes." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS384/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lors de la focalisation d’un laser femtoseconde ultra-intense [I>10¹⁶W/cm²] sur une cible solide, dès le début de l’impulsion le champ laser est suffisant pour totalement ioniser la surface de la cible. Le reste de l’impulsion est ensuite réfléchi dans la direction spéculaire par le plasma dense ainsi créé : c’est un miroir plasma. Le champ laser ultra-intense peut accélérer les électrons au sein du plasma à des vitesses relativistes. Certains sont éjectés vers le vide et ces miroirs plasmas sont ainsi des sources de faisceaux d’électrons énergétiques. De plus, ils rayonnent dans l’extrême ultra-violet (XUV) à chaque période laser, ce qui se traduit par de la génération d’harmoniques d’ordre élevé de la pulsation laser. L’objectif de cette thèse est de mieux comprendre l’interaction laser-plasma sur miroirs plasmas à l’aide de la caractérisation de ces deux observables physiques qui en sont issues : les faisceaux d’électrons relativistes et les faisceaux d’harmoniques d’ordre élevé. Une première partie traite de la mesure des faisceaux harmoniques. Du fait des conditions physiques extrêmes d’interaction, la détection ne peut se faire qu’à une distance macroscopique de la cible. Ainsi la caractérisation des propriétés angulaires de ces faisceaux (réalisée en fonction des conditions d’interaction au cours de travaux précédents) ne fournit que des informations partielles sur l’interaction en elle-même. La ptychographie, une technique de mesure par diffraction cohérente où une sonde est diffractée par un objet, est ici transposée à la génération d’harmoniques sur miroirs plasmas grâce à la micro-structuration optique du plasma à la surface de la cible. Les champs sources harmoniques sont ainsi reconstruits en amplitude et en phase spatiales directement dans le plan cible. Grâce à ces mesures dans différentes conditions d’interaction, des modèles théoriques analytiques d’interaction en régime non relativiste [I<10¹⁸W/cm²] et relativiste [I>10¹⁸W/cm²] développés précédemment sont validés expérimentalement. Une seconde partie de cette thèse est consacrée à l’étude expérimentale des propriétés angulaires et en énergie des faisceaux d’électrons relativistes issus des miroirs plasmas. Une étude théorique et numérique, permet de prouver que ces mesures sont la première observation claire de l’accélération d’électrons relativistes par laser dans le vide (VLA). Enfin, l’étude simultanée des efficacités de génération des faisceaux d’électrons et d’harmoniques montre une corrélation nette entre les deux processus en régime relativiste
When focusing an ultra-intense femtosecond laser pulse [I>10¹⁶W/cm²] onto a solid target, this target is ionized at the very beginning of the laser pulse. The resulting dense plasma then reflects the laser in the specular direction: it is a plasma mirror. The ultra-intense laser field can accelerate electrons within the plasma at relativistic speeds. Some are ejected towards the vacuum and these plasma mirrors are therefore sources of relativistic electron beams. Moreover, at each optical cycle they radiate in the form of extreme ultraviolet light, resulting in the generation of high-order harmonics of the laser frequency (HHG). The objective of this PhD is to understand laser-plasma interaction though the characterization of high-order harmonics and relativistic electron beams generated from plasma mirrors. The first part deals with harmonic beam measurement. Due to the extreme physical conditions during the interaction, detection can only be performed at macroscopic distance from target. Thus, the characterization of the harmonic beams’ angular properties (carried out as a function of interaction conditions in previous works) only provides partial information on the interaction itself. A technique of coherent diffraction imaging, named ptychography, which consists of diffracting a probe onto an object, is transposed to HHG on plasma mirrors by optically micro-structuring the plasma on a target surface. Harmonic fields are then reconstructed spatially in amplitude and phase directly in the target plane. Thanks to this measurement in different interaction conditions, previously developed theoretical analytical models in non-relativistic regime [I<10¹⁸W/cm²] and relativistic regime [I>10¹⁸W/cm²] are experimentally validated. The second part of the PhD is dedicated to the experimental characterization of angular and spectral properties of relativistic electron beams. A theoretical and numerical study shows that this constitutes the first clear observation of vacuum laser acceleration (VLA). Finally, a simultaneous study of harmonic and electron signals highlights a strong correlation between both processes in the relativistic regime
5

Keston, David Arthur. "Bernstein modes in weakly relativistic e'-e'+ plasma." Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Déchard, Jérémy. "Sources térahertz produites par des impulsions laser ultra-intenses." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS358/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les impulsions laser femtosecondes produisent des phénomènes non linéaires extrêmes dans la matière, conduisant à une forte émission de rayonnement secondaire qui couvre un domaine en fréquence allant du terahertz (THz) aux rayons X et gamma. De nombreuses applications utilisent la bande de fréquences terahertz (0.1-100 THz) afin de sonder la matière (spectroscopie, médecine, science des matériaux). Ce travail est dédié à l'étude théorique et numérique du rayonnement THz généré par interaction laser-plasma. Comparé aux techniques conventionnelles, ces impulsions laser permettent de créer des sources THz particulièrement énergétiques et à large bande. Notre objectif a donc été d'étudier ces régimes d'interaction relativiste, encore peu explorés, afin d'optimiser l'efficacité de conversion du laser vers les fréquences THz. L'étude de l'interaction laser-gaz en régime classique nous permet, d'abord, de valider un modèle de propagation unidirectionnelle prenant en compte la génération d'impulsion THz et de le comparer à la solution exacte des équations de Maxwell. Ensuite, en augmentant l'intensité laser au-delà du seuil relativiste, nous simulons à l'aide d'un code PIC une onde plasma non linéaire dans le sillage du laser, accélérant ainsi des électrons à plusieurs centaines de MeV. Nous montrons que le mécanisme standard des photocourrants est dominé par le rayonnement de transition cohérent induit par les électrons accélérés dans l'onde de sillage. La robustesse de ce rayonnement est ensuite observée grâce à une étude paramétrique faisant varier la densité du plasma sur plusieurs ordres de grandeur. Nous démontrons également la pertinence des grandes longueurs d'ondes laser qui sont à même de déclencher une forte pression d'ionisation, ce qui augmente la force pondéromotrice du laser. Enfin, les rayonnements THz émis à partir d'interactions laser-solide sont examinés dans le contexte de cibles ultra fine, mettant en lumière les différents processus impliqués
Femtosecond laser pulses trigger extreme nonlinear events inmatter, leading to intense secondary radiations spanning the frequency rangesfrom terahertz (THz) to X and gamma-rays.This work is dedicated to the theoretical and numerical study of THz radiationgenerated by laser-driven plasmas. Despite the inherent difficulty in accessingthe THz spectral window (0.1-100 THz), many coming applications use theability of THz frequencies to probe matter (spectroscopy, medicine, materialscience). Laser-driven THz sources appear well-suited to provide simultaneouslyan energetic and broadband signal compared to other conventional devices. Ourgoal is to investigate previously little explored interaction regimes in orderto optimize the laser-to-THz conversion efficiency.Starting from classical interactions in gases, we validate a unidirectionalpropagation model accounting for THz pulse generation, which we compare to theexact solution of Maxwell's equations. We next increase the laser intensityabove the relativistic threshold in order to trigger a nonlinear plasma wave inthe laser wake, accelerating electrons to a few hundreds of MeV. We show thatthe standard photocurrent mechanisms is overtaken by coherent transitionradiation induced by wakefield-accelerated electron bunch. Next, successivestudies reveal the robustness of this latter process over a wide range of plasmaparameters. We also demonstrate the relevance of long laser wavelengths inaugmenting THz pulse generation through the ionization-induced pressure thatincreases the laser ponderomotive force. Finally, THz emission from laser-solidinteraction is examined in the context of ultra-thin targets, shedding light onthe different processes involved
7

Touati, Michaël. "Fast Electron Transport Study for Inertial Confinement Fusion." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0076/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Un nouveau mod`ele r´eduit pour le transport de faisceaux d’´electrons relativistes dans des solide ou des plasma denses est propos´e. Il est bas´e sur la r´esolution des deux premiers moments angulaires de l’´equation cin´etique relativiste, compl´et´es par une relation de fermeture d´eduite du principe de maximisation de l’entropie angulaire de Minerbo. Le mod`ele prend en compte aussi bien les effets collectifs du transport avec les champs ´electromagn´etiques auto g´en´er´es que les effets collisionnels li´es au ralentissement des ´electrons par collision sur les plasmons, les ´electrons li´es et les ´electrons libres du milieu ainsi que leur diffusion angulaire par collisions sur les ´electrons et les ions. Le mod`ele permet une r´esolution num´erique rapide des ´equations du transport de faisceau d’´electrons rapides tout en d´ecrivant l’´evolution cin´etique de leur fonction de distribution. Malgr´e le fait de travailler avec les grandeurs angulaires moyennes, le mod`ele a ´et´e valid´e par comparaison avec des solutions analytiques d´eriv´ees dans un cas acad´emique de transport de faisceau mono ´energ´etique et collimat´e dans un plasma dense et chaud d’Hydrog`ene ainsi qu’avec une simulation PIC hybride dans un cas r´ealiste de transport d’´electrons acc´el´er´es par laser dans une cible solide. Le mod`ele est appliqu´e `a l’´etude de l’´emission de photons Kα lors d’exp´eriences laser-plasma ainsi qu’a` la g´en´eration d’ondes de choc
A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas is presented. It is based on the two first angular moments of the relativistic kinetic equation completed with the Minerbo maximum angular entropy closure. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the elec- trons in collisions with plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing the kinetic distribution function evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydro- gen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport in a solid target. The model is applied to the study of the emission of Kα photons in laser-solid experiments and to the generation of shock waves
8

Heissler, Patrick. "Relativistic laser plasma interaction." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-146019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MARQUES, JEAN-RAPHAEL. "Creation de plasmas homogenes pour l'excitation d'ondes plasma relativistes par battement d'ondes laser." Paris 11, 1992. http://www.theses.fr/1992PA112260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dans cette these sont etudies plusieurs points relatifs a l'acceleration de particules par battement d'ondes lasers dans un plasma. Une premiere partie theorique explique comment la force ponderometrice associe a un laser permet de creer une onde de champ electrostatique de forte amplitude et de vitesse de phase relativiste. Les differents mecanismes qui peuvent limiter l'amplitude de l'onde y sont detailles. La deuxieme partie est consacree a la creation des plasmas homogenes necessaires aux experiences de battement d'ondes. Le plasma est cree par multiphotoionisation d'un gaz d'hydrogene ou de deuterium. Un diagnostic base sur la diffusion thomson du laser permet de mesurer l'evolution du plasma. Un soin tout particulier est porte sur l'evolution temporelle de la densite electronique. Les resultats experimentaux sont compares a des modeles numeriques simples. La derniere partie presente les resultats de nos experiences de battement d'ondes. Des ondes plasma electroniques de forte amplitude sont creees lorsque la frequence plasma est proche de la difference de frequence des deux lasers. Les champs longitudinaux associes a ces ondes sont compris entre 0,3 et 1,5 gv/m. La decomposition de l'onde plasma relativiste via l'instabilite modulationnelle a ete observee pour la premiere fois. Une conclusion importante de ce travail est la mise en evidence de l'influence des ions, a la fois sur l'homogeneite du plasma et sur la saturation de l'onde plasma
10

Appel, Walter. "Proprietes d'equilibre d'un plasma faiblement relativiste." Lyon, École normale supérieure (sciences), 1997. http://www.theses.fr/1997ENSL0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
On considere un plasma a une composante a l'equilibre, forme de charges ponctuelles baignant dans un fond rigide uniforme neutralisant. Lorsque la temperature n'est pas trop elevee, les vitesses moyennes des particules restent faibles devant la vitesse de la lumiere, et les effets relativistes peuvent etre traites perturbativement. Une premiere approche purement classique (non quantique) du probleme consiste a utiliser le hamiltonien de darwin, qui inclut, outre les interactions coulombiennes, des interactions electromagnetiques retardees a deux corps couplant positions et impulsions canoniques. Les fonctions thermodynamiques et les fonctions de correlation sont evaluees a partir de resommations des developpements diagrammatiques de mayer habituels. Afin de discuter la pertinence physique du modele etudie ainsi que d'autres modeles presents dans la litterature, l'etude est poursuivie dans le cadre plus general de l'electrodynamique quantique a temperature finie. Les conditions spatiales et thermodynamiques de validite du modele de darwin sont alors degagees

Books on the topic "Relativist plasma":

1

V, Stefan, and Institute for Advanced Physics Studies. La Jolla International School of Physics., eds. Nonlinear and relativistic effects in plasmas. New York: American Institute of Physics, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Symposium on Laser-Driven Relativistic Plasmas Applied to Science, Industry and Medicine (2nd 2009 Kyoto, Japan). Laser-driven relativistic plasmas applied to science, industry, and medicine: The 2nd international symposium, Kyoto, Japan, 19-23 January 2009. Edited by Bolton Paul R, Bulanov, S. V. (Sergei V.), and Daido H. (Hiroyuki). Melville, N.Y: American Institute of Physics, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International, Symposium "Laser-Driven Relativistic Plasmas Applied to Science Energy Industry and Medicine" (3rd 2011 Kyoto Japan). Laser-driven relativistic plasmas applied to science, energy, industry and medicine: The 3rd International Symposium, Kyoto, Japan, 30 May-2 June 2011. Melville, N.Y: American Institute of Physics, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monnai, Akihiko. Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54798-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krasovit︠s︡kiĭ, V. B. Instabilities of relativistic electron beams in plasmas. Hauppauge, N.Y: Nova Science Publishers, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anile, Angelo Marcello. Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics. Cambridge: Cambridge University Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krasovit︠s︡kiĭ, V. B. Self-focusing of relativistic electron bunches in plasmas. Hauppauge, N.Y: Nova Science Publishers, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Entrop, Ingeborg. Confinement of relativistic runaway electrons in tokamak plasmas. Eindhoven: University of Eindhoven, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bindslev, Henrik. On the theory of Thomson scattering and reflectometry in a relativistic magnetized plasma. Roskilde: Risø National Laboratory, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wells, Nikita. Soviet research on the transport of intense relativistic electron beams through high-pressure air. Santa Monica, CA: Rand, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Relativist plasma":

1

Punsly, Brian. "Relativistic Plasma Physics." In Astrophysics and Space Science Library, 34–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76957-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Punsly, Brian. "Relativistic Plasma Physics." In Astronomy and Astrophysics Library, 35–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04409-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weitzner, Harold. "Relativistic plasmas." In Relativistic Fluid Dynamics, 211–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0084031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andreev, Alexander. "Relativistic Nano-Plasma Photonics." In Springer Series in Chemical Physics, 3–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52431-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meyer-ter-Vehn, J., A. Pukhov, and Zh M. Sheng. "Relativistic Laser Plasma Interaction." In Atoms, Solids, and Plasmas in Super-Intense Laser Fields, 167–92. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1351-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mulser, Peter, and Dieter Bauer. "Relativistic Laser–Plasma Interaction." In Springer Tracts in Modern Physics, 331–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-46065-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takabe, Hideaki. "Relativistic Laser Plasma Interactions." In Springer Series in Plasma Science and Technology, 203–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49613-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pukhov, Alexander. "Relativistic Laser-Plasma Physics." In Strong Field Laser Physics, 427–53. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34755-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kono, Mitsuo, and Miloš M. Škorić. "Relativistic Laser Plasma Interactions." In Nonlinear Physics of Plasmas, 415–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14694-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shivamoggi, Bhimsen K. "Nonlinear Relativistic Waves." In Introduction to Nonlinear Fluid-Plasma Waves, 147–69. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2772-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Relativist plasma":

1

Esarey, E., P. Sprangle, J. Krall, and G. Joyce. "Intense Laser Pulse Propagation and Wakefield Generation in Plasma." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.tua4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Advances in laser technology have made possible compact terawatt laser systems with high intensities (I 0 ≥ 1018 W/cm2), modest energies (≤ 100 J) and short pulses (τl ≤ 1 ps). At ultra-high intensities, the laser-electron interaction becomes highly nonlinear and relativistic, thus resulting in a wide variety of new and interesting phenomena [1-5]. These phenomena include: (i) laser excitation of large amplitude plasma waves (wakefields) [1,3-5], (ii) relativistic optical guiding of laser pulses by plasmas [2-5], and (iii) optical guiding by preformed plasma channels [5]. This paper briefly discusses the these phenomena, including self-consistent, 2D-axisymmetric simulations.
2

Borisov, A. B., O. B. Shiryaev, A. McPherson, K. Boyer, C. K. Rhodes, and J. C. Solem. "Stability Analysis of Relativistic and Charge-Displacement Self-Channeling of Intense Laser Pulses." In Shortwavelength V: Physics with Intense Laser Pulses. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/swv.1993.puip58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Theoretical modeling of the stability of relativistic and charge displacement self-channeling of high power laser pulses in plasmas leads to the establishment of stability maps for self-channeling propagation of laser pulses. The problem of stability of relativistic and charge displacement self-channeling of intense ultrashort laser pulses in cold undercritical plasmas against small azimuthal perturbations is analyzed. The problem is studied for both an initially uniform plasma and for a preformed plasma column. In the plane of dimensionless parameters ρo = roωp,o/c and η = Po/Pcr, which depends on the initial values of the focal spot radius, power of the laser beam and the unperturbed density of the plasma, the boundary separating the regimeis of the stable self-channeling and of the strong filamentation is defined. It is found that for ρ o ≈ ρeig,o (ρeig,o being the dimensionless radius of the zeroth eigenmode of the studied problem) the relativistic and charge-displacement self-channeling is stable for any value of initial power Po > Pcr. It is also shown that in the case where η ≈ 10, the relativistic and charge-displacement self-channeling is stable for practically any value of ρo. It is found that the location of the boundary separating the two regimes of propagation is essentially independent of the initial curvature of the phase front of the beam. The dependence of the location of the stable region on the parameters governing the amplitude of the azimuthal perturbation is also weak. The results emphasize the extreme importance of the stabilizing role of charge-displacement in these plasma interactions. A procedure for optimization of laser beam and plasma parameters for experimental realization of the relativistic and charge-displacement self-channeling is developed. The proposed method of investigation of the stability and the optimization of the self-channeling of laser pulses can be applied generally to various cases involving nondissapative media with saturating nonlinearities.
3

Zhang, Chaojie, Warren B. Mori, and Chan Joshi. "Femtosecond breathing of plasma wakes in a modulated density downramp." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.w1b.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ultrashort but intense laser or relativistic beam drivers can excite non-evolving wakes in uniform-density plasmas. By introducing a periodically modulated density downramp, we show the plasma wakes can be forced to “breathe” on femtosecond timescales.
4

Thompson, B. D., A. McPherson, A. B. Borisov, K. Boyer, and C. K. Rhodes. "Experimental Studies of the Propagation of Ultrashort, Intense Laser Pulses in Underdense Plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Many practical applications of ultrashort, high power laser pulses require the laser pulse to be focused to a high intensity and remain relatively collimated over large distances in plasmas. Such applications include x-ray lasers [1], laser-plasma-based electron accelerators [2] and laser-induced nuclear fusion schemes [3]. Self-focusing and self-channeling of laser pulses by relativistic and ponderomotive mechanisms [4] are laser-plasma processes which can accomplish this feat.
5

Romé, M., I. Kotelnikov, R. Pozzoli, James R. Danielson, and Thomas Sunn Pedersen. "Relativistic Effects on the Radial Equilibrium of Nonneutral Plasmas." In NON-NEUTRAL PLASMA PHYSICS VII: Workshop on Non-Neutral Plasmas 2008. AIP, 2009. http://dx.doi.org/10.1063/1.3122276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sprangle, P., E. Esarey, and A. Ting. "The Interaction of Intense Laser Pulses in Plasmas." In High-Energy Density Physics with Subpicosecond Laser Pulses. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/hpslp.1989.m3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The interaction of ultra-high power laser beams with plasmas is rich in a variety of wave-particle phenomena. These phenomena become particularly interesting and involved when the laser power is high enough to cause the electron oscillation velocity to become highly relativistic. Some of the interesting laser-plasma processes which will be discussed include i) the production of large amplitude plasma waves which could be used to accelerate electrons to ultra-high energies; ii) the possibility of modifying the plasma refractive properties in order to achieve optical guiding of a laser pulse, thus preventing the laser pulse from diffracting; and iii) the possibility of producing coherent radiation at harmonics of the incident laser frequency.
7

Škorić, Miloš M., Bengt Eliasson, and Padma K. Shukla. "Relativistic Laser-Plasma Interactions." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eliasson, B., P. K. Shukla, Padma K. Shukla, José Tito Mendonça, Bengt Eliasson, and David Resedes. "Nonlinear relativistic interactions between electromagnetic waves and quantum plasmas." In INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: Strongly Coupled Ultra-Cold and Quantum Plasmas. AIP, 2012. http://dx.doi.org/10.1063/1.3679596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Škorić, M. M., Lj Nikolić, S. Ishiguro, Padma K. Shukla, José Tito Mendonça, Bengt Eliasson, and David Resedes. "Attosecond photon and electron pulses from relativistic laser plasmas." In INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: Strongly Coupled Ultra-Cold and Quantum Plasmas. AIP, 2012. http://dx.doi.org/10.1063/1.3679597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barchuk, S. V. "Relativistic Electron Beam Interaction With Semi-Bounded Plasma." In PLASMA 2005: Int. Conf. on Research and Applications of Plasmas; 3rd German-Polish Conf.on Plasma Diagnostics for Fusion and Applications; 5th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2006. http://dx.doi.org/10.1063/1.2168813.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Relativist plasma":

1

Braams, B. J., and C. F. F. Karney. Conductivity of a relativistic plasma. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6392639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fernandez, Juan Carlos, Brian James Albright, Cris William Barnes, and Kurt Francis Schoenberg. Harnessing Relativistic Laser Plasmas to Generate Intense Ion Beams: A Plasma Science Frontier White Paper. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Govil, R., S. Wheeler, and W. Leemans. Plasma lenses for focusing relativistic electron beams. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shvets, G., N. J. Fisch, and J. M. Rax. Relativistic Raman instability shifted by half-plasma frequency. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/206588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Palastro, J., and T. Antonsen, Jr. Relativistic Plasma Physics at the National Ignition Facility. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1059097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berezhiani, V. I., and S. M. Mahajan. A relativistic solitary wave in electron-positron ion plasma. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10140474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baym, Gordon. Ultra-Relativistic Heavy-Ion Collisions And The Quark-Gluon Plasma. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/1118870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Williams, J., Y. Arikawa, N. Lemos, T. Ma, D. Mariscal, A. Morace, Y. Sakawa, et al. Relativistic electron-positron plasma jets and interactions using LFEX lasers. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Braams, B. J., and C. F. F. Karney. Differential form of the collision integral for a relativistic plasma. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/6268312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sprangle, P., A. Zigler, and E. Esarey. Elimination of Laser Prepulse by Relativistic Guiding in a Plasma. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada229859.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography