Academic literature on the topic 'Reinforced concrete Fiber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforced concrete Fiber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reinforced concrete Fiber"
Jagtap, Siddhant Millind, Shailesh Kalidas Rathod, Rohit Umesh Jadhav, Prathamesh Nitin Patil, Atharva Shashikant Patil, Ashwini M. Kadam, and P. G. Chavan. "Fibre Mesh in Reinforced Slabs." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 3539–40. http://dx.doi.org/10.22214/ijraset.2022.42986.
Full textKrishnan, Arsha, and V. N. Krishnachandran. "Coir Fiber Reinforced Concrete-Review." International Journal for Research in Applied Science and Engineering Technology 10, no. 9 (September 30, 2022): 568–71. http://dx.doi.org/10.22214/ijraset.2022.46677.
Full textYang, Qiao-chu, Qin Zhang, Su-su Gong, and San-ya Li. "Study on the flexure performance of fine concrete sheets reinforced with textile and short fiber composites." MATEC Web of Conferences 275 (2019): 02006. http://dx.doi.org/10.1051/matecconf/201927502006.
Full textHua, Yuan, and Tai Quan Zhou. "Experimental Study of the Mechanical Properties of Hybrid Fiber Reinforced Concrete." Materials Science Forum 610-613 (January 2009): 69–75. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.69.
Full textBhoi, Ghanshyam, Vinay Pate, and Mahesh Ram Patel. "Study on the Effect of Glass Fibre Reinforced Concrete and Concrete Tiles Reinforced Concrete." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 2564–69. http://dx.doi.org/10.22214/ijraset.2022.42753.
Full textShan, Liang, and Liang Zhang. "Experimental Study on Mechanical Properties of Steel and Polypropylene Fiber-Reinforced Concrete." Applied Mechanics and Materials 584-586 (July 2014): 1355–61. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1355.
Full textBerestianskaya, Svitlana, Evgeniy Galagurya, Olena Opanasenko, Anastasiia Berestianskaya, and Ihor Bychenok. "Experimental Studies of Fiber-Reinforced Concrete Prisms Exposed to High Temperatures." Key Engineering Materials 864 (September 2020): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.864.3.
Full textChaichannawatik, Bhawat, Athasit Sirisonthi, Qudeer Hussain, and Panuwat Joyklad. "Mechanical Properties of Fiber Reinforced Concrete." Applied Mechanics and Materials 875 (January 2018): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amm.875.174.
Full textFedorov, Valeriy, and Aleksey Mestnikov. "Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete." MATEC Web of Conferences 143 (2018): 02008. http://dx.doi.org/10.1051/matecconf/201814302008.
Full textSyamsir, A., S. M. Mubin, N. M. Nor, V. Anggraini, S. Nagappan, A. M. Sofan, and Z. C. Muda. "Effect of combined drink cans and steel fibers on the impact resistance and mechanical properties of concrete." Journal of Mechanical Engineering and Sciences 14, no. 2 (June 22, 2020): 6734–42. http://dx.doi.org/10.15282/jmes.14.2.2020.15.0527.
Full textDissertations / Theses on the topic "Reinforced concrete Fiber"
Hamed, Sarah. "Shear Contribution of Basalt Fiber-Reinforced Concrete Reinforced with Basalt Fiber-Reinforced Polymer Bars." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34008.
Full textThis study evaluates both experimentally and analytically the shear behavior of basalt fiber-reinforced concrete (BFRC) beams reinforced longitudinally with basalt fiber-reinforced polymer (BFRP) bars. A new type of basalt macro-fibers was added to the concrete mix to produce the BFRC mix. Fourteen beams (152 x 254 x 2000 mm) with no transverse reinforcement provided were tested under four-point loading configuration until failure occurred. The beams were grouped in two groups A and B depending on their span-to-depth ratios, a/d. Beams of group A had a ratio a/d of 3.3 while those of group B had a ratio a/d of 2.5. Besides the span-to-depth ratios, the parameters investigated included the volume fraction of the fibers added (0.75 and 1.5%) and the longitudinal reinforcement ratio of the BFRP reinforcing bars (0.31, 0.48, 0.69, 1.05, and 1.52). The test results showed that the addition of basalt macro-fibers to the concrete mix enhanced its compressive strength. A direct relationship between the fiber volume fraction, Vf, and the compressive strength was observed. Concrete cylinders cast with Vf of 0.75 and 1.5% yielded 11 and 30% increase in their compressive strengths over those cast with plain concrete, respectively. The addition of fibers greatly enhanced the shear capacity of BFRC-BFRP beams compared to their control beams cast with plain concrete. The increase of the fiber volume fraction decreased the spacing between cracks and hindered its propagation. A significant enhancement in the shear capacities of the tested beams was also observed when the basalt macro-fibers were added at a volume fraction Vf of 0.75%. The average increase in the shear capacities of beams of group A and B, having the same reinforcement ratios, were 45 and 44%, respectively, in comparison with those of the control beams. It was noticed that the gain in shear capacities of the tested beams was more pronounced in beams with a/d = 3.3 than in beams with a/d = 2.5 when the reinforcement ratio increased. In the analytical phase, several models were used to predict the shear capacities of the beams. All of the available models overestimated the shear capacities of the tested beams with average ratio Vpre/Vexp ranging between 1.29 to 2.64. This finding indicated that these models were not suitable to predict the shear capacities of the BFRC-BFRP beams. A new modified model incorporating the type of the longitudinal reinforcement, the type of FRC used, and the density of concrete is proposed. The model of Ashour et al. –A (1992) was calibrated using a calibration factor equal to the ratio of modulus of FRP bars used, Ef, and that of steel bars, Es. This ratio takes into consideration the difference in properties between the FRP and steel bars, which was overlooked by previous models. The proposed model predicted well the shear capacities of the BFRC-BFRP beams tested in the current study with average ratios Vpre/Vexp = 0.82 ± 0.12 and 0.80 ± 0.01 for beams of groups A and B, respectively. The shear capacities of the lightweight concrete beams tested by Abbadi (2018) were predicted with an average ratio Vpre/Vexp = 0.77 ± 0.05. Moreover, the model predicted well the shear capacities of the SFRC beams reinforced with BFRP bars tested by Awadallah et al. (2014) with an average ratio Vpre/Vexp = 0.89 ± 0.07. This indicates the wide range of applicability of the proposed model. However, it is recommended that the proposed model be assessed on larger set of data than that presented in this study
Breña, Sergio F. "Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004223.
Full textHosin, Alyass Azzat. "Fiber reinforced coal combustion products concrete /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1342743231&sid=11&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textValle, Mariano Oñar. "Shear transfer in fiber reinforced concrete." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/72749.
Full textAl-lami, Karrar Ali. "Experimental Investigation of Fiber Reinforced Concrete Beams." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2296.
Full textHearing, Brian Phillip 1972. "Delamination in reinforced concrete retrofitted with fiber reinforced plastics." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9141.
Full textIncludes bibliographical references (leaves 251-269).
The addition of fiber-reinforced plastic (FRP) laminates bonded to the tension face of concrete members is becoming an attractive solution to the rehabilitation and retrofit of damaged structural systems. Flexural strength is enhanced with this method but the failure behavior of the system can become more brittle, often involving delamination of the composite. This study investigates failure modes including delamination with the use of fiber reinforced plastics to rehabilitate various concrete structures. The focus is on delamination and its causes, specifically in the presence of existing cracks in the retrofitted concrete system. First, delamination processes in FRP retrofitted concrete systems are studied through combined experimental and analytical procedures. The delamination process is observed to initiate in the concrete substrate with micro cracks that coalesce into an unstable macro crack at failure. This macroscopic behavior is modeled through a finite element procedure with a smeared crack approach, which is found to be limited in the ability to represent the stress intensity at the delamination tip. For this reason it is shown that interfacial fracture mechanics can be used to describe the bimaterial elasticity and complex stress intensity at the delamination tip and provide a criterion governing the propagation of delamination using energy methods. Then, peeling processes occurring at existing cracks in the retrofitted system are studied through fracture mechanics based experimental and analytical procedures. An experimental program involving specialized shear notch specimens demonstrates that the location of the notch and laminate development length are influential on the shear crack peeling process. A finite element procedure is used to evaluate the crack driving forces applied at the shear notch crack mouth, and the fracture analysis is extended to evaluate initiation of peeling at the shear notch scenario. Finally, delamination failures in FRP retrofitted reinforced concrete beams representing "real-life" retrofit scenarios are investigated. An experimental and analytical program is conducted to investigate influences on the failure processes. The application of the fracture based peeling analysis to a quantitative design procedure is investigated, and a computational design aid to assist the iterative design procedure is developed.
by Brian Phillip Hearing.
Ph.D.
Altoubat, Salah Ahmed. "Early age stresses and creep-shrinkage interaction of restrained concrete." Full text available online (restricted access), 2000. http://images.lib.monash.edu.au/ts/theses/Altoubat.pdf.
Full textPaschalis, Spyridon A. "Strengthening of existing reinforced concrete structures using ultra high performance fiber reinforced concrete." Thesis, University of Brighton, 2017. https://research.brighton.ac.uk/en/studentTheses/c07ce9c7-5880-4108-a0f2-68bf6ea50dd5.
Full textElsaigh, W. A. "Steel fiber reinforced concrete ground slabs : a comparative evaluation of plain and steel fiber reinforced concrete ground slabs." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-03032006-154355/.
Full textScott, David Edward. "Characterization of fibrillated polypropylene and recycled waste fiber reinforced concrete." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/19543.
Full textBooks on the topic "Reinforced concrete Fiber"
Singh, Harvinder. Steel Fiber Reinforced Concrete. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2507-5.
Full textVares, Sirje. Cellulose fibre concrete. Espoo, Finland: Technical Research Centre of Finland, 1997.
Find full textTrue, Graham. GRC production & uses. London: Palladian, 1986.
Find full textHandbook of fiber-reinforced concrete: Principles properties, developments and applications. Park Ridge, N.J., U.S.A: Noyes Publications, 1990.
Find full textRabinovich, F. N. Dispersno armirovannye betony. Moskva: Stroĭizdat, 1989.
Find full textSidney, Diamond, Prestressed Concrete Institute, American Ceramic Society, American Concrete Institute, and Materials Research Society, eds. Proceedings-- Durability of Glass Fiber Reinforced Concrete Symposium, November 12-15, 1985, Holiday Inn Mart Plaza, Chicago, Illinois. Chicago, Ill: PCI, 1986.
Find full textVares, Sirje. Fibre-reinforced high-strength concrete. Espoo, Finland: Technical Research Centre of Finland, 1993.
Find full textNarendra, Taly, and Vijay P. V, eds. Reinforced concrete design with FRP composites. Boca Raton: CRC Press, 2007.
Find full textGangaRao, Hota V. S. Reinforced concrete design with FRP composites. Boca Raton: CRC Press, 2007.
Find full textConcretes with dispersed reinforcement. Rotterdam: A.A. Balkema, 1995.
Find full textBook chapters on the topic "Reinforced concrete Fiber"
Yao, Jialiang, Zhigang Zhou, and Hongzhuan Zhou. "Steel Fiber Reinforced Concrete." In Highway Engineering Composite Material and Its Application, 51–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6068-8_3.
Full textFerrara, Liberato. "Fiber Reinforced SCC." In Mechanical Properties of Self-Compacting Concrete, 161–219. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_6.
Full textRamesh, M., C. Deepa, and Arivumani Ravanan. "Bamboo Fiber Reinforced Concrete Composites." In Bamboo Fiber Composites, 127–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8489-3_8.
Full textUmair, Muhammad, Muhammad Imran Khan, and Yasir Nawab. "Green Fiber-Reinforced Concrete Composites." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 2309–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_113.
Full textMakul, Natt. "Principles of Fiber-Reinforced Concrete." In Structural Integrity, 79–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69602-3_4.
Full textUmair, Muhammad, Muhammad Imran Khan, and Yasir Nawab. "Green Fiber-Reinforced Concrete Composites." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_113-1.
Full textJi, Guomin, Terje Kanstad, and Steinar Trygstad. "Structural behavior of fiber reinforced concrete foundations." In Computational Modelling of Concrete and Concrete Structures, 264–74. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003316404-32.
Full textPanchenko, L. A. "Concrete and Fiber-Reinforced Concrete in a Cage Made of Polymers Reinforced with Fibers." In Lecture Notes in Civil Engineering, 131–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54652-6_20.
Full textLitewka, A., J. Bogucka, and J. Dębiński. "Anisotropic Behaviour of Damaged Concrete and Fiber Reinforced Concrete." In Anisotropic Behaviour of Damaged Materials, 185–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36418-4_6.
Full textGeorge, Rose Mary, Bibhuti Bhusan Das, and Sharan Kumar Goudar. "Durability Studies on Glass Fiber Reinforced Concrete." In Lecture Notes in Civil Engineering, 747–56. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3317-0_67.
Full textConference papers on the topic "Reinforced concrete Fiber"
Ramkumar, S. "Shear Behaviour of Fiber Reinforced Concrete Beams Using Steel and Polypropylene Fiber." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-21.
Full textRamakrishnan, S. "Comparative Study on the Behavior of Fiber Reinforced Concrete." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-13.
Full text"Steel-Fiber Reinforced Polymer Concrete." In SP-137: Polymer Concrete. American Concrete Institute, 1993. http://dx.doi.org/10.14359/4296.
Full textCauberg, N. "Fiber reinforced self-compacting concrete." In SCC'2005-China - 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. RILEM Publications SARL, 2005. http://dx.doi.org/10.1617/2912143624.051.
Full textAnas, Muhammad, Majid Khan, Hazrat Bilal, Shantul Jadoon, and Muhammad Nadeem Khan. "Fiber Reinforced Concrete: A Review." In ICEC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/engproc2022022003.
Full text"Fiber Reinforced Polymer Reinforcement for Concrete Structures." In SP-188: 4th Intl Symposium - Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5619.
Full text"Strengthening Concrete Masonry with Fiber Reinforced Polymers." In SP-188: 4th Intl Symposium - Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5699.
Full text"Ultra High Performance Reinforced Concrete." In SP-142: Fiber Reinforced Concrete Developments and Innovations. American Concrete Institute, 1994. http://dx.doi.org/10.14359/1193.
Full text"Constitutive Modeling of Fiber Reinforced Concrete." In SP-142: Fiber Reinforced Concrete Developments and Innovations. American Concrete Institute, 1994. http://dx.doi.org/10.14359/3963.
Full text"Structural Reliability for Fiber Reinforced Polymer Reinforced Concrete Structures." In SP-188: 4th Intl Symposium - Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5679.
Full textReports on the topic "Reinforced concrete Fiber"
Al-lami, Karrar. Experimental Investigation of Fiber Reinforced Concrete Beams. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2293.
Full textWeiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.
Full textBrady, Pamalee A., and Orange S. Marshall. Shear Strengthening of Reinforced Concrete Beams Using Fiber-Reinforced Polymer Wraps. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada359462.
Full textRagalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.
Full textBank, Lawrence C., Anthony J. Lamanna, James C. Ray, and Gerardo I. Velazquez. Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber-Reinforced Polymeric Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400415.
Full textMacFarlane, Eric Robert. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1360687.
Full textBurchfield, Charles. Performance assessment of discontinuous fibers in fiber-reinforced concrete : current state-of-the-art. Geotechnical and Structures Laboratory (U.S.), July 2017. http://dx.doi.org/10.21079/11681/22771.
Full textGrimes, Hartley Ray. The Longitudinal Shear Behavior of Carbon Fiber Grid Reinforced Concrete Toppings. Precast/Prestressed Concrete Institute, 2009. http://dx.doi.org/10.15554/pci.rr.comp-010.
Full textHiggins, Christopher. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface Bonded Carbon Fiber-Reinforced Polymer. Portland State University Library, May 2009. http://dx.doi.org/10.15760/trec.21.
Full textStarnes, Monica A., and Nicholas J. Carino. Infrared thermography for nondestructive evaluation of fiber reinforced polymer composites bonded to concrete. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.6949.
Full text