Dissertations / Theses on the topic 'Reinforced concrete Fiber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Reinforced concrete Fiber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hamed, Sarah. "Shear Contribution of Basalt Fiber-Reinforced Concrete Reinforced with Basalt Fiber-Reinforced Polymer Bars." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34008.
Full textThis study evaluates both experimentally and analytically the shear behavior of basalt fiber-reinforced concrete (BFRC) beams reinforced longitudinally with basalt fiber-reinforced polymer (BFRP) bars. A new type of basalt macro-fibers was added to the concrete mix to produce the BFRC mix. Fourteen beams (152 x 254 x 2000 mm) with no transverse reinforcement provided were tested under four-point loading configuration until failure occurred. The beams were grouped in two groups A and B depending on their span-to-depth ratios, a/d. Beams of group A had a ratio a/d of 3.3 while those of group B had a ratio a/d of 2.5. Besides the span-to-depth ratios, the parameters investigated included the volume fraction of the fibers added (0.75 and 1.5%) and the longitudinal reinforcement ratio of the BFRP reinforcing bars (0.31, 0.48, 0.69, 1.05, and 1.52). The test results showed that the addition of basalt macro-fibers to the concrete mix enhanced its compressive strength. A direct relationship between the fiber volume fraction, Vf, and the compressive strength was observed. Concrete cylinders cast with Vf of 0.75 and 1.5% yielded 11 and 30% increase in their compressive strengths over those cast with plain concrete, respectively. The addition of fibers greatly enhanced the shear capacity of BFRC-BFRP beams compared to their control beams cast with plain concrete. The increase of the fiber volume fraction decreased the spacing between cracks and hindered its propagation. A significant enhancement in the shear capacities of the tested beams was also observed when the basalt macro-fibers were added at a volume fraction Vf of 0.75%. The average increase in the shear capacities of beams of group A and B, having the same reinforcement ratios, were 45 and 44%, respectively, in comparison with those of the control beams. It was noticed that the gain in shear capacities of the tested beams was more pronounced in beams with a/d = 3.3 than in beams with a/d = 2.5 when the reinforcement ratio increased. In the analytical phase, several models were used to predict the shear capacities of the beams. All of the available models overestimated the shear capacities of the tested beams with average ratio Vpre/Vexp ranging between 1.29 to 2.64. This finding indicated that these models were not suitable to predict the shear capacities of the BFRC-BFRP beams. A new modified model incorporating the type of the longitudinal reinforcement, the type of FRC used, and the density of concrete is proposed. The model of Ashour et al. –A (1992) was calibrated using a calibration factor equal to the ratio of modulus of FRP bars used, Ef, and that of steel bars, Es. This ratio takes into consideration the difference in properties between the FRP and steel bars, which was overlooked by previous models. The proposed model predicted well the shear capacities of the BFRC-BFRP beams tested in the current study with average ratios Vpre/Vexp = 0.82 ± 0.12 and 0.80 ± 0.01 for beams of groups A and B, respectively. The shear capacities of the lightweight concrete beams tested by Abbadi (2018) were predicted with an average ratio Vpre/Vexp = 0.77 ± 0.05. Moreover, the model predicted well the shear capacities of the SFRC beams reinforced with BFRP bars tested by Awadallah et al. (2014) with an average ratio Vpre/Vexp = 0.89 ± 0.07. This indicates the wide range of applicability of the proposed model. However, it is recommended that the proposed model be assessed on larger set of data than that presented in this study
Breña, Sergio F. "Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004223.
Full textHosin, Alyass Azzat. "Fiber reinforced coal combustion products concrete /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1342743231&sid=11&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textValle, Mariano Oñar. "Shear transfer in fiber reinforced concrete." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/72749.
Full textAl-lami, Karrar Ali. "Experimental Investigation of Fiber Reinforced Concrete Beams." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2296.
Full textHearing, Brian Phillip 1972. "Delamination in reinforced concrete retrofitted with fiber reinforced plastics." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9141.
Full textIncludes bibliographical references (leaves 251-269).
The addition of fiber-reinforced plastic (FRP) laminates bonded to the tension face of concrete members is becoming an attractive solution to the rehabilitation and retrofit of damaged structural systems. Flexural strength is enhanced with this method but the failure behavior of the system can become more brittle, often involving delamination of the composite. This study investigates failure modes including delamination with the use of fiber reinforced plastics to rehabilitate various concrete structures. The focus is on delamination and its causes, specifically in the presence of existing cracks in the retrofitted concrete system. First, delamination processes in FRP retrofitted concrete systems are studied through combined experimental and analytical procedures. The delamination process is observed to initiate in the concrete substrate with micro cracks that coalesce into an unstable macro crack at failure. This macroscopic behavior is modeled through a finite element procedure with a smeared crack approach, which is found to be limited in the ability to represent the stress intensity at the delamination tip. For this reason it is shown that interfacial fracture mechanics can be used to describe the bimaterial elasticity and complex stress intensity at the delamination tip and provide a criterion governing the propagation of delamination using energy methods. Then, peeling processes occurring at existing cracks in the retrofitted system are studied through fracture mechanics based experimental and analytical procedures. An experimental program involving specialized shear notch specimens demonstrates that the location of the notch and laminate development length are influential on the shear crack peeling process. A finite element procedure is used to evaluate the crack driving forces applied at the shear notch crack mouth, and the fracture analysis is extended to evaluate initiation of peeling at the shear notch scenario. Finally, delamination failures in FRP retrofitted reinforced concrete beams representing "real-life" retrofit scenarios are investigated. An experimental and analytical program is conducted to investigate influences on the failure processes. The application of the fracture based peeling analysis to a quantitative design procedure is investigated, and a computational design aid to assist the iterative design procedure is developed.
by Brian Phillip Hearing.
Ph.D.
Altoubat, Salah Ahmed. "Early age stresses and creep-shrinkage interaction of restrained concrete." Full text available online (restricted access), 2000. http://images.lib.monash.edu.au/ts/theses/Altoubat.pdf.
Full textPaschalis, Spyridon A. "Strengthening of existing reinforced concrete structures using ultra high performance fiber reinforced concrete." Thesis, University of Brighton, 2017. https://research.brighton.ac.uk/en/studentTheses/c07ce9c7-5880-4108-a0f2-68bf6ea50dd5.
Full textElsaigh, W. A. "Steel fiber reinforced concrete ground slabs : a comparative evaluation of plain and steel fiber reinforced concrete ground slabs." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-03032006-154355/.
Full textScott, David Edward. "Characterization of fibrillated polypropylene and recycled waste fiber reinforced concrete." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/19543.
Full textAbbadi, Abdulrahman. "Shear contribution of fiber-reinforced lightweight concrete (FRLWC) reinforced with basalt fiber reinforced Polymer (BFRP) bars." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31848.
Full textThis study reports on the shear behavior of fiber-reinforced lightweight concrete (FRLWC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Ten beams (150x250x2400 mm) cast with concrete with and without fibers were tested under fourpoint loading configuration until failure occurred. Two beams were cast without fibers and acted as control while the other eight beams were cast with different types and percentages of fiber. The investigated parameters included the fiber type (basalt, polypropylene, and steel fibers), the fibers volume fraction (0, 0.5, and 1.0%), and the beams’ reinforcement ratios (0.95 and 1.37%). Comparison between the experimental results and the analytical models currently available in the literature was performed to assess the applicability of such models for LWC reinforced with BFRP bars. Based on the outcome of the current study, the geometry of fibers played an important role in increasing the number of cracks than those observed in the control beams. The addition of fibers led to a more ductile failure and the rate of crack opening was delayed. Crack width decreased with the increase of the longitudinal reinforcement ratios and the fibers’ volume fractions. Increasing the reinforcement ratio resulted in higher stiffness and decreased its deflection at all stages of loading. Beams cast with 1% of basalt, polypropylene, and steel fibers showed an increase in their shear capacities in compared to control beams about 11, 16, and 63%, respectively. The type of fibers significantly affected the gain in the shear capacities of the beams, which can be attributed to the different physical and mechanical properties of the fibers used such as aspect ratios, lengths, geometries, densities, and their bonding mechanisms. Beams cast with 0.5% steel fibers exhibited higher shear capacities than those cast with basalt and polypropylene fibers by 23 and 16%, respectively, whereas the beams cast with 1% steel fibers showed a gain by 47 and 41%, respectively. The predicted shear capacities according to CSA-S806-12 code provisions were conservative with an average ratio Vpred /Vexp of 0.80 (standard deviation, SD = 0.12) for beams without fibers. Good predictions for the shear capacities of the basalt-fiber reinforced concrete beams (BLWC) were provided by the models derived by Shin (1994) and Gopinath (2016) in which the ratios Vpred /Vexp were 1.34 (SD = 0.09) and 1.35 (SD = 0.07), respectively. Also, the model of Shin (1994) predicted well the shear capacities of the polypropylene-fiber reinforced concrete beams (PLWC) with a Vpred /Vexp ratio of 1.34 and SD of 0.18. The models of Gopinath (2016), Ashour A (1992), and Shin (1994) predicted the shear capacities of steel-fiber reinforced concrete beams (SLWC) fairly reasonable with a Vpred /Vexp ratio of 1.01 (SD = 0.06), 1.07 (SD = 0.01) and 1.20 (SD = 0.08), respectively. A new model was proposed to predict the shear capacities of FRWLC beams reinforced with BFRP longitudinal bars. The proposed model predicted well the shear capacities of BLWC beams with a Vpred /Vexp ratio of 1.01 (SD = 0.05) and those of PLWC beams with a Vpred /Vexp ratio of 0.99 (SD = 0.06). The bond factor and the interface bond matrix used were 0.75 and 4.18 MPa, respectively. The proposed model also predicted well the shear capacities of beams cast with SLWC with a Vpred /Vexp ratio of 0.9 when the bond factor and the interface bond matrix were taken equal to 1.00 and 6.8 MPa, respectively.
Krishnaswamy, Vijayarajan. "Durability of nanoclay FRP bars for concrete members." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4568.
Full textTitle from document title page. Document formatted into pages; contains xvi, 204 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 155-158).
Choi, Jeong-Hoon. "Design and short-term performance of continuously reinforced concrete pavements using glass fiber reinforced polymer rebars." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=6043.
Full textTitle from document title page. Document formatted into pages; contains xvii, 314 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 264-270).
Jiang, Liying. "Strain-hardening behavior of fiber reinforced concrete." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19709.
Full textSIMOES, LEONARDO CRAVEIRO. "A CONSTITUTIVE MODEL FOR FIBER REINFORCED CONCRETE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1511@1.
Full textNos últimos 40 anos, tem-se observado um crescente interesse por compósitos formados pela adição de fibras a matrizes de concreto, os chamados concretos reforçados com fibras. Esse interesse é justificado, sobretudo, pelo significativo ganho em tenacidade que as fibras proporcionam, atenuando as características frágeis do concreto. De fato, em virtude do mecanismo de reforço promovido pelas fibras, o concreto com fibras é capaz de absorver muito mais energia de deformação até a ruptura, apresentando, no regime pós-fissuração, um comportamento muito mais suave que o concreto simples. Esse comportamento é acompanhado por um processo de fissuração mais uniforme, no qual observam-se fissuras mais finas e menos espaçadas. Além disso, registram-se aumentos nos valores de resistência do material e nos níveis de deformação que ele atinge até seu completo esgotamento. Tendo em vista os benefícios que as fibras aportam ao desempenho do concreto, seu emprego seria recomendável a estruturas em que a ductilidade é um dos parâmetros principais de projeto, ou naquelas feitas com concretos de alta resistência, uma vez que estes apresentam um comportamento ainda mais frágil que os concretos de resistência normal. Além disso, a utilização de fibras no combate aos esforços de cisalhamento mostra-se extremamente vantajosa e promissora. Neste trabalho, apresenta-se um modelo constitutivo para concreto reforçado com fibras baseado na formulação hipoelástica de ELWI E MURRAY (1979), originalmente proposta para concreto simples. As especificidades do comportamento do concreto com fibras frente às mais diversas solicitações, tais como, tração, compressão e cisalhamento, são incorporadas ao modelo através de relações tensão-deformação adequadas a esse material. Tais relações provêm de estudos analíticos e experimentais sobre o assunto, publicados na literatura técnica especializada. O modelo assim obtido é implementado no programa FEPARCS (ELWI E MURRAY, 1980), capaz de realizar análises númericas não-lineares através do método dos elementos finitos. Por fim, utiliza-se esse program para simular a resposta de uma estrutura de concreto com fibras, cujo ensaio experimental aparece minuciosamente descrito em (CRAIG, 1987). Os resultados numéricos obtidos são comparados com os experimentais correspondentes, em termos da curva carga versus deslocamento, desenvolvimento e distribuição de fissuras, progressão do escoamento da armadura longitudinal (convencional) e modo de ruptura. Avalia-se, então, a eficiência da implementação realizada na descrição do comportamento de estruturas de concreto com fibras.
Along the past forty years, an increasing interest on composite materials formed by the addition of discrete fibers to a concrete matrix is being observed. These composites are known as fiber reinforced concretes. The interest on the use of fibers as reinforcement is justified by their significative contribution to concrete thoughness, as they reduce the brittle characteristics of that material. In fact, due to fiber reinforcement mechanism, fiber reinforced concrete can absorb much more strain energy until failure, in comparison to ordinary concrete. The cracking process seems to be more uniform, as the distance between cracks are reduced. Besides that, the material strength and the deformation levels at cracking and rupture are greater, on the case of fiber reinforced concrete. The benefits that fibers bring to concrete behavior indicate that they could be used as complementary reinforcent for concrete structures when ductility is a major design concern, or when high strength concrete is employed, as this class of material tends to be much more brittle then normal strength concrete. Fibers are also effective as shear reinforcement, and they could even replace stirrups in this function. In this work, a constituive model for fiber reinforced concrete is presented. This model is based on the formulation originally proposed by ELWI AND MURRAY (1979) for the case of ordinary concrete. The behavior characteristcs of fiber reinforced concrete are incorporated as adaquated uniaxial stress-strain relations in tension and compression. The behavior under shear stress is also considered. The model is then implemented in the finite element program FEPARCS (ELWI AND MURRAY, 1980). A numerical analysis on the response of a fiber reinforced concrete structure is conducted. Results reported in technical literature (CRAIG, 1987) are compared to those obtained by the finite element analysis. The efficiency of the model is then verified.
En los últimos 40 anos, se ha observado un creciente interés por compuestos formados por la adición de fibras a matrizes de concreto, los llamados concretos reforzados con fibras. Ese interés se debe a la significativa ganancia en tenacidad que las fibras proporcionan, atenuando las características frágiles del concreto. De hecho, en virtud del mecanismo de refuerzo promovido por las fibras, el concreto con fibras es capaz de absorver mucha más energía de deformación hasta la ruptura, presentando, en el régimen posfisuración, un comportamiento mucho más suave que el concreto simple. Este comportamiento se ve acompañado por un proceso de fisuración más uniforme, en el cual se observan fisuras más finas y menos espaciadas. Además, se registran aumentos en los valores de resistencia del material y en los niveles de deformación que alcanza hasta su completa destrucción. Teniedo en cuenta los beneficios que las fibras aportan al desempeño del concreto, sería recomendable su empleo en extructuras donde la ductilidad es uno de los parámetros principales de proyecto, o en aquellas hechas con concreto de alta resistencia, ya que éstos presentan un comportamiento más frágil que los concretos de resistencia normal. En este trabajo, se presenta un modelo constitutivo para concreto reforzado con fibras que tiene como base la formulación hipoelástica de ELWI Y MURRAY (1979), originalmente propuesta para concreto simple. Las especificidades del comportamiento del concreto con fibras frente a las más diversas solicitudes, tales como, tracción, compresión y cisallamiento, se incorporan al modelo a través de relaciones tensión-deformación adecuadas a ese material. Tales relaciones provienen de estudios analíticos y experimentales sobre el asunto, publicados en la literatura técnica especializada. La implementación del modelo obtenido fue realizada a través del programa FEPARCS (ELWI Y MURRAY, 1980), capaz de realizar análisis númerico no lineal a través del método de los elementos finitos. Por fin, se utiliza ese programa para simular la respuesta de una extructura de concreto con fibras, cuyo ensayo experimental aparece minuciosamente descrito en (CRAIG, 1987). Los resultados numéricos obtenidos se comparan con los experimentales correspondientes, considerando la curva carga versus deslocamiento, desarrollo y distribuición de fisuras, progresión del deslizamiento de la armadura longitudinal (convencional) y modo de ruptura. Se evalúa entonces, la eficiencia de la implementación en la descrición del comportamiento de extructuras de concreto con fibras.
Stacchini, Marco. "Meso-structural model for Fiber-Reinforced concrete." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1063/.
Full textKim, SangHun Aboutaha Riyad S. "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.
Full textFILHO, JULIO JERONIMO HOLTZ SILVA. "CARBON FIBER REINFORCED POLYMER TORSION STRENGTHENING OF REINFORCED CONCRETE BEAMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10658@1.
Full textEste estudo teórico-experimental analisa o comportamento até a ruptura de vigas de concreto armado reforçadas externamente à torção com compósitos de fibras de carbono (CFC). No programa experimental, sete vigas de concreto armado, com seção transversal de 20 cm x 40 cm e 420 cm de comprimento, com mesma armadura de aço longitudinal e transversal e concreto com mesma resistência à compressão, foram ensaiadas até a ruptura. As vigas testadas foram divididas em três séries, sendo uma viga de referência sem reforço, três vigas com reforço transversal externo e três vigas com reforço externo transversal e longitudinal. Para a realização dos ensaios foi montada uma estrutura auxiliar de aço capaz de transferir às vigas a solicitação de torção pura. No estudo teórico foram desenvolvidas duas formulações. A primeira formulação, baseada no modelo da treliça espacial generalizada com abrandamento de tensões, apresenta uma sistemática para traçado da curva momento torçor x ângulo de torção por unidade de comprimento de vigas de concreto armado reforçadas à torção. A segunda formulação, fundamentada no modelo da Analogia da Treliça Espacial de acordo com a filosofia de dimensionamento do Eurocode 2, apresenta uma sistemática para dimensionamento de reforço com CFC . As duas metodologias adotam um modelo para determinação da aderência entre o substrato de concreto e o reforço. A inclusão da aderência nos modelos desenvolvidos é de grande importância porque em geral a ruptura do elemento estrutural ocorre devido ao descolamento do CFC. Os resultados experimentais obtidos nos testes das vigas foram utilizados para validar as duas formulações teóricas desenvolvidas. Os resultados experimentais apresentaram boa aproximação quando comparados com os modelos propostos. Verificou-se que todas as vigas reforçadas apresentaram um acréscimo de resistência à torção em torno de 40% em relação à viga de referência. Verificou-se que, após a fissuração, as vigas reforçadas apresentaram perda de rigidez inferior à da viga de referência. Observou-se que o ângulo da fissura medido experimentalmente, o ângulo de inclinação calculado pelo estado de deformação e o ângulo de inclinação calculado pelo estado de tensão da viga apresentaram valores próximos para cada viga.
A theoretical-experimental research on the torsional behavior up to failure of reinforced concrete beams strengthened with external carbon fiber composites (CFC) was carried out. The experimental study comprises a series of seven reinforced concrete beams with the same compressive strength of concrete loaded to failure and subjected to torsion. The beams dimensions were 20 cm x 40 cm x 420 cm. The test specimens had the same internal steel reinforcement. The beams were divided in three series: the reference beam without strengthening; three beams with the external strengthening applied transversally and three beams with the external strengthening applied transversally and longitudinally. For the accomplishment of the tests an auxiliary steel structure was mounted, capable to transfer to the beams the pure torsion moment. In the theoretical study two analytical procedures were developed. The first formulation, based on the softened space truss model for torsion, presents a systematic to obtain the curve torsion moment x torsion angle per length unit of the reinforced concrete beams with CFC torsion strengthening. The second systematic, based on the Space Truss Model in accordance with the Eurocode 2, presents the design of the CFC strengthening. Both methodologies adopt the Chen and Teng bond model between concrete and CFC. The consideration of the bond in the developed models is very important because the failure of the concrete members often occurs from debonding of the CFC. The experimental results from the beams tests were used to validate the two analytical procedures. Good agreement was obtained with the experimental and analytical results. For all the strengthened beams the average values of torsion strength were increased by 40% when compared to the reference beam. After cracking, the loss of rigidity in the strengthened beams was lower then in the reference beam. The cracking angle experimentally measured and the strut angles evaluated by strain state and stress state presented close values.
Kodkani, Shilpa. "Interface durability of externally bonded GFRP to normal and high-performance concrete." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3601.
Full textTitle from document title page. Document formatted into pages; contains xiii, 147 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 141-147).
Kalluri, Rajesh K. "Bending behavior of concrete T-beams reinforced with glass fiber reinforced polymer (GFRP) bars." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1147.
Full textTitle from document title page. Document formatted into pages; contains xi, 100 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 96-99).
Tung, Wang Kei. "FRP debonding from concrete substrate : theoretical and experimental approach /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202002%20TUNG.
Full textIncludes bibliographical references (leaves 109-110). Also available in electronic version. Access restricted to campus users.
Lau, Tak-bun Denvid. "Flexural ductility improvement of FRP-reinforced concrete members." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38907756.
Full textPan, Jinlong. "Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams : experimental and theoretical analysis /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20PAN.
Full textBaczkowski, Bartlomiej Jan. "Steel fibre reinforced concrete coupling beams /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202007%20BACZKO.
Full textThomas, Jeff Scott. "Plastic fiber rolling for concrete reinforcement." Diss., Rolla, Mo. : University of Missouri-Rolla, 1996. http://scholarsmine.mst.edu/thesis/pdf/Thomas_09007dcc805b0f25.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 24, 2008) Includes bibliographical references (p. 117-118).
Boyd, Andrew James. "Rehabilitation of reinforced concrete beams with sprayed glass fiber reinforced polymers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61068.pdf.
Full textSheats, Matthew Reed. "Rehabilitation of reinforced concrete pier caps using carbon fiber reinforced composites." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19490.
Full textBOY, SERPIL. "RETROFIT OF EXISTING REINFORCED CONCRETE BRIDGES WITH FIBER REINFORCED POLYMER COMPOSITES." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1078508332.
Full textIshtewi, Ahmad M. "Shear Capacity of Fiber-Reinforced Concrete Under Pure Shear." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354725447.
Full textTsang, Terry Kin Chung. "Behaviour of concrete beams reinforced with hybrid FRP composite rebars /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20TSANGT.
Full textVijay, P. V. "Aging and design of concrete members reinforced with GFRP bars." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=720.
Full textTitle from document title page. Document formatted into pages; contains xxvii, 205 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 188-205).
Lau, Tak-bun Denvid, and 劉特斌. "Flexural ductility improvement of FRP-reinforced concrete members." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38907756.
Full textDeng, Jiangang. "Durability of carbon fiber reinforced polymer (CFRP) repair/strengthening concrete beams." Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1663060011&sid=2&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textTomblin, Josh. "Buried FPR-Concrete Arches." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/TomblinJX2006.pdf.
Full textPros, Parés Alba. "Numerical approach for modeling steel fiber reinforced concrete." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/83724.
Full textZhang, Lihe. "Impact resistance of high strength fiber reinforced concrete." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/705.
Full textGarbis, Leonidia Maria. "Natural fiber reinforced aerated concrete : an experimental investigation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82813.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 51-52).
The purpose of this study is to compare existing research with aerated concrete and fiber reinforcement to original experiments completed investigating the benefits of adding natural fiber tensile reinforcement to aerated concrete. Concrete is a great composite material which can be created in various proportions and with various materials to alter its strength, density and porosity, amongst other properties. Concrete which is used commonly in construction of columns, beams, and slabs acts well in compression but fails under tension. The common solution is to reinforce the structure in areas where it experiences tension with steel. There are other materials besides steel which also take tension well. Natural fibers for example come in various strengths and types and would create lighter and perhaps more sustainable beam designs. Natural fibers have been used for their availability, workability, and high tensile strengths for centuries. This research discovers that the compressive strength of this cellular material can support the construction of a small structure, assuming accuracy of previous experimental results. These previous experiments discover how the natural fibers distribute within the mixture and how they affect the aeration of the concrete, as well as how they affect the strength. Multiple samples are cured with different fiber types and in different proportions within the mixture. Furthermore, similar experimentation is conducted to discover an ideal ratio of aggregate to aerated concrete mix. The aggregate gives the concrete greater strength and economy, but could negatively affect the aeration. The various concrete mixes are poured and allowed to cure to maximum strength before indirect tensile tests and compression tests are conducted. The effects of creating smooth aerated concrete molds are also investigated. All experiments conducted are precursory to an ultimate tensile reinforced aerated concrete beam design with an aggregate mix and smooth surfaces.
by Leonidia Maria Garbis.
M.Eng.
Sasher, William C. "Testing, assessment and FRP strengthening of concrete T-beam bridges in Pennsylvania." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5876.
Full textTitle from document title page. Document formatted into pages; contains viii, 177 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 130-136).
Lau, Shuk-lei. "Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B32001630.
Full textSCHWARTZ, CHRIS J. "STRUCTURAL INVESTIGATION OF A FIBER REINFORCED PRECAST CONCRETE BOX CULVERT." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1121016977.
Full textAguiniga, Gaona Francisco. "Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/61.
Full textRoss, Jason Donald. "Analytical models for reinforced concrete columns retrofitted with fiber-reinforced polymer composites." Connect to resource, 2007. http://hdl.handle.net/1811/25128.
Full textTitle from first page of PDF file. Document formatted into pages: contains 67 p.; also includes graphics. Includes bibliographical references (p. 60-62). Available online via Ohio State University's Knowledge Bank.
Nunes, Nelson Lúcio. "Contribuição para a aplicação do concreto reforçado com fibras de aço em elementos de superfície restringidos." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-04052006-170328/.
Full textThis work presents a study for crack prediction and use of steel fibers to crack control in concrete surface elements submitted to tension stress induced by restrained shrinkage. In this study, a method was developed where a certain steel fiber type could be quantified, as function of concrete matrix shrinkage potential and maximum crack width, determined from human sensorial and durability criteria. Afterwards, an experimental program was done in order to characterize the crack potential of concrete matrices commonly used in surface elements. In this program, a method to predict tension stress induced by restrained shrinkage, at first crack moment, was tested. In the final step of this work, another experimental program was done, where steel fiber reinforced concrete (SFRC) tracks were built, with fiber contents of 10 kg/m3, 30 kg/m3 and 60 kg/m3, over substrates with two restriction conditions: smooth surface and rough surface, with exposition of surface aggregates. Lengths and widths of the early age shrinkage cracks in the tracks were monitored. The results obtained in this program were useful to analyze the method, adjusting it with the consideration of characteristic values in prediction of tension strength. With this adjust, experimental crack width results were more compatible with 90% confidence interval for crack width values predicted by the method. With this study, the goal was the contribution to use SFRC in the control of restrained shrinkage cracks in surface elements, amplifying the knowledge border in the aspect of fiber selection and proportioning, for a determined and expected performance in terms of crack width.
Laranjeira, de Oliveira Filipe. "Design-oriented constitutive model for steel fiber reinforced concrete." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6174.
Full textEl cosido de las fibras de acero en las fisuras mejora la tenacidad y la durabilidad del hormigón. El HRFA es un material que, generalmente, presenta una resistencia residual a tracción en régimen fisurado. Sin embargo, en algunas situaciones, el HRFA puede desarrollar endurecimiento en flexotracción debido a su aptitud en redistribuir esfuerzos en la sección de fisura. Estas características vienen contribuyendo para un interés creciente así como un incremento del número de aplicaciones de este material.
En esta tesis doctoral se desarrolla un método directo y lógico para predecir la respuesta a tracción del HRFA para el diseño estructural. Mientras que la comprensión del comportamiento del material se consigue por medio de una investigación experimental, la formulación del nuevo modelo constitutivo se obtiene con un estudio segmentado del comportamiento del material en niveles de menor complejidad y, en seguida, con la caracterización de cada uno de ellos hasta conseguir explicar la respuesta a tracción del HRFA.
Esta tesis está dividida en cinco partes principales: I) Identificación de las motivaciones. II) Obtención de resultados a tracción uniaxial para comprender los principales mecanismos que controlan la resistencia pos-fisuración. III) Desarrollo de dos modelos para predecir la respuesta al arrancamiento de fibras de acero inclinadas, que cubren fibras rectas y con ganchos. IV) Investigación detallada de la orientación de las fibras al nivel individual mediante análisis estadísticos. Luego, aspectos prácticos asociados al proceso de producción son integrados en una metodología innovadora para predecir la orientación de las fibras. V) Formulación y validación del nuevo modelo constitutivo, con base en las Partes III y IV, con los resultados experimentales de la Parte II. El comportamiento a tracción se evalúa mediante un estudio paramétrico y se proponen expresiones ingenieriles para el diseño y optimización (EEDO).
El modelo constitutivo propuesto se distingue de estudios anteriores en varios aspectos y define una nueva filosofía para el diseño de elementos de HRFA. Este modelo es un método directo y práctico para obtener el comportamiento a tracción del material mediante parámetros con sentido físico y basado en conceptos claros: arrancamiento y orientación de las fibras.
Una de las principales aportaciones de este trabajo es la capacidad de predecir curvas tensión-apertura de fisura que reflejan una combinación específica de las propiedades de la matriz y de las fibras empleadas. Además, se introduce una filosofía innovadora en el diseño debido a la incorporación del proceso de producción, las propiedades en estado fresco y el elemento a construir en la definición del diagrama constitutivo.
In the last years, the industry has been demanding for the use of steel fiber reinforced concrete (SFRC) in structural applications. Because the post-cracking strength of this material is not negligible, the crack-bridging capacity provided by fibers may replace, partial or completely, conventional steel reinforcement. Therefore, an appropriate characterization of the SFRC uniaxial tensile behavior is of paramount interest. However, in spite of the extensive research and standards recently advanced, there is no agreement on the constitutive model to be used for the design of SFRC.
The crack-bridging capacity provided by steel fibers improves both the toughness and the durability of concrete. Conventional SFRC is a material which presents softening response under uniaxial tension, but may develop hardening behavior in bending due to its ability to redistribute stresses within the crosssection.
These evidences have been contributing to an increasing interest and growing number of applications of this material.
In this doctoral thesis, a direct and rationale approach to predict the tensile response of SFRC for structural design calculations is developed. While insight on the material behavior is firstly gained through an experimental investigation, the formulation of the new constitutive model follows a bottomup approach: it fragments the material's behavior into levels of smaller complexity and then models each of them until the overall behavior can be explained.
The dissertation is subdivided into five main parts: I) The motivations for this research project are pointed out. II) Uniaxial tensile test results are obtained to understand the major mechanisms governing the post-cracking strength. III) Two models predicting the pullout responses of inclined steel fibers are developed, covering straight and hooked fibers. IV) The orientation of fibers is investigated in detail at the single fiber level through statistical analyses. Then, practical aspects associated to the manufacturing process are integrated within a novel framework to predict fiber orientation. V) Based on Parts III-IV, the new constitutive model is formulated and validated with experimental results from Part II. Further insight on the tensile behavior is gained through a parametric study and Engineered Expressions for Design and Optimization (EEDO) are proposed.
The proposed design-oriented constitutive model differentiates itself from previous studies in multiple aspects and defines a new philosophy for the design of SFRC elements. This model provides a direct and practical procedure to obtain the material's tensile behavior by means of parameters with physical meaning and based on clear concepts: fiber pullouts and orientations.
One of the major contributions of this work is the ability to predict the stress-crack width curves that reflect the specific combination of the properties of the matrix and fibers applied. Furthermore, it introduces a novel philosophy for the material design regarding that the influences of the production process, fresh-state properties and the element to be built are taken into account to define the constitutive diagram.
Yurtseven, Alp Eren. "Determination Of Mechanical Properties Of Hybrid Fiber Reinforced Concrete." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605268/index.pdf.
Full textzgü
r Yaman August 2004, 82 pages Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinforced concrete. For this purpose nine mixes, one plain control mix and eight fiber reinforced mixes were prepared. Six of the mixes were reinforced in a hybrid form. Four different types of fibers were used in combination, two of which were macro steel fibers, and the other two were micro fibers. Volume percentage of fiber inclusion was kept constant at 1.5%. In hybrid reinforced mixes volume percentage of macro fibers was 1.0% whereas the remaining fiber inclusion was v composed of micro fibers. Slump test was carried out for each mix in the fresh state. 28-day compressive strength, flexural tensile strength, flexural toughness, and impact resistance tests were performed in the hardened state. Various numerical analyses were carried out to quantify the determined mechanical properties and to describe the effects of fiber inclusion on these mechanical properties. Keywords: Fiber Reinforcement, Hybrid Composite, Toughness, Impact Resistance
Zanganeh, Mehdi. "Mechanical properties of fiber reinforced concrete with ACM applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0013/MQ52021.pdf.
Full textWytroval, Tanner L. "Bearing strength of nodes confined by fiber reinforced concrete." Thesis, Northern Arizona University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1537822.
Full textIn many structural concrete applications, loaded areas are surrounded by steel reinforcement or additional concrete in order to triaxially confine the region. This confinement effectively increases the local bearing strength and ductility. However, this is typically accomplished at the expense of increasing steel congestion and/or providing an inefficient amount of additional concrete. One way of alleviating these complications may be by confining loaded areas with steel fiber reinforced concrete (SFRC). Provisions within ACI 318-11 allow for an increase in the effective bearing strength of concrete based on the ratio of the loaded area to the overall area. However, there has not been a study of the confining capability of SFRC when the loaded area is smaller than the surrounding area. The study presented in this thesis addresses this need.
The current research project examines the influence of SFRC on the bearing strength of triaxially confined nodal regions. As part of this evaluation, twenty-four 12..24-inch cylindrical specimens were loaded to failure through 6- and 3-inch diameter bearing plates. Experimental variables include transverse reinforcement ratios ranging between 0 and 0.80 percent, and steel fiber dosages between 0 and 1.5 percent by volume. Specimens were uniaxially loaded to failure while displacement and load data was recorded.
Song, Fanbing [Verfasser]. "Steel Fiber Reinforced Concrete Under Concentrated Load / Fanbing Song." Aachen : Shaker, 2017. http://d-nb.info/1138178888/34.
Full textGuirola, Marcela Renee. "Strength and Performance of Fiber-Reinforced Concrete Composite Slabs." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35431.
Full textMaster of Science
BRODOWSKI, DAVID MICHAEL. "APPLICATION OF STEEL FIBER REINFORCED CONCRETE TO BURIED STRUCTURES." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1123510082.
Full text