Academic literature on the topic 'Reinforcement corrosion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforcement corrosion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reinforcement corrosion"

1

Hollý, Ivan, and Juraj Bilčík. "Effect of Chloride-Induced Steel Corrosion on Working Life of Concrete Structures." Solid State Phenomena 272 (February 2018): 226–31. http://dx.doi.org/10.4028/www.scientific.net/ssp.272.226.

Full text
Abstract:
The reinforcing steel embedded in concrete is generally protected against corrosion by the high alkalinity (pH = 12.5 to 13.5) of the concrete pore solution. The structural degradation of concrete structures due to reinforcement’s corrosion has an impact on the safety, serviceability and durability of the structure. The corrosion of reinforcements in the construction of a transport infrastructure (especially bridges), parking areas, etc., is primarily initiated by chlorides from de-icing salts. When corrosion is initiated, active corrosion results in a volumetric expansion of the corrosion products around the reinforcing bars against the surrounding concrete. Reinforcement corrosion causes a volume increase due to the oxidation of metallic iron, which is mainly responsible for exerting the expansive radial pressure at the steel–concrete interface and development of hoop tensile stresses in the surrounding concrete. When this tensile stress exceeds the tensile strength of the concrete, cracks are generated. Higher corrosion rates can lead to the cracking and spalling of the concrete cover. Continued corrosion of reinforcement causes a reduction of total loss of bond between concrete and reinforcement.
APA, Harvard, Vancouver, ISO, and other styles
2

Ikumapayi, Omolayo Michael, Esther T. Akinlabi, Olayinka Oluwatosin Abegunde, Precious Ken-Ezihuo, Henry A. Benjamin, Sunday Adeniran Afolalu, and Stephen A. Akinlabi. "Influence of Heat Treatment on the Corrosion Behaviour of Aluminium Silver Nano Particle/Calcium Carbonate Composite." Journal of Composites Science 5, no. 10 (October 16, 2021): 280. http://dx.doi.org/10.3390/jcs5100280.

Full text
Abstract:
Corrosion is one of the leading sources of material failure and deterioration in society. Scholars have proposed different techniques to mitigate corrosion. This research study explores and validates one of these techniques. An Aluminium metal matrix (AMC) was produced using the stir casting method with various weight percentages of AgNp and CaCO3 reinforcements. Heat treatment was performed on the samples to enhance the metallurgical and corrosion properties of the materials. The corrosion rate of the AMC samples was tested in different corrosive media (neutral and acidic) with different concentrations using the weight loss analysis technique for several days. It was observed that the corrosion rate of the AMC relies on the nature of the electrolyte and the percentage concentration of this electrolyte. The heat treatment improves the corrosion resistance of the AMC samples. In addition, an increase in the % weight composition of the reinforcement (AgNp + CaCO3) results in a reduction in the corrosion rate of the AMC in both corrosive media. The optimal %weight composition was found to be 4% for the hybrid reinforcement of AgNp + CaCO3 and 6% for the CaCO3 reinforcement in both the untreated and heat-treated samples.
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Qi Lei, Li Zhang, Jie Dong, and Lu Hua He. "Study on Electrochemical Behavior of Prestressed Reinforcement in Simulated Concrete Solution." Applied Mechanics and Materials 357-360 (August 2013): 917–20. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.917.

Full text
Abstract:
Using electrochemical impedance spectroscop (EIS) and polarization curve technique, the electrochemical behavior of prestressed reinforcement under different stress levels was studied in simulated concrete solution. The results show that: As the stress increasing, the impedance spectroscopy changes significantly, the entire impedance spectroscopy shows an elongated semi-circular deformation, high-frequency capacitance arc radius corrosion decreases with the corrosion progress, in other words, the reaction resistance decreases, the corrosion rate of the sample increases. And when the galvanized steel is in 1064MPa stresss condition, corrosion current density reaches the maximum, is 9 times larger than that of none stress corrosions condition. Under the combined effects of the external stress and corrosive media, dislocation can be emitted, value-added and moves. When it reached a critical state, it would lead to the crack nucleation of Stress corrosion cracking (SCC).
APA, Harvard, Vancouver, ISO, and other styles
4

Bilčík, Juraj, and Ivan Hollý. "Experimental Analysis of Reinforcement Corrosion on Bond Behaviour." Advanced Materials Research 1106 (June 2015): 140–43. http://dx.doi.org/10.4028/www.scientific.net/amr.1106.140.

Full text
Abstract:
The corrosion of reinforcement is the major cause of damage of reinforced concrete structures. This has an impact on safety, serviceability and durability of the structure. The corrosion of steel in concrete reduces the cross sectional area of the reinforcement and decreases the bond between reinforcement and concrete. Corrosion products have a higher volume than steel, which produces internal stresses that lead to the cracking and spalling of the concrete cover. The paper analyses the effect of the chloride-initiated corrosion of reinforcements on bond behaviour.
APA, Harvard, Vancouver, ISO, and other styles
5

Singla, Yogesh K., Rahul Chhibber, Avdesh, Shweta Goyal, and Vipin Sharma. "Influence of single and dual particle reinforcements on the corrosion behavior of aluminum alloy based composites." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 6 (March 15, 2016): 520–32. http://dx.doi.org/10.1177/1464420716638111.

Full text
Abstract:
This article presents the results of a study on the corrosion characteristics of the single and dual particle reinforced aluminum alloy 6063 based composites. The reinforcements of silicon carbide and zircon sand were utilized to fabricate the composites by stir casting technique. The influence of reinforcement and their weight percentage on the hardness variations was investigated. The electrochemical tests in sodium chloride solution were conducted to study the corrosion performance of reinforced composites and base alloy. From the corrosion analysis, it was observed that the single particle reinforcement offered better solution on enhancing the corrosion resistance of base aluminum alloy in comparison with dual particle reinforced composites. In the single particle reinforced composites, addition of zircon sand exhibited increased corrosion resistance, when compared to silicon carbide reinforced composites. The governing mechanism behind increased corrosion resistance was found to be the absence of galvanic coupling between the elemental compounds and the corrosive media at particle–matrix interface. The scanning electron microscopy of composites was performed to analyze corrosion mechanism and correlated well with the corrosion behavior.
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Takashi, Satoshi Takaya, and Toyo Miyagawa. "Influence of Corrosion Distribution on Estimation of Flexural Loading Capacity of Corroded RC Beams." Journal of Disaster Research 12, no. 3 (May 29, 2017): 478–86. http://dx.doi.org/10.20965/jdr.2017.p0478.

Full text
Abstract:
A load carrying capacity of the reinforced concrete (RC) member is degraded by the corrosion of reinforcing steel bars due to chloride ion ingress. A lot of researches on the effect of corrosion in the longitudinal tensile reinforcing steel bars on the load carrying behavior have been available up to now. Accurate and quantitative estimation of capacity, however, is often difficult, because of the non-uniformity of corrosion in the member. Thus, a relationship between the spatial distribution of corrosion in the reinforcement including its scatter and the flexural loading capacity of RC member with such distribution of corrosion should be clarified so that the flexural capacity of corroded RC member can be estimated accurately. On the other hand, in case of the practical RC member under the corrosive environment, it should be considered that the flexural capacity often have to be derived from not a large number of inspection data on cross sectional areas of corroded reinforcements. So, in this study, a flexural loading test was performed by using RC beam specimens with the corroded tensile reinforcements provided the distribution of sectional areas. An estimation method of the flexural capacity of corroded RC beam was also shown, considering the distribution and its scatter in sectional areas of corroded reinforcements under the limited inspection data. Furthermore, the estimation of the longitudinal distribution of the cross sectional area of corroded reinforcement was performed by the spatial interpolation using Kriging method. Test results showed the yield and maximum load capacity in the corroded RC beam decreased as the corrosion rate increased. The failure mode of rupture in the reinforcement was shown in the large corrosion. The proposed estimation method was able to lead the safe evaluation of those experimental flexural capacities, determining the appropriate longitudinal characteristic value of the cross sectional area of corroded reinforcement. The flexural capacity can be also safely calculated using the characteristic value of diameters estimated by the corrosion crack width on the surface of the concrete, while the ratio of the experimental flexural capacity to the estimated one decreased as the corrosion loss increased. The distribution of bar diameters in the corroded reinforcement was able to be roughly estimated by using Kriging method. However, it was suggested that the measurement points close to the minimum bar diameter should be included to estimate the flexural capacity on the safe side.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Jun Long, Zhong Wen Ou, Qiao Chen, and Yun Chen. "The Influence of Admixtures on the Corrosion Protection Afforded Steel Reinforcement in Seawater-and-Seasand Concrete." Advanced Materials Research 250-253 (May 2011): 81–89. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.81.

Full text
Abstract:
It is inevitable for steel reinforcement to be corroded when mixed with seawater-and-seasand concrete. In order to improve steel corrosion protection properties of seawater-and-seasand concrete, reduce the chloride ion’s attack on steel reinforcement in structural concrete and lengthen the steel reinforcement’s service time, this paper presents an experimental study on whether admixtures like fly ash, slag and metakaolin in the seawater-and-seasand could retard the corrosion to steel reinforcement and provide protection to steel reinforcement in seawater-and-seasand concrete. The results indicated that metakaolin had a significant anti-corrosion effect and greatly enhanced the steel corrosion protection properties of seawater-and-seasand concrete whereas both fly ash and slag did not appear to have any obvious influence on curbing the corrosion of steel reinforcement.
APA, Harvard, Vancouver, ISO, and other styles
8

BALESTRA, C. E. T., M. G. LIMA, A. Z. MENDES, and R. A. MEDEIROS-JUNIOR. "Effect of corrosion degree on mechanical properties of reinforcements buried for 60 years." Revista IBRACON de Estruturas e Materiais 11, no. 3 (May 2018): 474–98. http://dx.doi.org/10.1590/s1983-41952018000300003.

Full text
Abstract:
Abstract This paper studies the influence of the corrosion degree calculated by the mass loss and by the smaller diameters on the yield strength, ultimate strength and final elongation. Reinforcements buried and naturally corroded for 60 years were studied. The mechanical properties of the protruding reinforcing steel were compared to reference bars, which also remained buried for 60 years, but without going through the corrosion process. Micrographs, besides the chemical composition and the characterization of the aggressiveness of the soil were realized. The micrographs and the chemical composition show the presence of pits in the reinforcements and sulfur contents for steel above the prescriptions of the time when the foundations were initially implement, respectively. The results also show that the effects of pitting corrosion on the mechanical properties of the naturally corroded bars may not be adequately expressed by the mass loss. This type of corrosion (pits) produces geometric variations in the cross sections along the length of the test specimens, generating stress gradients between successive sections. This has a noticeable impact on the mechanical properties of the reinforcements. In general, the effects of corrosion are more pronounced on the ductility of the reinforcement. Regarding the aggressiveness of the soil, high corrosion rates were identified in the reinforcement, even with the soil being classified as essentially non-corrosive.
APA, Harvard, Vancouver, ISO, and other styles
9

Hollý, Ivan. "Experimental Investigation of Bond between GFRP Reinforcement and Concrete." Solid State Phenomena 309 (August 2020): 140–45. http://dx.doi.org/10.4028/www.scientific.net/ssp.309.140.

Full text
Abstract:
The reinforcing steel embedded in concrete is generally protected against corrosion by the high alkalinity (pH = 12.5 to 13.5) of the concrete pore solution. The structural degradation of concrete structures due to reinforcement’s corrosion has an impact on the safety, serviceability and durability of the structure. The corrosion of reinforcements in the construction of a transport infrastructure (especially bridges), parking areas, etc., is primarily initiated by chlorides from de-icing salts. Glass fiber reinforcement polymer (GFRP) bars are suitable alternatives to steel bars in reinforced concrete applications. The bond between concrete and reinforcement is one of the basic requirements for the composite action of both materials. The transfer of forces between the steel reinforcement and the concrete is provided by the following mechanisms: adhesion, friction and mechanical interlocking. The bond between GFRP reinforcement and concrete is different and it is ensured by friction and mechanical interlocking of the rebar surface. The chemical bond does not originate between GFRP reinforcement and the surrounding concrete, so adhesion does not contribute to transfer of the bond forces. Some few test methods are used to determine the bond between GFRP reinforcement and concrete. The pull-out tests were used to determine the bond behavior between GFRP rebars and concrete. This paper describes the preparation, process, results and evaluation of the pull-out tests.
APA, Harvard, Vancouver, ISO, and other styles
10

Дронов and Andrey Dronov. "THE PROPERTIES OF PITTING CORROSION OF STEEL REINFORCEMENT OF REINFORCED CONCRETE BEAMS." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 2, no. 3 (April 4, 2017): 32–36. http://dx.doi.org/10.12737/24678.

Full text
Abstract:
Two types of steel reinforcement depassivation process: carbonation of concrete and chloride penetration are considered in the article. The comparison between the corrosion due to carbonation of concrete and the chloride-induced corrosion was carried out. It was found out, that chlorides induced corrosion is potentially more dangerous than that resulting from carbonation. Method of durable tests of reinforced concrete structures under the action of the gravitational load and the corrosive chloride environment is described in the article. The results of experimental research on reinforced concrete structures with corrosive damages to steel reinforcement are given in the article. The properties of corrosion cracking in the case of the pitting corrosion were determined. The character of corrosive damage distribution along the reinforcement bars and its effect on the strength of reinforced concrete beams were determined.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Reinforcement corrosion"

1

Ward-Waller, Elizabeth 1982. "Corrosion resistance of concrete reinforcement." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31125.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2005.
"June 2005."
Includes bibliographical references (leaves 39-40).
The objective of this thesis is to investigate the mechanism of corrosion of steel reinforcement in concrete and epoxy coated reinforcing bars as corrosion resistant alternatives. Several case studies explore the durability and deterioration issues for epoxy-coated bars discovered through 30 years of implementation in reinforced concrete structures. The methods for predicting the end of functional service life for structures reinforced with uncoated reinforcing bars and with epoxy-coated reinforcing bars are detailed and tested in a design problem in the final section of this report.
by Elizabeth Ward-Waller.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
2

Ostrofsky, David. "Effects of corrosion on steel reinforcement." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rylands, Thaabit. "Corrosion of reinforcement in concrete : the effectiveness of organic corrosion inhibitors." Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/9946.

Full text
Abstract:
Includes bibliographical references.
Reinforcement corrosion in concrete has presented engineers with the challenge of finding ways of prolonging the service life of structures built in aggressive environments. One method of increasing the durability of concrete in aggressive environments is the use of corrosion inhibitors. In this work, two organic corrosion inhibitors were tested to observe their effectiveness in decreasing the rate of corrosion or delaying the onset of corrosion. One of the inhibitors was a migrating corrosion inhibitor while the other was an admixed inhibitor. The corrosion rate of reinforcement in concrete specimens used in this evaluation, was measured using the Linear Polarisation Resistance method. The performance of the admixed inhibitor was also measured in aqueous phase tests. Results of the tests conducted indicate that the admixed inhibitor does delay the onset of corrosion. The Mel caused short to medium term inhibition when the chloride concentration was less than 1.5%.
APA, Harvard, Vancouver, ISO, and other styles
4

Hassell, Rhett Colin. "Corrosion of rock reinforcement in underground excavations." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/1247.

Full text
Abstract:
The effect of corrosion on the performance of rock support and reinforcement in Australian underground mines has not been widely researched and is generally not well understood. This is despite the number of safety concerns and operational difficulties created by corrosion in reducing the capacity and life expectancy of ground support. This thesis aims to investigate corrosion and relate how the environmental conditions in Australian underground hard rock mines impact on the service life of rock support and primarily rock reinforcement. Environmental characterisation of underground environments was completed at a number of mine sites located across Australia. This provided an improved understanding of the environmental conditions in Australian underground hard rock mines. Long-term testing on the impact of corrosion on the load bearing capacity of reinforcement and support under controlled experimental conditions was conducted in simulated underground environments. Rock reinforcement elements were examined in-situ by means of overcoring of the installed reinforcement and surrounding rock mass. Laboratory testing of the core determined changes in load transfer properties due to corrosion damage. These investigations provided an excellent understanding of the corrosion processes and mechanisms at work. Corrosion rates for a range of underground environments were established through the direct exposure and evaluation of metallic coupons in underground in-situ and simulated environments.It was found that the study of corrosion is challenging due to the time required to gather meaningful data. In particular, the wide range of materials that comprise ground support systems means that it is impossible to examine all the possible combinations of variables and their potential influence on the observed levels of corrosion and measured corrosion rates. Despite these challenges, the systematic investigation has resulted in new corrosivity classifications for both groundwater and atmospheric driven corrosion processes for various reinforcement and support systems used in the Australian underground mining industry. Previous corrosivity classifications were not found applicable. Furthermore, these new corrosivity classifications are simpler than previous classifications and corrosion rates may be predicted from readily obtained measurements of ground water dissolved oxygen and atmospheric relative humidity. Different types of reinforcement and surface support systems have been rated with respect to their corrosion resistance and estimates have been made for the expected service life for various rates of corrosion.
APA, Harvard, Vancouver, ISO, and other styles
5

Hassell, Rhett Colin. "Corrosion of rock reinforcement in underground excavations." Curtin University of Technology, Western Australian School of Mines, Dept. of Mining Engineering and Surveying, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17986.

Full text
Abstract:
The effect of corrosion on the performance of rock support and reinforcement in Australian underground mines has not been widely researched and is generally not well understood. This is despite the number of safety concerns and operational difficulties created by corrosion in reducing the capacity and life expectancy of ground support. This thesis aims to investigate corrosion and relate how the environmental conditions in Australian underground hard rock mines impact on the service life of rock support and primarily rock reinforcement. Environmental characterisation of underground environments was completed at a number of mine sites located across Australia. This provided an improved understanding of the environmental conditions in Australian underground hard rock mines. Long-term testing on the impact of corrosion on the load bearing capacity of reinforcement and support under controlled experimental conditions was conducted in simulated underground environments. Rock reinforcement elements were examined in-situ by means of overcoring of the installed reinforcement and surrounding rock mass. Laboratory testing of the core determined changes in load transfer properties due to corrosion damage. These investigations provided an excellent understanding of the corrosion processes and mechanisms at work. Corrosion rates for a range of underground environments were established through the direct exposure and evaluation of metallic coupons in underground in-situ and simulated environments.
It was found that the study of corrosion is challenging due to the time required to gather meaningful data. In particular, the wide range of materials that comprise ground support systems means that it is impossible to examine all the possible combinations of variables and their potential influence on the observed levels of corrosion and measured corrosion rates. Despite these challenges, the systematic investigation has resulted in new corrosivity classifications for both groundwater and atmospheric driven corrosion processes for various reinforcement and support systems used in the Australian underground mining industry. Previous corrosivity classifications were not found applicable. Furthermore, these new corrosivity classifications are simpler than previous classifications and corrosion rates may be predicted from readily obtained measurements of ground water dissolved oxygen and atmospheric relative humidity. Different types of reinforcement and surface support systems have been rated with respect to their corrosion resistance and estimates have been made for the expected service life for various rates of corrosion.
APA, Harvard, Vancouver, ISO, and other styles
6

Palumbo, Nicolino. "Accelerated corrosion testing of steel reinforcement in concrete." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60681.

Full text
Abstract:
In the last few decades, there has been an increasing worldwide problem of deterioration of reinforced concrete structures, caused primarily by the corrosion of the steel reinforcement embedded within the concrete. Several factors can influence the corrosion process in different types of inservice structures. This thesis reviews the basic principles of the reinforcement corrosion. Various protection and rehabilitation schemes that can be undertaken in the repair of deteriorated concrete structures are presented. In particular, three specific types of structures in the Montreal region which have undergone rehabilitation are presented as typical case studies. Additionally, major research work done in the area of reinforcement corrosion over the last twenty years is reviewed.
This thesis reports the results of an experimental research program carried out at McGill University dealing with accelerated electrochemical corrosion testing of reinforced concrete. The main objective of this study is to determine the importance and influence of the depth of the concrete cover thickness on the rate of corrosion of steel reinforcement and thereby, on the resistance of concrete. Appropriate conclusions and recommendations regarding the construction variables affecting the corrosion process are brought forth.
These conclusions and recommendations can be summarized.
APA, Harvard, Vancouver, ISO, and other styles
7

Constantinou, Anastasia. "The corrosion of steel reinforcement in carbonated concrete." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holloway, Mark. "Corrosion of steel reinforcement in slag-based concrete." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ing, Matthew. "Detection of reinforcement corrosion by an acoustic technique." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/8108.

Full text
Abstract:
Corrosion of reinforcing steel is a major serviceability issue with reinforced concrete structures, often resulting in significant section and bond loss. However, current non-destructive diagnostic techniques do not allow corrosion to be reliably detected at the very early stages of the process, before damage to the concrete occurs. This research describes the development of an Acoustic Emission (AE) technique as a practical tool for the early detection of corrosion of reinforcing steel embedded in concrete. The study falls into three main areas: (i) determining the influential material parameters of reinforced concrete that affect the magnitude of the acoustic emissions; (ii) investigating the influence of diurnal and seasonal temperature variations on corrosion rate and thus the rate of acoustic emissions; and (iii) developing a testing and evaluation procedure that combines the findings of the first two stages with existing knowledge about corrosion and deterioration of concrete structures. In the first phase of the research material parameters such as cover thickness, compressive strength and rebar diameter were investigated to ascertain the influence of varying these factors on the magnitude of AE Energy obtained per gram of steel loss. The experimental results confirmed that early age corrosion, verified by internal visual inspection and mass loss measurements, can be detected by AE before any external signs of cracking. Furthermore results show that compressive strength was the primary influential parameter, indicating an exponential, empirical relationship between compressive strength and AE Energy. An increase in temperature usually induces an increase in corrosion activity, which should be measurable using the AE technique. Consequently the influences of seasonal and diurnal temperature variations were investigated to determine their impact on undertaking AE measurements. This phase of the research demonstrated that seasonal variations in temperature impart a negligible influence on measured AE Energy. However measurement of AE Energy per hour followed trends in the diurnal temperature and corrosion rate evolution, these being in a state of constant flux. Therefore AE measurements of corrosion in reinforced concrete are more responsive to a change in temperature, and so corrosion rate, as opposed to a specific and constant corrosion rate. In the final phase practical experience with AE from site trials and laboratory work were coupled with leading research and existing knowledge of corrosion in concrete and structural deterioration, to develop a testing and evaluation procedure for on-site application. This rigorous procedure enables reliable corrosion measurements to be undertaken on reinforced concrete structures using AE technology and enabling an assessment of the rate of corrosion induced damage to be made. As far as the author is aware this is the first site testing procedure for detecting corrosion in reinforced concrete using AE. Future research in this area might involve more site testing with a view to improving accuracy and analysis of on-site data, underpinning the developed procedure.
APA, Harvard, Vancouver, ISO, and other styles
10

De, Rojas Ricardo R. (Ricardo Rafael De Rojas Pando) 1978. "New developments in steel reinforcement protection from corrosion." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8613.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.
Includes bibliographical references (leaves 55-56).
Due to life-cycle costs considerations, the Federal Highway Administration has required that all their new bridge structures have a service life of more than 75 years. The practical use of adequate concrete cover, low water/cement ratio, and corrosion inhibitors and admixtures are not enough to satisfy this requirement. Corrosion still affects the reinforcing steel through the diffusion of chlorides. The steel reinforcement, the last line of defense, has to be addressed in order to protect reinforced concrete structures from corrosion and thus extend the service life. Today, new cost-effective technology has surfaced to address the problem. Nuovinox Stainless-steel clad reinforcing bars, fusion bonded epoxy (3M Skotchkot 426) and the recent Dual Phase Ferritic Martensitic bars (MMFXI/II steels) have emerged. This study describes each new reinforcement protection technology and compares them through cost, service life, availability and resistance considerations. The comparisons show that stainless-steel clad bars have the advantage over all other new reinforcement types. The fusion bonded epoxy closely followed while the MMFX steel, because of its lack of exposure, came in last. A prudent combination of the standard corrosion protection methods with these new technologies in steel reinforcement can potentially provide a cost-effective service of more than 75 years to a structure.
by Ricardo R. De Rojas.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Reinforcement corrosion"

1

International Symposium on Corrosion of Reinforcement in Concrete Construction (3rd 1990 Wishaw, England). Corrosion of reinforcement in concrete. London: Published for the Society of Chemical Industry by Elsevier Applied Science, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Griffith, Andrew. Epoxy coated reinforcement study: Final report. Salem, OR: Oregon Dept. of Transportation, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doody, Michael E. Reinforcement corrosion of mechanically stabilized earth structures. Albany, N.Y: Engineering Research and Development Bureau, New York State Dept. of Transportation, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sherwood, L. S. The corrosion of steel reinforcement in concrete. Manchester: UMIST, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Presuel-Moreno, Francisco. Identification of commercially available alloys for corrosion-resistant metallic reinforcement and test methods for evaluating corrosion-resistant reinforcement. Charlottesville, Va: Virginia Transportation Research Council, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Institution of Civil Engineers (Great Britain), ed. Concrete reinforcement corrosion: From assessment to repair decisions. London: Thomas Telford, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laboratories, Taywood Engineering Research, CIRIA Underwater Engineering Group, and Great Britain. Dept. of Energy., eds. Effectiveness of concrete to protect steel reinforcement from corrosion in marine structures. London: H.M.S.O., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wipf, Terry J. Evaluation of corrosion resistance of different steel reinforcement types. Ames, Iowa: Center for Transportation Research and Education, Iowa State University, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michael, Raupach, and Institute of Materials, Minerals, and Mining., eds. Corrosion of reinforcement in concrete: Mechanisms, monitoring, inhibitors and rehabilitation techniques. Cambridge: Woodhead, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berkeley, K. G. C. Cathodic protection of reinforcement steel in concrete. London: Butterworths, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reinforcement corrosion"

1

Congtao, Sun, and Xu Kuangdi. "Reinforcement Corrosion, Process Of." In The ECPH Encyclopedia of Mining and Metallurgy, 1–3. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_444-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aydan, Ömer. "Corrosion, degradation, and nondestructive testing." In Rock Reinforcement and Rock Support, 409–53. Boca Raton : CRC Press/Balkema, 2017. | Series: ISRM book series, ISSN 2326-6872 ; volume 6: CRC Press, 2018. http://dx.doi.org/10.1201/9781315104201-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lahdensivu, Jukka, Hanna Mäkelä, and Pentti Pirinen. "Corrosion of Reinforcement in Existing Concrete Façades." In Durability of Building Materials and Components, 253–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37475-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Han Seung, Je Woon Kyung, and Sung Bok Lee. "Study on the Mechanical Properties of Reinforcement Damaged by Reinforcement Corrosion." In Advances in Fracture and Damage Mechanics VI, 433–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glass, G. K. "Reinforcement corrosion." In Advanced Concrete Technology, 1–27. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075065686-3/50256-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andrade, C. "Reinforcement corrosion." In Concrete Repair, Rehabilitation and Retrofitting II, 75–82. CRC Press, 2008. http://dx.doi.org/10.1201/9781439828403.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Corrosion-Resistant Reinforcement." In Corrosion of Steel in Concrete, 249–69. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603379.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Corrosion-Resistant Reinforcement." In Corrosion of Steel in Concrete, 263–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527651696.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andrade, C. "Corrosion of steel reinforcement." In Environmental Deterioration of Materials, 185–216. WIT Press, 2007. http://dx.doi.org/10.2495/978-1-84564-032-3/06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"8. CORROSION OF REINFORCEMENT." In Condensed silica fume in concrete, 28–31. Thomas Telford Publishing, 1988. http://dx.doi.org/10.1680/csfic.13735.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reinforcement corrosion"

1

"Reinforcement Corrosion in New Zealand Concrete." In SP-171: Third CANMET/ACI International Symposium on Advances in Concrete Technology. American Concrete Institute, 1997. http://dx.doi.org/10.14359/6108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ozbolt, J. "Modeling corrosion of steel reinforcement in concrete: natural vs. accelerated corrosion." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.233654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sola, Emiliano, Josko Ožbolt, and Gojko Balabanić. "Modelling Corrosion of Steel Reinforcement in Concrete: Natural vs. Accelerated Corrosion." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Corrosion of Welded and Chromated Galvanized Lath Reinforcement in Cement Stucco." In SP-291: Corrosion of Reinforcing Steel in Concrete - Future Direction: Proceedings-Hope & Schupack Corrosion Symposium. American Concrete Institute, 2013. http://dx.doi.org/10.14359/51685616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shibin Li, Weiping Zhang, Xianglin Gu, and Cimian Zhu. "Current status on fatigue of corrosion reinforcement." In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5774327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Šavija, Branko, Mladena Luković, José Pacheco, and Erik Schlangen. "Cracking of SHCC due to reinforcement corrosion." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Reinforcement Corrosion Under Simultaneous Diverse Exposure Conditions." In "SP-126: Durability of Concrete: Second International Conference, Montreal, Canada 1991". American Concrete Institute, 1991. http://dx.doi.org/10.14359/2238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Reinforcement Corrosion Assessment Using Linear Polarisation Techniques." In SP-128: Evaluation and Rehabilitation of Concrete Structures and Innovations in Design. American Concrete Institute, 1991. http://dx.doi.org/10.14359/3734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Taotao, and Weizhen Chen. "Prediction of Concrete Column Reinforcement Corrosion Degree Under Initial Strain Based on Support Vector Regression." In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.1154.

Full text
Abstract:
<p>Faraday's law is usually used to predict the corrosion degree of reinforced concrete column members in the electric accelerate corrosion experiment. However, this law doesn’t consider the influence of initial compressive strain on the corrosion degree. In this paper, using the experimental data of concrete column members under different initial compressive strain levels, the support vector regression (SVR) model is developed to forecast the reinforcement corrosion degree of column members. The predicted results are compared with the experimental results. The results show that when there is the initial strain in the column member, the reinforcement actual corrosion degree decreases, and the main reinforcement's actual corrosion degree is significantly less than that calculated by Faraday's law. The SVR model proposed can accurately and quantitatively reflect this phenomenon.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Andrade, C. "Reinforcement corrosion in chloride environment of different concentrations." In ConcreteLife'06 - International RILEM-JCI Seminar on Concrete Durability and Service Life Planning: Curing, Crack Control, Performance in Harsh Environments. RILEM Publications SARL, 2006. http://dx.doi.org/10.1617/291214390x.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reinforcement corrosion"

1

Gombeda, Matthew, Estevan Rivera, and Zoe Lallas. Optimal Approach for Addressing Reinforcement Corrosion for Concrete Bridge Decks in Illinois. Illinois Center for Transportation, April 2022. http://dx.doi.org/10.36501/0197-9191/22-005.

Full text
Abstract:
This report presents the results of a comprehensive literature review focusing on corrosion performance of reinforced concrete bridge decks, with a particular emphasis on the relative performance of alternative corrosion-resistant reinforcement types. Examples of alternative corrosion-protection options examined herein include epoxy-coated, galvanized, stainless-steel, and A1035 bars, considering conventional black reinforcing bars as the standard. Based upon the results of the literature review, a framework for determining the optimal reinforcement option for a bridge deck is presented as a function of the properties of each reinforcement type and other factors, such as design service life, location of the bridge, estimated maintenance/repair cycles, and relative costs. Several examples are also provided to demonstrate the procedure for using the framework and its applicability for different bridge types with varying design considerations, such as a congested urban artery and a rural interstate. The literature review findings and the optimal approach framework were crafted for use by bridge design engineers as preliminary guidance when determining the type of reinforcement for a given bridge deck and its corresponding conditions. Furthermore, the approach can also be used by Illinois Department of Transportation officials when deciding whether to invest in higher performing corrosion-protection systems for a given application or for updating current bridge design policies to reflect the latest developments in alternative corrosion-resistant reinforcement options.
APA, Harvard, Vancouver, ISO, and other styles
2

Weiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.

Full text
Abstract:
A patented active porcelain enamel coating improves both the bond between the concrete and steel reinforcement as well as its corrosion resistance. A Small Business Innovation Research (SBIR) program to develop a commercial method for production of porcelain-coated fibers was developed in 2015. Market potential of this technology with its steel/concrete bond improvements and corrosion protection suggests that it can compete with other fiber reinforcing systems, with improvements in performance, durability, and cost, especially as compared to smooth fibers incorporated into concrete slabs and beams. Preliminary testing in a Phase 1 SBIR investigation indicated that active ceramic coatings on small diameter wire significantly improved the bond between the wires and the concrete to the point that the wires achieved yield before pullout without affecting the strength of the wire. As part of an SBIR Phase 2 effort, the University of Louisville under contract for Ceramics, Composites and Coatings Inc., proposed an investigation to evaluate active enamel-coated steel fibers in typical concrete applications and in masonry grouts in both tension and compression. Evaluation of the effect of the incorporation of coated fibers into Ultra-High Performance Concrete (UHPC) was examined using flexural and compressive strength testing as well as through nanoindentation.
APA, Harvard, Vancouver, ISO, and other styles
3

Andrawes, Bassem, Ernesto Perez Claros, and Zige Zhang. Bond Characteristics and Experimental Behavior of Textured Epoxy-coated Rebars Used in Concrete Bridge Decks. Illinois Center for Transportation, January 2022. http://dx.doi.org/10.36501/0197-9191/22-001.

Full text
Abstract:
The deterioration of bridge decks is a problem typically associated with the corrosion of the reinforcing steel. This issue was partially controlled during the 1970s with the incorporation of the epoxy-coating protection system. However, research later demonstrated that the smooth surface resulting from the epoxy-coating application reduces most of the friction between the rebar and the surrounding concrete. Consequently, forces acting on the rib faces are reconfigured in such a way that the radial components increase, triggering the early development of cracks. To mitigate both the reduction of bonding and the formation of cracks, the Illinois Department of Transportation proposed a new type of coated bars: textured epoxy-coated (TEC) bars. Over the last few years, different projects have been executed to understand and improve the characteristics of TEC rebars. This report is a continuation of research performed at the University of Illinois Urbana-Champaign to evaluate the bond behavior of TEC bars. The experimental program starts by characterizing, qualitatively and quantitatively, the roughness of the TEC rebars. Next, their bond-slip interaction embedded in concrete is evaluated through pull-out tests. Finite element models of these tests are developed to validate the behavior observed as the textured reinforcement loses anchorage with concrete. Based on these results, the experimental program then aims to study the impact of the drying shrinkage, temperature change, and flexural demands on two large-scale bridge deck specimens reinforced, individually, with TEC and standard epoxy-coated bars. The results collected from both specimens using digital image correlation and strain gauges are compared to explore the differences exhibited by the traditional and the new type of reinforcement coatings in terms of stress distribution in bridge decks. Finally, given the specialized equipment and time-consuming procedure needed to calculate the roughness parameters of TEC bars, an empirical, weight-based approach is developed as a rapid method for assessing the rebars’ roughness on-site.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography