Academic literature on the topic 'Relatively hyperbolic group'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Relatively hyperbolic group.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Relatively hyperbolic group"
BOWDITCH, B. H. "RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 22, no. 03 (May 2012): 1250016. http://dx.doi.org/10.1142/s0218196712500166.
Full textBELEGRADEK, IGOR, and ANDRZEJ SZCZEPAŃSKI. "ENDOMORPHISMS OF RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 18, no. 01 (February 2008): 97–110. http://dx.doi.org/10.1142/s0218196708004305.
Full textMihalik, M., and E. Swenson. "Relatively hyperbolic groups with semistable fundamental group at infinity." Journal of Topology 14, no. 1 (December 3, 2020): 39–61. http://dx.doi.org/10.1112/topo.12178.
Full textGerasimov, Victor, and Leonid Potyagailo. "Similar Relatively Hyperbolic Actions of a Group." International Mathematics Research Notices 2016, no. 7 (June 30, 2015): 2068–103. http://dx.doi.org/10.1093/imrn/rnv170.
Full textBumagin, Inna. "Time complexity of the conjugacy problem in relatively hyperbolic groups." International Journal of Algebra and Computation 25, no. 05 (August 2015): 689–723. http://dx.doi.org/10.1142/s0218196715500162.
Full textTRAN, HUNG CONG. "RELATIONS BETWEEN VARIOUS BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 23, no. 07 (November 2013): 1551–72. http://dx.doi.org/10.1142/s0218196713500367.
Full textFujiwara, Koji. "Asymptotically isometric metrics on relatively hyperbolic groups and marked length spectrum." Journal of Topology and Analysis 07, no. 02 (March 26, 2015): 345–59. http://dx.doi.org/10.1142/s1793525315500132.
Full textDahmani, François, and Vincent Guirardel. "Recognizing a relatively hyperbolic group by its Dehn fillings." Duke Mathematical Journal 167, no. 12 (September 2018): 2189–241. http://dx.doi.org/10.1215/00127094-2018-0014.
Full textDAHMANI, FRANÇOIS. "PARABOLIC GROUPS ACTING ON ONE-DIMENSIONAL COMPACT SPACES." International Journal of Algebra and Computation 15, no. 05n06 (October 2005): 893–906. http://dx.doi.org/10.1142/s0218196705002530.
Full textFUKAYA, TOMOHIRO, and SHIN-ICHI OGUNI. "THE COARSE BAUM–CONNES CONJECTURE FOR RELATIVELY HYPERBOLIC GROUPS." Journal of Topology and Analysis 04, no. 01 (March 2012): 99–113. http://dx.doi.org/10.1142/s1793525312500021.
Full textDissertations / Theses on the topic "Relatively hyperbolic group"
Mole, Adam [Verfasser], and Arthur [Akademischer Betreuer] Bartels. "A flow space for a relatively hyperbolic group / Adam Mole ; Betreuer: Arthur Bartels." Münster : Universitäts- und Landesbibliothek Münster, 2013. http://d-nb.info/1141680874/34.
Full textHume, David S. "Embeddings of infinite groups into Banach spaces." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde.
Full textGenevois, Anthony. "Cubical-like geometry of quasi-median graphs and applications to geometric group theory." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0569/document.
Full textThe class of quasi-median graphs is a generalisation of median graphs, or equivalently of CAT(0) cube complexes. The purpose of this thesis is to introduce these graphs in geometric group theory. In the first part of our work, we extend the definition of hyperplanes from CAT(0) cube complexes, and we show that the geometry of a quasi-median graph essentially reduces to the combinatorics of its hyperplanes. In the second part, we exploit the specific structure of the hyperplanes to state combination results. The main idea is that if a group acts in a suitable way on a quasi-median graph so that clique-stabilisers satisfy some non-positively curved property P, then the whole group must satisfy P as well. The properties we are interested in are mainly (relative) hyperbolicity, (equivariant) lp-compressions, CAT(0)-ness and cubicality. In the third part, we apply our general criteria to several classes of groups, including graph products, Guba and Sapir's diagram products, some wreath products, and some graphs of groups. Graph products are our most natural examples, where the link between the group and its quasi-median graph is particularly strong and explicit; in particular, we are able to determine precisely when a graph product is relatively hyperbolic
Yaman, Asli. "Boundaries of relatively hyperbolic groups." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432635.
Full textZarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Full textA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Bigdely, Hadi. "Subgroup theorems in relatively hyperbolic groups and small- cancellation theory." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119606.
Full textDans la premiere partie, nous etudions les amalgames de groupes relativement hyperboliques et egalement les sous-groupes relativement quasiconvexes de ces amalgames. Nous prouvons l'hyperbolicie relative pour un groupe qui se separe comme un graphe fini de groupes relativement hyperboliques avec des groupes d'aretes paraboliques, ce qui generalise un resultat prouve independamment par Dahmani,Osin et Alibegovic. Nous l'etendons au cas ou les groupes d'aretes sont totalaux, malnormal et relativement quasiconvexes. En outre, nous fournissons un critere de detection de quasiconvexite relative des sous-groupes dans les groupes hyperboliques qui divisent. Comme application, nous montrons la quasiconvexite locale relative d'un groupe qui est relativement hyperbolique a certains sous-groupes noetheriens et qui a une petite hierarchie. Nous etudions egalement les sous-groupes libres de groupes relativement hyperboliques, et reprouvons l'existence d'un sous-groupe libre, malnormal, relativement quasiconvexe F2 dans un groupe non- elementaire relativement hyperbolique G. En combinant ce resultat avec une variation sur un theoremede Arzhantseva, nous montrons que si G est aussi sans-torsion, "generiquement" tout sous-groupe de F2 est aparabolique, malnormal dans G et quasiconvexe par rapport a P. Comme application, nous montrons que pour tout groupe G non-elementaire, sans-torsion, qui est hyperbolique par rapport a P, il existe un groupe G∗ contenant G tel que G∗ est hyperbolique par rapport a P et G n'est pas quasiconvexe dans G∗. Dans la deuxieme partie, nous etudions l'existence de sous-groupe F2 × F2 dans desgroupes a petite simplification. Nous montrons que les groupes C(6) ne peuvent pas contenir un sous-groupe isomorphe a F2 × F2 . Le resultat analogue est egalement prouve dans le dossier C(3)-T(6) affaire.
O'Connor, Zoe Ann. "Length bounds for the conjugacy search problem in relatively hyperbolic groups, limit groups and residually free groups." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2819.
Full textRicher, Émilie. "Relative hyperbolicity of graphs of free groups with cyclic edge groups." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101170.
Full textWe apply a "coning-off" process to peripheral subgroups of the universal cover X̃ → X obtaining a space Cone(X̃) in order to prove that Cone (X̃) has a linear isoperimetric function and hence satisfies weak relative hyperbolicity with respect to peripheral subgroups.
We then use a recent characterisation of relative hyperbolicity presented by D.V. Osin to serve as a bridge between our linear isoperimetric function for Cone(X̃) and a complete proof of relative hyperbolicity. This characterisation allows us to utilise geometric properties of X in order to show that pi1( X) has a linear relative isoperimetric function. This property is known to be equivalent to relative hyperbolicity.
Keywords. Relative hyperbolicity; Graphs of free groups with cyclic edge groups, Relative isoperimetric function, Weak relative hyperbolicity.
Rippy, Scott Randall. "Applications of hyperbolic geometry in physics." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1099.
Full textVonseel, Audrey. "Hyperbolicité et bouts des graphes de Schreier." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD025/document.
Full textThis thesis is devoted to the study of the topology at infinity of spaces generalizing Schreier graphs. More precisely, we consider the quotient X/H of a geodesic proper hyperbolic metric space X by a quasiconvex-cocompact group H of isometries of X. We show that this quotient is a hyperbolic space. The main result of the thesis indicates that the number of ends of the quotient space X/H is determined by equivalence classes on a sphere of computable radius. In the context of group theory, we show that one can construct explicitly groups and subgroups for which there are no algorithm to determine the number of relative ends. If the subgroup is quasiconvex, we give an algorithm to compute the number of relative ends
Books on the topic "Relatively hyperbolic group"
Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Providence, R.I: American Mathematical Society, 2006.
Find full textNinul, Anatolij Sergeevič. Tensor Trigonometry. Moscow, Russia: Fizmatlit Publisher, 2021.
Find full textNinul, Anatolij Sergeevič. Tenzornaja trigonometrija: Teorija i prilozenija / Theory and Applications /. Moscow, Russia: Mir Publisher, 2004.
Find full textBook chapters on the topic "Relatively hyperbolic group"
Ramsay, Arlan, and Robert D. Richtmyer. "Connections with the Lorentz Group of Special Relativity." In Introduction to Hyperbolic Geometry, 242–53. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-5585-5_11.
Full textKharlampovich, Olga, and Pascal Weil. "On the Generalized Membership Problem in Relatively Hyperbolic Groups." In Fields of Logic and Computation III, 147–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48006-6_11.
Full text"Relatively Hyperbolic Case." In The Structure of Groups with a Quasiconvex Hierarchy, 281–303. Princeton University Press, 2021. http://dx.doi.org/10.2307/j.ctv1574pr6.19.
Full text"The relatively hyperbolic setting." In From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 125–28. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/15.
Full text"Chapter Fifteen Relatively Hyperbolic Case." In The Structure of Groups with a Quasiconvex Hierarchy, 281–303. Princeton University Press, 2021. http://dx.doi.org/10.1515/9780691213507-016.
Full textConference papers on the topic "Relatively hyperbolic group"
HOFFMANN, MICHAEL, DIETRICH KUSKE, FRIEDRICH OTTO, and RICHARD M. THOMAS. "SOME RELATIVES OF AUTOMATIC AND HYPERBOLIC GROUPS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0016.
Full text