Dissertations / Theses on the topic 'Reinforced'

To see the other types of publications on this topic, follow the link: Reinforced.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Reinforced.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hamed, Sarah. "Shear Contribution of Basalt Fiber-Reinforced Concrete Reinforced with Basalt Fiber-Reinforced Polymer Bars." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34008.

Full text
Abstract:
Cette étude évalue expérimentalement et analytiquement le comportement au cisaillement des poutres en béton renforcé de fibres de basalte (BRFB) renforcées longitudinalement avec des barres en polymère renforcé de fibres de basalte (PRFB). Un nouveau type de macro-fibres de basalte a été ajouté au mélange de béton pour produire le mélange de BRFB. Quatorze poutres (152 x 254 x 2000 mm) sans armature transversale ajouté ont été testées sous une configuration de chargement à quatre points jusqu'à la défaillance. Les poutres ont été regroupés en deux groupes A et B en fonction de leurs rapports portée de cisaillement/profondeur, a/d. Les poutres du groupe A avaient un rapport a/d de 3,3 tandis que celles du groupe B avaient un rapport a/d de 2,5. Outre les rapports a/d, les paramètres étudiés comprenaient la fraction volumique des fibres ajoutées (0,75 et 1,5%) et le taux de renforcement longitudinal des barres en PRFB (0,31, 0,48, 0,69, 1,05 et 1,52). Les résultats des tests ont montré que l’ajout de macro-fibres de basalte au mélange de béton améliorait sa résistance à la compression. Une relation directe entre la fraction volumique de fibres, Vf, et la résistance à la compression a été observée. Les cylindres de béton coulés avec une Vf de 0,75 et 1,5% ont entraîné une augmentation de 11 et 30% de leur résistance à la compression par rapport à ceux moulés en béton standard (sans fibres), respectivement. L'ajout de fibres a également amélioré le mode de défaillance des poutres BRFB-PRFB que les poutres de contrôle coulées avec du béton standard. L’augmentation de la fraction volumique des fibres a réduit l’espacement entre les fissures et gêné sa propagation. Une amélioration significative des capacités de cisaillement des poutres testées a également été observée lorsque les macro-fibres de basalte ont été ajoutées à une fraction volumique Vf de 0,75. L'augmentation moyenne des capacités de cisaillement des poutres des groupes A et B, ayant les mêmes taux de renforcement, était respectivement de 45 et 44%, par rapport à celles des poutres de contrôle. Il a été noté que le gain en capacité de cisaillement des poutres testées était plus prononcé dans les poutres avec a/d= 3,3 que dans les poutres avec a/d = 2,5 lorsque le taux de renforcement augmentait. Au cours de la phase analytique, plusieurs modèles ont été utilisés pour prédire les capacités de cisaillement des poutres. Tous les modèles disponibles surestimaient les capacités de cisaillement des poutres testées avec un rapport moyen Vpre/Vexp compris entre 1,29 et 2,64. Cette observation a montré que ces modèles ne permettaient pas de prédire les capacités de cisaillement des poutres BRFB-PRFB. Un nouveau modèle modifié intégrant le type de renforcement longitudinal, le type de béton fibré et la densité du béton est proposé. Le modèle d’Ashour et al. -A (1992) a été modifié en utilisant un facteur égal au rapport entre le module des barres en PRF, Ef, et celui des barres en acier Es. Ce rapport prend en compte la différence de propriétés entre les barres en PRF et celles en acier, négligée par les modèles précédents. Le modèle proposé prédit bien les capacités de cisaillement des poutres BRFB-PRFB testées dans la présente étude avec des rapports moyens Vpre/Vexp = 0,82 ± 0,12 et 0,80 ± 0,01 pour les poutres des groupes A et B, respectivement. Les capacités de cisaillement des poutres en béton léger testées par Abbadi (2018) ont été prédites avec un rapport moyen Vpre/Vexp = 0,77 ± 0,05. De plus, le modèle prédit bien les capacités de cisaillement des poutres coulées avec du béton qui contient des fibres en acier testées par Awadallah et al. (2014) avec un rapport moyen Vpre/Vexp = 0,89 ± 0,07. Cela indique la large gamme d'applicabilité du modèle proposé. Cependant, il est recommandé d’évaluer le modèle proposé sur un ensemble de données plus large que celui présenté dans cette étude.
This study evaluates both experimentally and analytically the shear behavior of basalt fiber-reinforced concrete (BFRC) beams reinforced longitudinally with basalt fiber-reinforced polymer (BFRP) bars. A new type of basalt macro-fibers was added to the concrete mix to produce the BFRC mix. Fourteen beams (152 x 254 x 2000 mm) with no transverse reinforcement provided were tested under four-point loading configuration until failure occurred. The beams were grouped in two groups A and B depending on their span-to-depth ratios, a/d. Beams of group A had a ratio a/d of 3.3 while those of group B had a ratio a/d of 2.5. Besides the span-to-depth ratios, the parameters investigated included the volume fraction of the fibers added (0.75 and 1.5%) and the longitudinal reinforcement ratio of the BFRP reinforcing bars (0.31, 0.48, 0.69, 1.05, and 1.52). The test results showed that the addition of basalt macro-fibers to the concrete mix enhanced its compressive strength. A direct relationship between the fiber volume fraction, Vf, and the compressive strength was observed. Concrete cylinders cast with Vf of 0.75 and 1.5% yielded 11 and 30% increase in their compressive strengths over those cast with plain concrete, respectively. The addition of fibers greatly enhanced the shear capacity of BFRC-BFRP beams compared to their control beams cast with plain concrete. The increase of the fiber volume fraction decreased the spacing between cracks and hindered its propagation. A significant enhancement in the shear capacities of the tested beams was also observed when the basalt macro-fibers were added at a volume fraction Vf of 0.75%. The average increase in the shear capacities of beams of group A and B, having the same reinforcement ratios, were 45 and 44%, respectively, in comparison with those of the control beams. It was noticed that the gain in shear capacities of the tested beams was more pronounced in beams with a/d = 3.3 than in beams with a/d = 2.5 when the reinforcement ratio increased. In the analytical phase, several models were used to predict the shear capacities of the beams. All of the available models overestimated the shear capacities of the tested beams with average ratio Vpre/Vexp ranging between 1.29 to 2.64. This finding indicated that these models were not suitable to predict the shear capacities of the BFRC-BFRP beams. A new modified model incorporating the type of the longitudinal reinforcement, the type of FRC used, and the density of concrete is proposed. The model of Ashour et al. –A (1992) was calibrated using a calibration factor equal to the ratio of modulus of FRP bars used, Ef, and that of steel bars, Es. This ratio takes into consideration the difference in properties between the FRP and steel bars, which was overlooked by previous models. The proposed model predicted well the shear capacities of the BFRC-BFRP beams tested in the current study with average ratios Vpre/Vexp = 0.82 ± 0.12 and 0.80 ± 0.01 for beams of groups A and B, respectively. The shear capacities of the lightweight concrete beams tested by Abbadi (2018) were predicted with an average ratio Vpre/Vexp = 0.77 ± 0.05. Moreover, the model predicted well the shear capacities of the SFRC beams reinforced with BFRP bars tested by Awadallah et al. (2014) with an average ratio Vpre/Vexp = 0.89 ± 0.07. This indicates the wide range of applicability of the proposed model. However, it is recommended that the proposed model be assessed on larger set of data than that presented in this study
APA, Harvard, Vancouver, ISO, and other styles
2

Whittlestone, G. S. "Reinforced glass." Thesis, University of Salford, 2011. http://usir.salford.ac.uk/26963/.

Full text
Abstract:
Annealed glass has the propensity to fast fracture. So, the need for redundancy in structural glass elements is a fundamental necessity. Currently, redundancy is provided by laminated glass, whereby, if one glass pane fails, then the remaining intact pane(s) sustain the loads. However, for the in-service (unbroken state) condition the element is at least twice as thick as necessary. This leads to increased weight and increased cost. The presented work develops and investigates a cheaper, lighter alternative redundant system using a GFRP sheet bonded to one annealed glass pane. Consequently, a new material, Reinforced Glass, is created. For the in-service (unbroken state) condition it is shown that, under load, the Reinforced Glass has a similar structural response to ordinary annealed glass. A review of annealed structural glass design methods is presented - facilitating design for the unbroken state. Design recommendations are given. For the broken state an analytical, predictive model was developed, which was validated through experimental testing. The model draws similarities to Reinforced Concrete, whereby a compression block is generated in the broken glass - which is balanced by the GFRP tension reinforcement. Unique predictive equations are produced for application in design for the broken state. The model is validated for various thicknesses of glass.
APA, Harvard, Vancouver, ISO, and other styles
3

Barris, Peña Cristina. "Serviceability behaviour of fibre reinforced polymer reinforced concrete beams." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/7772.

Full text
Abstract:
El uso de materiales compuestos de matriz polimérica (FRP) emerge como alternativa al hormigón convencionalmente armado con acero debido a la mayor resistencia a la corrosión de dichos materiales. El presente estudio investiga el comportamiento en servicio de vigas de hormigón armadas con barras de FRP mediante un análisis teórico y experimental. Se presentan los resultados experimentales de veintiséis vigas de hormigón armadas con barras de material compuesto de fibra de vidrio (GFRP) y una armada con acero, todas ellas ensayadas a flexión de cuatro puntos. Los resultados experimentales son analizados y comparados con algunos de los modelos de predicción más significativos de flechas y fisuración, observándose, en general, una predicción adecuada del comportamiento experimental hasta cargas de servicio. El análisis de sección fisurada (CSA) estima la carga última con precisión, aunque se registra un incremento de la flecha experimental para cargas superiores a las de servicio. Esta diferencia se atribuye a la influencia de las deformaciones por esfuerzo cortante y se calcula experimentalmente.
Se presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Fibre reinforced polymer (FRP) bars have emerged as an alternative to steel for reinforced concrete (RC) elements in aggressive environments due to their non-corrosive properties. This study investigates the short-term serviceability behaviour of FRP RC beams through theoretical and experimental analysis. Twenty-six RC beams reinforced with glass-FRP (GFRP) and one steel RC beam are tested under four-point loading. The experimental results are discussed and compared to some of the most representative prediction models of deflections and cracking for steel and FRP RC finding that prediction models generally provide adequate values up to the service load. Additionally, cracked section analysis (CSA) is used to analyse the flexural behaviour of the specimens until failure. CSA estimates the ultimate load with accuracy, but it underestimates the experimental deflection beyond the service load level. This increment is mainly attributed in this work to shear induced deflection and it is experimentally calculated.
A discussion on the main aspects of the SLS of FRP RC is introduced: the stresses in materials, maximum crack width and the allowable deflection. A methodology for the design of FRP RC at the serviceability requirements is presented, which allows optimizing the overall depth of the element with respect to more generalised methodologies.
APA, Harvard, Vancouver, ISO, and other styles
4

Hearing, Brian Phillip 1972. "Delamination in reinforced concrete retrofitted with fiber reinforced plastics." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9141.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.
Includes bibliographical references (leaves 251-269).
The addition of fiber-reinforced plastic (FRP) laminates bonded to the tension face of concrete members is becoming an attractive solution to the rehabilitation and retrofit of damaged structural systems. Flexural strength is enhanced with this method but the failure behavior of the system can become more brittle, often involving delamination of the composite. This study investigates failure modes including delamination with the use of fiber reinforced plastics to rehabilitate various concrete structures. The focus is on delamination and its causes, specifically in the presence of existing cracks in the retrofitted concrete system. First, delamination processes in FRP retrofitted concrete systems are studied through combined experimental and analytical procedures. The delamination process is observed to initiate in the concrete substrate with micro cracks that coalesce into an unstable macro crack at failure. This macroscopic behavior is modeled through a finite element procedure with a smeared crack approach, which is found to be limited in the ability to represent the stress intensity at the delamination tip. For this reason it is shown that interfacial fracture mechanics can be used to describe the bimaterial elasticity and complex stress intensity at the delamination tip and provide a criterion governing the propagation of delamination using energy methods. Then, peeling processes occurring at existing cracks in the retrofitted system are studied through fracture mechanics based experimental and analytical procedures. An experimental program involving specialized shear notch specimens demonstrates that the location of the notch and laminate development length are influential on the shear crack peeling process. A finite element procedure is used to evaluate the crack driving forces applied at the shear notch crack mouth, and the fracture analysis is extended to evaluate initiation of peeling at the shear notch scenario. Finally, delamination failures in FRP retrofitted reinforced concrete beams representing "real-life" retrofit scenarios are investigated. An experimental and analytical program is conducted to investigate influences on the failure processes. The application of the fracture based peeling analysis to a quantitative design procedure is investigated, and a computational design aid to assist the iterative design procedure is developed.
by Brian Phillip Hearing.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Abbadi, Abdulrahman. "Shear contribution of fiber-reinforced lightweight concrete (FRLWC) reinforced with basalt fiber reinforced Polymer (BFRP) bars." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31848.

Full text
Abstract:
Cette étude porte sur le comportement au cisaillement des poutres en béton léger fibré et renforcées par des barres de polymère renforcé de fibres de basalte (PRFB). Dix poutres (150x250x2400 mm) coulées avec du béton fibré ou non-fibré ont été testées en flexion. Deux poutres ont été coulées sans fibres (poutres contrôles) tandis que les huit autres poutres ont été coulées avec du béton contenant des différents types et pourcentages de fibres. Les paramètres étudiés comprenaient le type de fibres ajoutés au béton (fibres de basalte, de polypropylène et d’acier), la fraction volumique des fibres (0, 0,5 et 1,0%) et les taux de renforcement des barres de PRFB (0,95 et 1,37%). Une comparaison entre les résultats expérimentaux et les modèles analytiques actuellement disponibles dans la littérature a été réalisée pour évaluer l'applicabilité de tels modèles pour prévoir la capacité des poutres testées en cisaillement. Les résultats de la présente étude indiquent que la géométrie des fibres joue un rôle important dans l'augmentation du nombre de fissures que celles observées dans les poutres contrôles. L'ajout de fibres a entraîné une défaillance plus ductile et le taux d'ouverture des fissures était retardé. La largeur de la fissure a diminué avec l'augmentation des ratios de renforcement longitudinal et des fractions volumiques des fibres. L'augmentation du taux de renforcement longitudinal a entraîné une rigidité plus élevée et a diminué les flèches à tous les stades du chargement. Les poutres coulées avec 1% de fibres de basalte, de polypropylène et d'acier ont montré une augmentation dans leurs capacités de cisaillement par rapport aux poutres contrôles d'environ 11, 16 et 63%, respectivement. Le type de fibres affectait de manière significative le gain dans les capacités de cisaillement des poutres, ce qui était attribué aux différentes propriétés physiques et mécaniques des fibres utilisées, telles que leurs dimensions, leurs géométries, et leurs mécanismes de liaison avec le béton. Les poutres coulées avec des fibres en acier à 0,5% présentaient des capacités de cisaillement plus élevées que celles coulées avec des fibres de basalte et de polypropylène de 23 et 16% respectivement, alors que les poutres coulées avec des fibres en acier à 1% de volume présentaient un gain de 47 et 41%, respectivement, dans leurs capacités. Les capacités de cisaillement prévues selon les équations de la norme CSA-S806-12 étaient conservatrices avec un rapport moyen Vprév/Vexp de 0,80 (écart type, ÉT = 0,12) pour les poutres sans fibres. Les modèles établis par Shin (1994) et Gopinath (2016) ont fourni de bonnes prévisions quant aux capacités de cisaillement des poutres en béton renforcé de fibres de basalte avec des ratios moyens Vprév/Vexp de 1,34 (ÉT = 0,09) et de 1,35 (ÉT = 0,07), respectivement. De même, le modèle de Shin (1994) a bien prédit les capacités de cisaillement des poutres en béton armé de fibres de polypropylène avec un rapport Vprév/Vexp de 1,34 (ÉT = 0,18). Les modèles de Gopinath (2016), Ashour A (1992) et Shin (1994) ont prédit les capacités de cisaillement des poutres en béton armé de fibres d'acier assez raisonnablement avec des ratio Vprév/Vexp de 1,01 (ÉT = 0,06), 1,07 (ÉT = 0,01) et 1,20 (ÉT = 0,08), respectivement. Un nouveau modèle a été proposé pour prédire les capacités de cisaillement des poutres en béton léger fibré renforcées par des barres longitudinales PRFB. Le modèle proposé prédit bien les capacités de cisaillement des poutres en béton léger (avec des fibres de basalte) avec un rapport Vprév/Vexp de 1,01 (ÉT = 0,05) et celles des poutres en béton léger (avec des fibres de polypropylène) avec un rapport Vprév/Vexp de 0,99 (ÉT = 0,06). Le facteur de liaison et la matrice de liaison d'interface utilisés étaient respectivement 0,75 et 4,18 MPa. En même temps, le modèle proposé prédit bien les capacités de cisaillement des poutres coulées avec des fibres d’acier avec un rapport Vprév/Vexp de 0,9 (ÉT = 0,00) quand le facteur de liaison et la matrice de liaison d'interface utilisés étaient respectivement 1,0 et 6,8 MPa.
This study reports on the shear behavior of fiber-reinforced lightweight concrete (FRLWC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Ten beams (150x250x2400 mm) cast with concrete with and without fibers were tested under fourpoint loading configuration until failure occurred. Two beams were cast without fibers and acted as control while the other eight beams were cast with different types and percentages of fiber. The investigated parameters included the fiber type (basalt, polypropylene, and steel fibers), the fibers volume fraction (0, 0.5, and 1.0%), and the beams’ reinforcement ratios (0.95 and 1.37%). Comparison between the experimental results and the analytical models currently available in the literature was performed to assess the applicability of such models for LWC reinforced with BFRP bars. Based on the outcome of the current study, the geometry of fibers played an important role in increasing the number of cracks than those observed in the control beams. The addition of fibers led to a more ductile failure and the rate of crack opening was delayed. Crack width decreased with the increase of the longitudinal reinforcement ratios and the fibers’ volume fractions. Increasing the reinforcement ratio resulted in higher stiffness and decreased its deflection at all stages of loading. Beams cast with 1% of basalt, polypropylene, and steel fibers showed an increase in their shear capacities in compared to control beams about 11, 16, and 63%, respectively. The type of fibers significantly affected the gain in the shear capacities of the beams, which can be attributed to the different physical and mechanical properties of the fibers used such as aspect ratios, lengths, geometries, densities, and their bonding mechanisms. Beams cast with 0.5% steel fibers exhibited higher shear capacities than those cast with basalt and polypropylene fibers by 23 and 16%, respectively, whereas the beams cast with 1% steel fibers showed a gain by 47 and 41%, respectively. The predicted shear capacities according to CSA-S806-12 code provisions were conservative with an average ratio Vpred /Vexp of 0.80 (standard deviation, SD = 0.12) for beams without fibers. Good predictions for the shear capacities of the basalt-fiber reinforced concrete beams (BLWC) were provided by the models derived by Shin (1994) and Gopinath (2016) in which the ratios Vpred /Vexp were 1.34 (SD = 0.09) and 1.35 (SD = 0.07), respectively. Also, the model of Shin (1994) predicted well the shear capacities of the polypropylene-fiber reinforced concrete beams (PLWC) with a Vpred /Vexp ratio of 1.34 and SD of 0.18. The models of Gopinath (2016), Ashour A (1992), and Shin (1994) predicted the shear capacities of steel-fiber reinforced concrete beams (SLWC) fairly reasonable with a Vpred /Vexp ratio of 1.01 (SD = 0.06), 1.07 (SD = 0.01) and 1.20 (SD = 0.08), respectively. A new model was proposed to predict the shear capacities of FRWLC beams reinforced with BFRP longitudinal bars. The proposed model predicted well the shear capacities of BLWC beams with a Vpred /Vexp ratio of 1.01 (SD = 0.05) and those of PLWC beams with a Vpred /Vexp ratio of 0.99 (SD = 0.06). The bond factor and the interface bond matrix used were 0.75 and 4.18 MPa, respectively. The proposed model also predicted well the shear capacities of beams cast with SLWC with a Vpred /Vexp ratio of 0.9 when the bond factor and the interface bond matrix were taken equal to 1.00 and 6.8 MPa, respectively.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, SangHun Aboutaha Riyad S. "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abdulmajid, Amin Ali Ahmed. "Strengthening of reinforced concrete beams using carbon fibre reinforced plastic." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/1998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

FILHO, JULIO JERONIMO HOLTZ SILVA. "CARBON FIBER REINFORCED POLYMER TORSION STRENGTHENING OF REINFORCED CONCRETE BEAMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10658@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este estudo teórico-experimental analisa o comportamento até a ruptura de vigas de concreto armado reforçadas externamente à torção com compósitos de fibras de carbono (CFC). No programa experimental, sete vigas de concreto armado, com seção transversal de 20 cm x 40 cm e 420 cm de comprimento, com mesma armadura de aço longitudinal e transversal e concreto com mesma resistência à compressão, foram ensaiadas até a ruptura. As vigas testadas foram divididas em três séries, sendo uma viga de referência sem reforço, três vigas com reforço transversal externo e três vigas com reforço externo transversal e longitudinal. Para a realização dos ensaios foi montada uma estrutura auxiliar de aço capaz de transferir às vigas a solicitação de torção pura. No estudo teórico foram desenvolvidas duas formulações. A primeira formulação, baseada no modelo da treliça espacial generalizada com abrandamento de tensões, apresenta uma sistemática para traçado da curva momento torçor x ângulo de torção por unidade de comprimento de vigas de concreto armado reforçadas à torção. A segunda formulação, fundamentada no modelo da Analogia da Treliça Espacial de acordo com a filosofia de dimensionamento do Eurocode 2, apresenta uma sistemática para dimensionamento de reforço com CFC . As duas metodologias adotam um modelo para determinação da aderência entre o substrato de concreto e o reforço. A inclusão da aderência nos modelos desenvolvidos é de grande importância porque em geral a ruptura do elemento estrutural ocorre devido ao descolamento do CFC. Os resultados experimentais obtidos nos testes das vigas foram utilizados para validar as duas formulações teóricas desenvolvidas. Os resultados experimentais apresentaram boa aproximação quando comparados com os modelos propostos. Verificou-se que todas as vigas reforçadas apresentaram um acréscimo de resistência à torção em torno de 40% em relação à viga de referência. Verificou-se que, após a fissuração, as vigas reforçadas apresentaram perda de rigidez inferior à da viga de referência. Observou-se que o ângulo da fissura medido experimentalmente, o ângulo de inclinação calculado pelo estado de deformação e o ângulo de inclinação calculado pelo estado de tensão da viga apresentaram valores próximos para cada viga.
A theoretical-experimental research on the torsional behavior up to failure of reinforced concrete beams strengthened with external carbon fiber composites (CFC) was carried out. The experimental study comprises a series of seven reinforced concrete beams with the same compressive strength of concrete loaded to failure and subjected to torsion. The beams dimensions were 20 cm x 40 cm x 420 cm. The test specimens had the same internal steel reinforcement. The beams were divided in three series: the reference beam without strengthening; three beams with the external strengthening applied transversally and three beams with the external strengthening applied transversally and longitudinally. For the accomplishment of the tests an auxiliary steel structure was mounted, capable to transfer to the beams the pure torsion moment. In the theoretical study two analytical procedures were developed. The first formulation, based on the softened space truss model for torsion, presents a systematic to obtain the curve torsion moment x torsion angle per length unit of the reinforced concrete beams with CFC torsion strengthening. The second systematic, based on the Space Truss Model in accordance with the Eurocode 2, presents the design of the CFC strengthening. Both methodologies adopt the Chen and Teng bond model between concrete and CFC. The consideration of the bond in the developed models is very important because the failure of the concrete members often occurs from debonding of the CFC. The experimental results from the beams tests were used to validate the two analytical procedures. Good agreement was obtained with the experimental and analytical results. For all the strengthened beams the average values of torsion strength were increased by 40% when compared to the reference beam. After cracking, the loss of rigidity in the strengthened beams was lower then in the reference beam. The cracking angle experimentally measured and the strut angles evaluated by strain state and stress state presented close values.
APA, Harvard, Vancouver, ISO, and other styles
9

Saifullah, Mohammad. "Effect of reinforced corrosion on bond strength in reinforced concrete." Thesis, University of Birmingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496283.

Full text
Abstract:
Premature deterioration of reinforced/prestressed concrete structures due to corrosion is of considerable current concern. One detrimental effect of corrosion of reinforcing/prestressing steel is the reduction of bond between steel and concrete due to the development of corrosion products at the interface. This thesis examines the influence of localized corrosion of reinforcing bars/ untensioned prestressing strands on their bond strength in concrete. In addition, an analytical study is conducted in order to investigate the complex behaviour due to cracking of cover concrete, non-uniform corrosion, presence of softened paste layer at the interface between steel and concrete, and stress relaxation due to creep in relation to the bond strength. The conditions of severe localized corrosion were simulated electrochemically. The main variables were cover-to-bar diameter ratio, reinforcement type, and corrosion rate. The influence of reinforcing/prestressing steel corrosion and cracking of the concrete cover on the behaviour of bond were studied at different stages of corrosion: non-corrosion, precracking, cracking, and postcracking levels. It was found that the bond strength increased with corrosion up to a certain amount. However, with the progressive increase in corrosion, the bond strength decreased very rapidly until the cracking of cover concrete, and then decreased at a very slow rate in the postcracking stage. The untensioned prestressing strands showed almost similar general behaviour but were found relatively more deteriorated due to corrosion in the postcracking stage under the similar corrosive conditions. The structural properties of steel such as yield strength and ultimate tensile strength were influenced significantly due to the enormous local reduction in cross-sectional area of the reinforcing/prestressing steel by corrosion. The test data showed that the percentage corrosion required to cause cracking of cover concrete varied linearly with cover-to-bar diameter ratio. Bond-slip studies at different stages of corrosion indicated that bond stiffness increases and then decreases with the increase of corrosion of reinforcing steel in concrete. Corroded prestressing strands exhibited a nonlinear bond-slip relationship. Corrosion rate was found to be a significant variable. Pullout bond specimens using deformed bars were exposed to the current densities of 4.0,2.0, 1.0,0.5,0.25,0.15,0.09, and 0.04 mA/cm'. Bond behaviour was studied at the cracking stage and after 20% corrosion. The results indicated a significant and non-linear effect of corrosion on bond strength. Both corrosion to cause cracking and bond strength as a ratio of the non-corroded bond strength increased with an increase of current density up to about 0.15-0.25 mA/CM2 , and then decreased with a further increase in current density. This explains the different results obtained by previous researchers at different corrosion rates. Finite element analysis of the effect of concrete cover at the stages of internal and surface cracking confirmed the behaviour found in the laboratory study. The presence of an interfacial softened paste layer showed no significant effect on the expansive pressure. The study of the relaxation of stresses due to creep showed that the high degradation in bond strength at high rate of corrosion was significantly contributed by the relaxation of stresses due to creep at the cracking stage. However, in the postcracking stage, creep showed little effect on the stresses in the concrete surrounding the reinforcing bar. It is concluded that it is extremely difficult to extrapolate laboratory data to field conditions. However, a simple assessment rule is proposed.
APA, Harvard, Vancouver, ISO, and other styles
10

Breña, Sergio F. "Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Renlund, Henrik. "Reinforced Random Walk." Thesis, Uppsala University, Department of Mathematics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hall, Tara Stephanie. "Deflections of concrete members reinforced with fibre reinforced polymer, FRP, bars." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/MQ49676.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Boyd, Andrew James. "Rehabilitation of reinforced concrete beams with sprayed glass fiber reinforced polymers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61068.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sheats, Matthew Reed. "Rehabilitation of reinforced concrete pier caps using carbon fiber reinforced composites." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

BOY, SERPIL. "RETROFIT OF EXISTING REINFORCED CONCRETE BRIDGES WITH FIBER REINFORCED POLYMER COMPOSITES." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1078508332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Aguiniga, Gaona Francisco. "Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/61.

Full text
Abstract:
Corrosion of steel reinforcement in concrete structures results in significant repair and rehabilitation costs. In the past several years, new fiber reinforced polymer (FRP) reinforcing bars have been introduced as an alternative to steel reinforcing bars. Several national and international organizations have recently developed standards based on preliminary test results. However, limited validation testing has been performed on the recommendations of these standards. High variability of the tensile properties, degradation of tensile strength, direct shear capacity, predicted deflections due to creep, cracking behavior of FRP-reinforced concrete flexural members, bond behavior and development length, and effects of thermal expansion on cracking of FRP reinforced concrete have all been reported, but are areas that need further investigation and validation. The objective of this study is to evaluate the characteristics of glass FRP reinforcing bars and provide recommendations on the design and construction of concrete structures containing these bar types with regard to the areas described. The recently developed ACI 440 design guidelines were analyzed and modifications proposed.
APA, Harvard, Vancouver, ISO, and other styles
17

Papanicolaou, Catherine, Thanasis Triantafillou, Ioannis Papantoniou, and Christos Balioukos. "Strengthening of two-way reinforced concrete slabs with Textile Reinforced Mortars (TRM)." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244048746186-75760.

Full text
Abstract:
An innovative strengthening technique is applied for the first time in this study to provide flexural strengthening in two-way reinforced concrete (RC) slabs supported on edge beams. The technique comprises external bonding of textiles on the tension face of RC slabs through the use of polymer-modified cement- based mortars. The textiles used in the experimental campaign comprised fabric meshes made of long stitch-bonded fibre rovings in two orthogonal directions. The specimens measured 2 x 2 m in plan and were supported on hinges at the corners. Three RC slabs strengthened by textile reinforced mortar (TRM) overlays and one control specimen were tested to failure. One specimen received one layer of carbon fibre textile, another one received two, whereas the third specimen was strengthened with three layers of glass fibre textile having the same axial rigidity (in both directions) with the single-layered carbon fibre textile. All specimens failed due to flexural punching. The load-carrying capacity of the strengthened slabs was increased by 26%, 53%, and 20% over that of the control specimen for slabs with one (carbon), two (carbon) and three (glass) textile layers, respectively. The strengthened slabs showed an increase in stiffness and energy absorption. The experimental results are compared with theoretical predictions based on existing models specifically developed for two-way slabs and the performance of the latter is evaluated. Based on the findings of this work the authors conclude that TRM overlays comprise a very promising solution for the strengthening of two-way RC slabs.
APA, Harvard, Vancouver, ISO, and other styles
18

Ross, Jason Donald. "Analytical models for reinforced concrete columns retrofitted with fiber-reinforced polymer composites." Connect to resource, 2007. http://hdl.handle.net/1811/25128.

Full text
Abstract:
Thesis (Honors)--Ohio State University, 2007.
Title from first page of PDF file. Document formatted into pages: contains 67 p.; also includes graphics. Includes bibliographical references (p. 60-62). Available online via Ohio State University's Knowledge Bank.
APA, Harvard, Vancouver, ISO, and other styles
19

Ahmed, Ehab Abdul-Mageed. "Shear behaviour of concrete beams reinforced with fibre-reinforced polymer (FRP) stirrups." Thèse, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/1903.

Full text
Abstract:
Corrosion of steel reinforcement is a major cause of deterioration in reinforced concrete structures especially those exposed to harsh environmental conditions such as bridges, concrete pavements, and parking garages. The climatic conditions may have a hand in accelerating the corrosion process when large amounts of salts are used for ice removal during winter season. These conditions normally accelerate the need of costly repairs and may lead, ultimately, to catastrophic failure. Therefore, using the non-corrodible fibre-reinforced polymer (FRP) materials as an alternative reinforcement in prestressed and reinforced concrete structures is becoming a more accepted practice in structural members subjected to severe environmental exposure. This, in turn, eliminates the potential of corrosion and the associated deterioration. Stirrups for shear reinforcement normally enclose the longitudinal reinforcement and are thus the closest reinforcement to the outer concrete surface. Consequently, they are more susceptible to severe environmental conditions and may be subjected to related deterioration, which reduces the service life of the structure. Thus, replacing the conventional stirrups with the non-corrodible FRP ones is a promising aspect to provide more protection for structural members subjected to severe environmental exposure. However, from the design point of view, the direct replacement of steel with FRP bars is not possible due to various differences in the mechanical and physical properties of the FRP materials compared to steel. These differences include higher tensile strength, lower modulus of elasticity, different bond characteristics, and absence of a yielding plateau in the stress-strain relationships of FRP materials. Moreover, the use of FRP as shear reinforcement (stirrups) for concrete members has not been sufficiently explored to provide a rational model and satisfactory guidelines to predict the shear strength of concrete members reinforced with such type of stirrups. An experimental program to investigate the structural performance of FRP stirrups as shear reinforcement for concrete beams was conducted. The experimental program included seven large-scale T-beams reinforced with FRP and steel stirrups. Three beams were reinforced with CFRP stirrups, three beams reinforced with GFRP stirrups, and one beam reinforced with steel stirrups. The geometry of the T-beam was selected to simulate the New England Bulb Tee Beam (NEBT) that is being used by the Ministry of Transportation of Québec (MTQ), Canada. The beams were 7.0 m long with a T-shaped cross section measuring a total height of 700 mm, web width of 180 mm, flange width of 750 mm, and flange thickness of 85 mm. The large-scale T-beams were constructed using normal-strength concrete and tested in four-point bending over a clear span of 6.0 m till failure to investigate the modes of failure and the ultimate capacity of the FRP stirrups in beam action. The test variables considered in this investigation were the material of the stirrups, shear reinforcement ratio, and stirrup spacing. The specimens were designed to fail in shear to utilize the full capacity of the FRP stirrups. Six beams failed in shear due to FRP (carbon and glass) stirrup rupture or steel stirrup yielding. The seventh beam, reinforced with CFRP stirrups spaced at d /4, failed in flexure due to yielding of the longitudinal reinforcement followed by crushing of concrete. The effects of the different test parameters on the shear behaviour of the concrete beams reinforced with FRP stirrups were presented and discussed. The test results contributed to amending the shear provisions incorporated in the Canadian Highway Bridge Design Code (CAN/CSA-S6) and the updated provisions were approved in the CSA-S6-Addendum (CSA 2009). An analytical investigation was conducted to evaluate the validity and accuracy of available FRP codes and guidelines in Japan, Europe, and North America. The predictions of the codes and the guidelines were verified against the results of the tested beams as well as 24 other beams reinforced with FRP stirrups from the literature. The tested beams were also analysed using various shear theories including the modified compression field theory (MCFT), the shear friction model (SFM), and the unified shear strength model (USSM). A simple equation for predicting the shear crack width in concrete beams reinforced with FRP stirrups is proposed and verified against the experimentally measured values.
APA, Harvard, Vancouver, ISO, and other styles
20

Ojo, Taye Oluwafemi. "PERFORMANCE OF STEEL FIBER REINFORCED AND CONVENTIONALLY REINFORCED POST-TENSIONED FLAT PLATES." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105008.

Full text
Abstract:
With the increasing need for commercial and residential buildings, post-tensioned (PT) flat plates have become a preferred choice for floor systems, because of the numerous advantages over non-prestressed slabs such as better efficiency, reduced slab self-weight, as well as crack and deflection control. To improve the competitive advantage of PT flat plates through improved economy and performance, a study was undertaken. This study investigated the performance and behavior of three one-third scale models of a nine-panel two-way unbonded post-tensioned flat plate. One of the slabs had conventional reinforcement with uniform-banded tendon layout, another had conventional reinforcement with banded-banded tendon layout while the last had banded-banded tendon layout reinforced with steel fiber. The specimens were loaded to service limit state, factored load and then to failure, using a whiffle tree loading system that approximated a uniformly distributed load. Experimental results were compared to analytical results from finite element and yield line analysis. The performance of the banded-banded specimens was very similar to the uniform-banded specimens at service and factored load. The failure loads for all specimens were considerably higher than the design factored load of 197 psf. Steel fiber was able to replace conventional reinforcement and the performance of the specimens with steel fibers was satisfactory, and comparable to their corresponding conventional reinforced specimens at service and factored limit state. Analytical results from finite element analysis showed a fairly reasonable agreement with experimental results. The results from the experimental tests showed that the use of steel fiber in post-tensioned flat plates is a viable and safe technology that will lead to improved performance and economy. The experimental results seem to indicate that the requirement of conventional reinforcement may be unnecessary in the negative moment regions and also in the positive moment region if the tensile stress is not more than 3√(f'c ) in this region. ACI 318-19 code design recommendations were provided for design of banded-banded PT system and SFRC post-tensioned flat plate. Additional testing should be conducted before SFRC post-tensioned flat plates are incorporated in the ACI 318 code (ACI 318, 2019) with a maximum allowable tensile stress of 6√(f'c).
Doctor of Philosophy
Over the years, the use of post-tensioned flat plates as flooring system has increased and became popular in residential and commercial buildings. Post-tensioned flat plates are a type of concrete structural slabs typically used for flooring in high-rise building because of the numerous advantages over non-prestressed slabs such as better efficiency, reduced slab self-weight, as well as smaller crack and deflection. This type of slab typically consists of high strength steel strands called tendons, which are stretched to compress the concrete slab in both directions. To improve the performance of this type of slabs a research study was performed. This study investigated the performance and behavior of three one-third scale models of a nine-panel two-way post-tensioned flat plate. One of the slabs was strengthened with conventional steel bars and the tendon layout was uniform-banded tendon, another had conventional steel bar with banded-banded tendon layout while the last had banded-banded tendon layout reinforced with steel fiber. Actual load that will act on the slab when in use was applied and then this load was increased by a factor as specified in the building code, before loading the slab to the point where it cannot carry any more load. Results from the load test were compared to results obtain from analytical software package. The performance of the specimens that had banded-banded tendon layout was very similar to the specimens that had uniform-banded tendon layout, at actual operational load when in use. The failure loads for all specimens were considerably higher than the load they were designed for. The results suggest that steel fiber is a good alternative to conventional steel bars. The results from the load tests suggest that steel fiber can be used to strengthen post-tensioned flat plates which will lead to better performance and reduced cost.
APA, Harvard, Vancouver, ISO, and other styles
21

Svecova, Dagmar Carleton University Dissertation Engineering Civil and Environmental. "Serviceability and strength of concrete parking structures reinforced by fibre-reinforced plastics." Ottawa, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Al, Ajami Abdulhamid. "Punching shear of concrete flat slabs reinforced with fibre reinforced polymer bars." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16864.

Full text
Abstract:
Fibre reinforcement polymers (FRP) are non-corrodible materials used instead of conventional steel and have been approved to be an effective way to overcome corrosion problems. FRP, in most cases, can have a higher tensile strength, but a lower tensile modulus of elasticity compared to that of conventional steel bars. This study aimed to examine flat slab specimens reinforced with glass fibre reinforced polymer (GFRP) and steel bar materials for punching shear behaviour. Six full-scale two-way slab specimens were constructed and tested under concentric load up to failure. One of the main objectives is to study the effect of reinforcement spacing with the same reinforcement ratio on the punching shear strength. In addition, two other parameters were considered, namely, slab depth, and compressive strength of concrete. The punching shear provisions of two code of practises CSA S806 (Canadian Standards 2012) and JSCE (JSCE et al. 1997) reasonably predicted the load capacity of GFRP reinforced concrete flat slab, whereas, ACI 440 (ACI Committee 440 2015) showed very conservative load capacity prediction. On the other hand, a dynamic explicit solver in nonlinear finite element (FE) modelling is used to analyse a connection of column to concrete flat slabs reinforced with GFRP bars in terms of ultimate punching load. All FE modelling was performed in 3D with the appropriate adoption of element size and mesh. The numerical and experimental results were compared in order to evaluate the developed FE, aiming to predict the behaviour of punching shear in the concrete flat slab. In addition, a parametric study was created to explore the behaviour of GFRP reinforced concrete flat slab with three parameters, namely, concrete strength, shear load perimeter to effective depth ratio, and, flexural reinforcement ratio. It was concluded that the developed models could accurately capture the behaviour of GFRP reinforced concrete flat slabs subjected to a concentrated load. Artificial Neural Networks (ANN) is used in this research to predict punching shear strength, and the results were shown to match more closely with the experimental results. A parametric study was performed to investigate the effects of five parameters on punching shear capacity of GFRP reinforced concrete flat slab. The parametric investigation revealed that the effective depth has the most substantial impact on the load carrying capacity of the punching shear followed by reinforcement ratio, column perimeter, the compressive strength of the concrete, and, the elastic modulus of the reinforcement.
APA, Harvard, Vancouver, ISO, and other styles
23

GORINO, ANDREA. "Ductility of lightly reinforced and fiber-reinforced concrete elements: A unified approach." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2674226.

Full text
Abstract:
Lightly Reinforced Concrete (LRC), Fiber-Reinforced Concrete (FRC), and Hybrid Reinforced Concrete (HRC) elements subjected to static bending actions exhibit a similar behavior, which depends on the amount of rebar and/or fibers added to the cementitious matrix. In all the cases, if a suitable reinforcing system is not provided, the brittle failure occurs at the cracking of concrete. Hence, a new and unified approach is introduced in the present thesis to evaluate the minimum reinforcement for static reasons. Such approach is based on the definition of the ductility index ( DI ), which is a function of the difference between the ultimate load and the effective cracking load. Therefore, DI is higher than zero when a lightly reinforced member shows a ductile response, whereas it is negative in case of brittle behavior. To study the brittle/ductile transition (i.e., the minimum reinforcement), the flexural behavior of concrete beams containing low amounts of rebar, fibers, or a combination, is predicted through three general models for LRC, FRC, and HRC members. In addition, test results coming from the available literature and a specific experimental campaign are considered. Both numerical and experimental data reveal the existence of a generally valid linear envelope of DI when the reinforcement varies in a concrete member. Based on these results, a design-by-testing procedure can be established for determining the minimum reinforcement of a LRC and/or FRC element, which corresponds to DI equal to zero. Moreover, the minimum reinforcement of an HRC element is defined by any linear combination of the associated minimum amounts of sole rebar and fibers. The proposed approach is adopted to design the minimum reinforcement of precast concrete segments for a tunnel lining. It is applied to LRC, FRC, and HRC members, not only subjected to pure flexure but also under combined axial force and bending moment. Finally, the ductility index is used as functional unit of a simplified sustainability analysis. In the specific case of lightweight FRC one-way plates, this new parameter allows to measure the performances of the concrete elements in combined ecological and mechanical analyses, with an integrated holistic approach.
APA, Harvard, Vancouver, ISO, and other styles
24

Hsieh, Feng-Hsu. "Nanofiber reinforced epoxy composite." Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1146149557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Deveau, Adrien Joseph. "Fibre-reinforced expansive concrete." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ45858.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bisanda, Elifis T. N. "Sisal fibre reinforced composites." Thesis, University of Bath, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Robin G. "Grid reinforced soil-foundations." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Khalil, Nariman Jaber. "Slender reinforced concrete columns." Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20671.

Full text
Abstract:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated.
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
APA, Harvard, Vancouver, ISO, and other styles
30

Shamshurov, A. V., V. M. Beresnev, and N. A. Volovicheva. "Nano-reinforced Quartz Composites." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35246.

Full text
Abstract:
We have studied the process of interaction between the components in the system «β-SiO2–Fe3O4–Na2O» in the temperature range from 20 to 1100 °C. Nano-reinforced composite building materials were developed on the base of quartz raw material. Developed materials are produced by low-temperature cal-cining technology. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35246
APA, Harvard, Vancouver, ISO, and other styles
31

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222094.

Full text
Abstract:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet
APA, Harvard, Vancouver, ISO, and other styles
32

Lau, Shuk-lei. "Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B32001630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nofal, Mostafa. "Continuum damage mechanics for plain, fibre-reinforced, and reinforced concrete materials and structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26860.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Thorburn, Lorna Jane. "A study of externally reinforced fibre-reinforced concrete bridge decks on steel girders." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0028/NQ31536.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abdel-Jaber, Ma'en. "Shear strengthening of reinforced concrete beams using externally bonded carbon fibre reinforced plates." Thesis, Oxford Brookes University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lau, Shuk-lei, and 劉淑妮. "Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B32001630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cervantes, Ignacio. "Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1527536.

Full text
Abstract:

An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Stephen Kim Lon. "Flexural strength of reinforced concrete beams strengthened using carbon fibre reinforced composite sheets." Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Al-Azzawi, Bakr. "Fatigue of reinforced concrete beams retrofitted with ultra-high performance fibre- reinforced concrete." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/108101/.

Full text
Abstract:
Concrete structures deteriorate over time due to different reasons and thus may not perform their function satisfactorily. Repair and rehabilitation of deteriorated concrete structures is often preferred over demolition and rebuilding for economic reasons. Various metallic and nonmetallic materials have been used in the past for repair and rehabilitation. These materials have advantages and disadvantages. The latter are connected with the mismatch in the properties of these materials with the material of the structure being repaired which often resulted in unwanted failure modes, e.g. delamination. For this reason, new cement-based ultra-high performance reinforced with steel fibres repair materials have been developed in the last two decades, which restore (and even enhance) the structural response and improve the durability of repaired concrete structures. One such ultra-high-performance fibre-reinforced concrete material is CARDIFRC. It is characterized by very high compressive strength, high tensile /flexural strength, and high energy-absorption capacity. However, it is very expensive and thus industrially uncompetitive due to the very high cost of thin brass-coated steel fibres used in it. It is therefore important to develop a version of CARDIFRC that is industrially competitive. This is one of the objectives of this research. An ultra-high-performance fibre-reinforced concrete (UHPFRC) has been developed that is far less expensive than CARDIFRC and at the same time self-compacting. The steps necessary to achieve this have been described in this work. In addition, a full mechanical and fracture characterisation (i.e. size-independent fracture energy and the corresponding bi-linear stress-crack opening relationship) of this UHPFRC is presented. A nonlinear cracked hinge model has been used to back calculate the stress-crack opening relation of this material in an inverse manner from the test data. The second objective of this research concerns the flexural fatigue behaviour of this new UHPFRC. Tests have been conducted under several stress amplitude ranges. It has been found that the distribution of fibres plays a vital role in its fatigue resistance. Regions with few or no fibres can drastically reduce its fatigue life. As expected, non-zero mean stress leads to a significant reduction in the fatigue life of a material compared to cyclic loading with zero mean. The variation in compliance during cyclic loading has been used to estimate the expected fatigue life under a given cyclic load range, since the tests were terminated at one million cycles. The third objective of this research concerns the flexural fatigue behaviour of RC beams retrofitted with precast strips of this self-compacting UHPFRC on the tension face. Fatigue tests under several stress amplitude ranges have shown that this UHPFRC is an excellent retrofit material under fatigue loading. Again, the variation in compliance during the fatigue loading has been used to estimate the expected fatigue life for retrofitted RC beams.
APA, Harvard, Vancouver, ISO, and other styles
40

Ordija, James Louis. "Structural Performance of Fiber-Reinforced and Welded Wire Fabric-Reinforced Concrete Composite Slabs." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/40539.

Full text
Abstract:
The purpose of this research is to evaluate and compare the structural performance of composite floor slabs reinforced with 6 x 6 W1.4/W1.4 welded wire fabric (WWF) and STRUX 90/40 synthetic macro fibers. Slabs were subjected to flexural strength tests and concentrated load tests while monitoring load, steel deck strains, and deflections. Test results obtained from this test program were also compared to results from a similar test program conducted in 2001. Tests were also performed to obtain the average residual-strength of the fiber-reinforced concrete using the ASTM C 1399 (2003) standard test. All slabs were loaded until a complete failure was observed. The observed failure loads were compared to failure loads calculated by design guides published by the American Society of Civil Engineers (ASCE) and the Steel Deck Institute (SDI). The flexural strength tests showed that composite slabs reinforced with synthetic macro fibers and WWF exhibited strength and behavior that was almost identical. The observed values of strength were also within the range that was predicted by ASCE prediction models. At a typical office design load of 70 psf, all slabs exhibited midspan deflections that were much smaller than those necessary for serviceability requirements. The concentrated load tests also showed that the observed strength of all composite slabs tested was above those values predicted by ASCE and SDI models. However, an effective comparison between the WWF-reinforced and synthetic macro fiber-reinforced slab was difficult due to a poor shear bond in the latter slab prior to testing. The results of the ASTM C 1399 test verified the ability of concrete reinforced with synthetic macro fibers to meet average residual-strength values recommended by the SDI.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
41

Malek, Amir Masoud 1959. "Analytical study of reinforced concrete beams strengthened with fiber reinforced plastic plates (fabrics)." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282316.

Full text
Abstract:
Epoxy-bonding a composite plate to tension face, is an effective technique for repair and retrofit of reinforced concrete beams. Experiments have indicated local failure of the concrete layer between the plate and longitudinal reinforcement in retrofitted beams. This mode of failure is caused by local stress concentrations at the plate end, as well as at the flexural cracks. A method has been presented for calculating shear and normal stress concentrations at the cut-off point of the plate. Stress concentrations predicted by this method have been compared to both finite element method and experimental results. The analytical models provide closed form solutions for calculating stresses at the plate ends and can easily be incorporated in design equations. The ultimate capacity of the reinforced concrete beams strengthened by composite plates bonded to the tension face, is controlled by either compression crushing of concrete, rupture of the plate, local failure of concrete at the plate end, or debonding of the plate. These failure modes have been considered in developing design guidelines for flexural strengthening of reinforced concrete beams using fiber composite plates. Bonding composite plates (fabrics) to the web of reinforced concrete beams can increase the shear and flexural capacity of the beam. An analytical model has been developed to calculate the stress distribution in the strengthened beam, and the shear force resisted by the composite plate before cracking and also after formation of flexural cracks. Parametric study has been performed to reveal the effect of important parameters such as fiber orientation, and plate thickness. The ultimate shear capacity of reinforced concrete beams is also increased by epoxy-bonding composite plates to the side faces of the beam. Truss analogy and compression field theory have been used to determine the effect of the composite plate on the crack inclination angle and the shear capacity of reinforced concrete beams at ultimate state. The effects of important parameters such as plate thickness and fiber orientation angle on the crack inclination angle and the shear capacity of the strengthened beam have been investigated through a parametric study.
APA, Harvard, Vancouver, ISO, and other styles
42

Paschalis, Spyridon A. "Strengthening of existing reinforced concrete structures using ultra high performance fiber reinforced concrete." Thesis, University of Brighton, 2017. https://research.brighton.ac.uk/en/studentTheses/c07ce9c7-5880-4108-a0f2-68bf6ea50dd5.

Full text
Abstract:
Most of the new Reinforced Concrete (RC) structures which are built nowadays have a high safety level. Nevertheless, we cannot claim the same for structures built in the past. Many of these were designed without any regulations, or are based on those which have proved to be inadequate. Additionally, it seems that many old structures have reached the end of their service life and, in many cases, were designed to carry loads significantly lower than the current needs specify. Therefore, the structural evaluation and intervention are considered necessary, so they can meet the same requirements as the structures which are built today. Existing techniques for the strengthening and retrofitting of RC structures present crucial disadvantages which are mainly related to the ease of application, the high cost, the time it takes to be applied, the relocation of the tenants during the application of the technique and the poor performance. Research is now focused on new techniques which combine strength, cost effectiveness and ease of application. The superior mechanical properties of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) compared to conventional concrete, together with the ease of preparation and application of the material, make the application of UHPFRC in the field of strengthening of RC structures attractive. The present research aims to investigate the effectiveness of UHPFRC as a strengthening material, and to examine if the material is able to increase the load carrying capacity of existing RC elements. This has been achieved through an extensive experimental and numerical investigation. The first part of the present research is focused on the experimental investigation of the properties of the material which are missing from the literature and the development of a mixture design which can be used for strengthening applications. The second part is focused on the realistic application of the material for the strengthening of existing RC elements using different strengthening configurations. Finally, in the last part, certain significant parameters of the examined technique, which are mainly related to the design of the technique, are investigated numerically. From the experimental and numerical investigation of the present research it was clear that UHPFRC is a material with enhanced properties and the strengthening with UHPFRC is a well promising technique. Therefore, in all the examined cases, the performance of the strengthened elements was improved. Finally, an important finding of the present research was that the bonding between UHPFRC and concrete is effective with low values of slip at the interface.
APA, Harvard, Vancouver, ISO, and other styles
43

D'Antino, Tommaso. "Bond behavior in fiber reinforced polymer composites and fiber reinforced cementitious matrix composites." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423690.

Full text
Abstract:
The use of fiber reinforced composites for strengthening reinforced concrete (RC) structures has gained great popularity in the last few decades. Fiber reinforced polymer (FRP) composites represent an effective solution for strengthening existing reinforced concrete structures due to their mechanical properties and relatively low cost. FRP composites have been extensively studied, and design codes/recommendation/guidelines are available. One of the most important concerns regarding the use of FRP for strengthening RC structures is the proper design to preclude debonding failure. The bond behavior of FRP-concrete joints is studied in this thesis by means of a fracture mechanics approach, assuming that the debonding is characterized by a pure Mode II failure. The most important analytical formulations for the evaluation of the bond strength of FRP-concrete joints are analyzed and discussed. The accuracy of each analytical model studied is assessed through the use of a wide experimental database including different test set-ups and composite materials. Furthermore, the accuracy of several analytical models for the evaluation of the effective bond length, i.e. the minimum length needed to fully develop the bond strength of the FRP-concrete joint, is assessed. A promising alternative to FRP composites is fiber reinforced cementitious matrix (FRCM) composites. FRCM composites are comprised of high strength fibers applied to the concrete substrate through the use of inorganic cementitious matrix. FRCM composites are still in their infancy, and very limited work is available in the literature. In the second part of this thesis, an extensive experimental campaign conducted on PBO FRCM-concrete joints is presented and discussed. Since the weakness of FRCM-concrete joints is located at the matrix-fiber interface, the study of the stress-transfer mechanism between the fibers and the matrix is of particular importance. Specimens with different bonded lengths and bonded widths are presented. The fracture mechanics approach used to study the FRP-concrete joints is extended to the study of FRCM-concrete joints, and the exsistence of an effective bond length similar to that observed for FRP-concrete joints is investigated. The results obtained through the fracture mechanics approach are used for the implementation of numerical models to investigate the fiber-matrix interface bond behavior for FRCM-concrete joints that include more than one layer of matrix.
L’utilizzo di compositi fibrorinforzati per il rinforzo e l’adeguamento di strutture esistenti in calcestruzzo armato (c.a.) ha raggiunto una grande popolarità negli ultimi decenni. Tra i materiali compositi, l’utilizzo dei cosiddetti polimeri fibrorinforzati (fiber reinforced polymer, FRP) rappresenta una soluzione efficace per l’intervento su strutture esistenti in c.a. grazie all’elevata resistenza meccanica ed al costo relativamente non elevato del materiale. Gli FRP sono stati largamente studiati negli ultimi anni e sono attualmente disponibili diverse linee guida per la progettazione di questo tipo di rinforzo in tutto il mondo. Uno dei problemi di maggiore importanza nell’utilizzo di compositi FRP è costituito dalla valutazione della resistenza al distacco (debonding) del composito dal supporto su cui è applicato. In questa tesi viene analizzato il comportamento di giunti FRP-calcestruzzo nel contesto della meccanica della frattura, assumendo che la rottura per distacco sia assimilabile ad un modo di rottura di tipo II. Le più importanti formulazioni analitiche per la valutazione della resistenza d’adesione del composito al substrato sono analizzate e discusse. L’accuratezza di ognuno dei modelli analitici considerati è stata valutata per mezzo di un esteso database sperimentali in cui sono presenti i risultati di test condotti su diversi materiali compositi e con diverse configurazioni di prova. Viene inoltre valutata l’accuratezza di alcuni modelli analitici per il calcolo della lunghezza effettiva d’aderenza, cioè della lunghezza minima necessaria per poter sviluppare appieno il meccanismo di adesione FRP-calcestruzzo. Una promettente alternativa all’utilizzo dei compositi FRP è rappresentata dai cosiddetti materiali compositi a matrice cementizia (fiber reinforced cementitious matrix, FRCM), costituiti da fibre lunghe ad alta resistenza applicate a supporti in calcestruzzo per mezzo di matrici cementizie. I compositi FRCM rappresentano una novità nel mondo del rinforzo di strutture esistenti in c.a. e la letteratura disponibile a riguardo è ancora assai limitata. Nella seconda parte di questa tesi viene presentata e discussa una vasta campagna sperimentale condotta su provini di FRCM di diversa lunghezza e larghezza costituiti da fibre in PBO e matrice cementizia applicata su supporti in calcestruzzo. Dal momento che la rottura nei giunti FRCM-calcestruzzo avviene all’interfaccia fibra-matrice, lo studio del meccanismo di trasmissione degli sforzi da fibra a matrice è di particolare importanza in questi compositi. L’approccio di meccanica della frattura applicato nel caso di giunti FRP-calcestruzzo è esteso al caso dei compositi FRCM ed è indagata la possibile esistenza di una lunghezza effettiva d’aderenza simile a quella osservata nei compositi FRP. I risultati ottenuti dall’approccio di meccanica della frattura sono utilizzati per l’implementazione di modelli numerici che permettono di studiare il comportamento di adesione fibra-matrice in compositi che includano più di uno strato di matrice cementizia.
APA, Harvard, Vancouver, ISO, and other styles
44

Vilanova, Marco Irene. "Bond-slip and cracking behaviour of glass fibre reinforced polymer reinforced concrete tensile members." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/328720.

Full text
Abstract:
In this work, a methodology has been developed to implement the bond behaviour between concrete and GFRP bars in the numerical modelling. Based on experimental results and applying the inverse method, the bond law to be used in the numerical model is obtained. The thesis continues with two experimental campaigns on GFRP RC elements under tensile sustained loads. The first experimental campaign consisted in testing GFRP RC elements with different target concrete strengths. The tests were carried out for a period between 35 a 39 days. Experimental results were compared with analytical codes for steel RC structures. The second experimental campaign consists on the analysis of bond of such structures under sustained load. The specimens were tested for a period between 90 and 130 days. Slip stabilization was observed to occur at 60 days after the beginning of the tests.
En aquest treball s’ha desenvolupat una metodologia que permet la implementació del comportament adherent entre formigó i barres de material compost en la modelització numèrica. A partir de resultats experimentals i aplicant un mètode invers s’obtenen les lleis d’adherència aptes per ser incorporades a la modelització numèrica. Com a continuació de l’estudi s’han portat a terme dues campanyes experimentals en elements sotmesos a càrrega de tracció mantinguda. La primera campanya experimental va consistir en l’assaig de tirants de formigó variant la resistència del formigó. Els espècimens van estar sotmesos a càrrega mantinguda durant un període de 35-39 dies. Els resultats es van comparat amb models analítics existents per reforç estructural d’acer. En la segona campanya experimental es va aprofundir en l’estudi de l’adherència a llarg termini. Els espècimens van estar sotmesos a càrrega mantinguda durant un període de 90-130 dies observant una estabilització del lliscament 60 dies després de l’inici dels assaigs.
APA, Harvard, Vancouver, ISO, and other styles
45

Baran, Mehmet. "Precast Concrete Panel Reinforced Infill Walls For Seismic Strengthening Of Reinforced Concrete Framed Structures." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606137/index.pdf.

Full text
Abstract:
The importance of seismic rehabilitation became evident with 1992 Erzincan Earthquake, after which a large number of reinforced concrete buildings damaged in recent earthquakes required strengthening as well as repair. In the studies related to rehabilitation, it has been realized that inadequate lateral stiffness is one of the major causes of damage in reinforced concrete buildings. Recently, economical, structurally effective and practically applicable seismic retrofitting techniques are being developed in METU Structural Mechanics Laboratory to overcome these kinds of problems. The strengthening technique proposed in this thesis is on the basis of the principle of strengthening the existing hollow brick infill walls by using high strength precast concrete panels such that they act as cast-in-place concrete infills improving the lateral stiffness. Also, the technique would not require evacuation of the building and would be applicable without causing too much disturbance to the occupant. For this purpose, after two preliminary tests to verify the proper functioning of the newly developed test set-up, a total of fourteen one-bay two story reinforced concrete frames with hollow brick infill wall, two being unstrengthened reference frames, were tested under reversed cyclic lateral loading simulating earthquake loading. The specimens were strengthened by using six different types of precast concrete panels. Strength, stiffness, energy dissipation and story drift characteristics of the specimens were examined by evaluating the test results. Test results indicated that the proposed seismic strengthening technique can be very effective in improving the seismic performance of the reinforced concrete framed building structures commonly used in Turkey. In the analytical part of the study, hollow brick infill walls strengthened by using high strength precast concrete panels were modelled once by means of equivalent diagonal struts and once as monolithic walls having an equivalent thickness. The experimental results were compared with the analytical results of the two approaches mentioned. On the basis of the analytical work, practical recommendations were made for the design of such strengthening intervention to be executed in actual practice.
APA, Harvard, Vancouver, ISO, and other styles
46

Ozcan, Okan. "Improving Ductility And Shear Capacity Of Reinforced Concrete Columns With Carbon Fiber Reinforced Polymer." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611292/index.pdf.

Full text
Abstract:
The performance of reinforced concrete (RC) columns during recent earthquakes has clearly demonstrated the possible failures associated with inadequate confining reinforcement. The confinement reinforcement requirements of older codes were less stringent than present standards. Many studies were conducted by applying different retrofitting techniques for RC columns that have inadequate confinement reinforcement. A new retrofitting technique by means of Carbon Fiber Reinforced Polymer (CFRP) was developed and tested in many countries in the last decade. This technique is performed by CFRP wrapping the critical region of columns. The effectiveness of CFRP retrofitting technique was shown in many studies conducted worldwide. In Turkey, the frame members are considerably deficient from the seismic detailing point of view. Therefore, in order to use the CFRP retrofitting technique effectively in Turkey, experimental evidence is needed. This study investigates the performance of CFRP retrofitted RC columns with deficient confining steel and low concrete strength. It was concluded by experimental and analytical results that the CFRP retrofitting method can be implemented to seismically deficient columns. Moreover, two design approaches were proposed for CFRP retrofit design of columns considering safe design regulations.
APA, Harvard, Vancouver, ISO, and other styles
47

Parghi, Anantray M. "Seismic performance evaluation of circular reinforced concrete bridge piers retrofitted with fibre reinforced polymer." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58944.

Full text
Abstract:
A large number of researchers around the globe are currently conducting investigations on the use of fibre-reinforced polymer (FRP) for strengthening of reinforced concrete (RC) bridge piers. It has been observed that such strengthening technique can be a cost-effective method for restoring and increasing the strength and ductility of piers damaged during catastrophic events, like earthquakes. Material properties, amount of longitudinal and transverse steel, external confinement, axial load and shear span-depth ratio affect the lateral load capacity, ductility and failure mode of retrofitted bridge piers under seismic load. These parameters are considerably different in the pre-1970 code designed RC bridge piers compared to the current seismically designed bridges. This research investigates the effect of different factors and their interactions on the limit states of FRP-confined seismically deficient RC circular bridge piers using factorial design method. Nonlinear static pushover analyses of the non-seismically designed FRP retrofitted circular bridge piers are conducted in order to determine the sequence of different limit states such as yielding of reinforcement, and concrete crushing along with ductility capacity of the piers. In addition, nonlinear reverse cyclic, and dynamic time-history analyses are carried out in order to determine the lateral load carrying capacity, flexural ductility, and hysteretic behavior of such retrofitted piers. Fragility curves are developed for the FRP retrofitted RC bridge piers considering different limit states of displacement ductility as the demand parameter. The incremental dynamic analysis is conducted by considering 20 ground motion records to investigate the nonlinear dynamic behavior of the retrofitted piers. The fragility curves are described using lognormal distribution functions with two parameters developed as a function of peak ground acceleration. The impact of various parameters is evaluated on the bridge pier fragility curve based on the theory of probability. This study shows that the shear span-depth ratio, the yield strength of reinforcement, longitudinal reinforcement ratio, axial load and FRP confinement significantly affect the lateral load capacity, ductility and the failure mode of the retrofitted bridge piers under seismic load.
Applied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
APA, Harvard, Vancouver, ISO, and other styles
48

Wong, Rita Sheung Ying. "Towards modelling of reinforced concrete members with externally-bonded fibre reinforced polymer, FRP, composites." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62958.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Qin, Shunde. "Shear behaviour of corroded reinforced concrete T-beams repaired with fibre reinforced polymer systems." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6990/.

Full text
Abstract:
This study investigates the shear behaviour of corrosion-damaged reinforced concrete Tbeams repaired with fibre reinforced polymer (FRP) systems. Nine beams with different corrosion levels (0% (uncorroded), 7% and 12%) and different strengthening methods were tested. Both the embedded Carbon-FRP rods and externally bonded Carbon-FRP sheets were effective in enhancing the shear strength of tested beams. The test beams were modelled using nonlinear three dimensional half models in the finite element (FE) package TNO Diana. The shear force capacity, shear force-deflection graphs and crack patterns at failure were used to validate the FE models. Reasonable agreement was obtained between the experimental and numerical results. A parametric study investigating the effect of concrete strength, steel-to-CFRP shear reinforcement ratio and shear span-to-effective depth ratio was carried out. The FE predictions suggest that the embedded CFRP shear contribution decreases with the increase in steel-to-CFRP shear reinforcement ratio and shear span-to-effective depth ratio. Finally, the FE predictions were compared with the predictions of Concrete Society TR55 design guidance. The results suggest that TR55 overestimates the shear strength enhancement offered by embedded CFRP rods.
APA, Harvard, Vancouver, ISO, and other styles
50

Vieira, Mylene de Melo. "Experimental study of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11994.

Full text
Abstract:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
The reinforced concrete structures, when properly designed and performed, have prolonged its life. However, the lack of proper maintenance, acting loads greater than the design ones, pathological manifestations due to aggressive environment and accidents can impair the performance of the structure requiring the need for repair or structural strengthening. The technique of structural strengthening with application of carbon fiber reinforced polymer (CFRP), bonded externally to the reinforced concrete has advantages such as fast execution, which added to the characteristics of the composite as a high modulus of elasticity make wide its use. The aim of this study is to analyze through an experimental program the structural behavior of reinforced concrete beams strengthened in bending with CFRP. The methodology used was the production of three groups of five RC beams each one, with the same dimension of rectangular cross section, for bending test. The first group of beams was called VA. The second and third groups, called VB and VC and had different ratio of reinforcement. In each group of five beams, one beam was not strengthened (reference beam) and the remaining beams were strengthened with two, three, four and five layers of carbon fiber. The experimental results indicate the efficiency of strengthening, noting an increase in stiffness in all strengthened beams. The increase of load capacity was also observed in all groups of beams varying between 9,11% and 16,69%, 55,14% and 86,83%, 89,46% and 126,18%, of the beams of group VA, VB and VC, respectively in relation to the reference beam of each group. Of the carried through study was observed the excellent performance of strengthening in bending with carbon fiber especially in beams with the lowest ratios of reinforcement (group C), besides gathering a lot of information that can be useful for design criteria of the recovered and strengthened structures.
As estruturas de concreto armado, quando convenientemente projetadas e executadas tÃm sua vida Ãtil prolongada, porÃm, a falta de manutenÃÃo adequada, as solicitaÃÃes de cargas superiores Ãs de projeto, as manifestaÃÃes patolÃgicas devido ao meio ambiente agressivo e a ocorrÃncia de acidentes podem comprometer o desempenho da estrutura exigindo a necessidade de uma recuperaÃÃo ou reforÃo estrutural. A tÃcnica de reforÃo estrutural com a aplicaÃÃo de polÃmeros reforÃados com fibra de carbono (PRFC) colados externamente a peÃas de concreto armado apresenta vantagens como a rÃpida execuÃÃo que, somada a caracterÃsticas do compÃsito como alto mÃdulo de elasticidade fazem largo o seu uso. O objetivo desse trabalho à analisar atravÃs de um programa experimental o comportamento estrutural de vigas de concreto armado reforÃadas à flexÃo com PRFC. A metodologia utilizada foi a produÃÃo de trÃs grupos de vigas de concreto armado, com a mesma dimensÃo de seÃÃo transversal retangular para ensaio à flexÃo. O primeiro grupo, denominado grupo VA, foi dimensionado com seÃÃo normalmente armada. O segundo e terceiro grupo de vigas, aqui denominados grupo VB e grupo VC, respectivamente, foram dimensionados com seÃÃo subarmada, com taxas de armaduras distintas. Cada grupo possuÃa cinco vigas, sendo que, uma viga nÃo foi reforÃada (de referÃncia) e as demais vigas foram reforÃadas com duas, trÃs, quatro e cinco camadas de fibra de carbono. Os ensaios experimentais comprovaram a eficiÃncia do reforÃo, constatando-se um aumento de rigidez de todas as vigas reforÃadas. Observou-se tambÃm o aumento da capacidade resistente em todos os grupos de vigas, variando entre 9,11% e 16,69%, 55,14% e 86,83%, 89,46% e 126,18%, das vigas dos grupos VA, VB e VC, respectivamente, em relaÃÃo à viga de referÃncia de cada grupo. O estudo demonstrou o excelente desempenho do reforÃo à flexÃo com fibra de carbono, especialmente nas vigas com menores taxas de armadura (grupo VC), alÃm de reunir uma sÃrie de informaÃÃes que podem ser Ãteis para critÃrios de projeto de estruturas recuperadas e reforÃadas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography