Journal articles on the topic 'Regulation function'

To see the other types of publications on this topic, follow the link: Regulation function.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Regulation function.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pandit, Abha, and Abhay Kumar Pandey. "Glycaemic regulation and metabolic syndrome: A reference to thyroid function state." Scholars Journal of Applied Medical Sciences 4, no. 6 (June 2016): 1906–8. http://dx.doi.org/10.21276/sjams.2016.4.6.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakamura, Ichiro, Naoyuki Takahashi, Eijiro Jimi, Nobuyuki Udagawa, and Tatsuo Suda. "Regulation of osteoclast function." Modern Rheumatology 22, no. 2 (April 2012): 167–77. http://dx.doi.org/10.3109/s10165-011-0530-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, T., and J. V. Garcia. "Regulation of Nef function." Research in Virology 148, no. 1 (January 1997): 64–68. http://dx.doi.org/10.1016/s0923-2516(97)81916-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Noonan, Emily, Robert Place, Charles Giardina, and Lawrence Hightower. "Hsp70B' Regulation and Function." Cell Stress & Chaperones preprint, no. 2007 (2005): 1. http://dx.doi.org/10.1379/csc-278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noonan, Emily J., Robert F. Place, Charles Giardina, and Lawrence E. Hightower. "Hsp70B′ regulation and function." Cell Stress & Chaperones 12, no. 3 (2007): 219. http://dx.doi.org/10.1379/csc-278.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noonan, Emily J., Robert F. Place, Charles Giardina, and Lawrence E. Hightower. "Hsp70B′ regulation and function." Cell Stress & Chaperones 12, no. 4 (2007): 393. http://dx.doi.org/10.1379/csc-278e.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Suda, Tatsuo, Ichiro Nakamura, Eijiro Jimi, and Naoyuki Takahashi. "Regulation of Osteoclast Function." Journal of Bone and Mineral Research 12, no. 6 (June 1, 1997): 869–79. http://dx.doi.org/10.1359/jbmr.1997.12.6.869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zajac, J. D. "Regulation of parathyroid function." Bone 27, no. 4 (October 2000): 7. http://dx.doi.org/10.1016/s8756-3282(00)80017-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marcu, Kenneth B., Steven A. Bossone, and Amanda J. Patel. "myc Function and Regulation." Annual Review of Biochemistry 61, no. 1 (June 1992): 809–58. http://dx.doi.org/10.1146/annurev.bi.61.070192.004113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woods, Douglas B., and Karen H. Vousden. "Regulation of p53 Function." Experimental Cell Research 264, no. 1 (March 2001): 56–66. http://dx.doi.org/10.1006/excr.2000.5141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Waller-Evans, Helen, and Emyr Lloyd-Evans. "Regulation of TRPML1 function." Biochemical Society Transactions 43, no. 3 (June 1, 2015): 442–46. http://dx.doi.org/10.1042/bst20140311.

Full text
Abstract:
TRPML1 is a ubiquitously expressed cation channel found on lysosomes and late endosomes. Mutations in TRPML1 cause mucolipidosis type IV and it has been implicated in Alzheimer's disease and HIV. However, the mechanisms by which TRPML1 activity is regulated are not well understood. This review summarizes the current understanding of TRPML1 activation and regulation.
APA, Harvard, Vancouver, ISO, and other styles
12

Goda, Yukiko, and Bernardo L. Sabatini. "Synaptic function and regulation." Current Opinion in Neurobiology 21, no. 2 (April 2011): 205–7. http://dx.doi.org/10.1016/j.conb.2011.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sánchez-Mateos, Paloma, Carlos Cabañas, and Francisco Sánchez-Madrid. "Regulation of integrin function." Seminars in Cancer Biology 7, no. 3 (June 1996): 99–109. http://dx.doi.org/10.1006/scbi.1996.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Eisenreich, Andreas. "Regulation of Vascular Function on Posttranscriptional Level." Thrombosis 2013 (October 31, 2013): 1–10. http://dx.doi.org/10.1155/2013/948765.

Full text
Abstract:
Posttranscriptional control of gene expression is crucial for regulating plurality of proteins and functional plasticity of the proteome under (patho)physiologic conditions. Alternative splicing as well as micro (mi)RNA-mediated mechanisms play an important role for the regulation of protein expression on posttranscriptional level. Both alternative splicing and miRNAs were shown to influence cardiovascular functions, such as endothelial thrombogenicity and the vascular tone, by regulating the expression of several vascular proteins and their isoforms, such as Tissue Factor (TF) or the endothelial nitric oxide synthase (eNOS). This review will summarize and discuss the latest findings on the (patho)physiologic role of alternative splicing processes as well as of miRNAs on modulation of vascular functions, such as coagulation, thrombosis, and regulation of the vascular tone.
APA, Harvard, Vancouver, ISO, and other styles
15

Naz, Farha, Farah Anjum, Asimul Islam, Faizan Ahmad, and Md Imtaiyaz Hassan. "Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation." Cell Biochemistry and Biophysics 67, no. 2 (March 8, 2013): 485–99. http://dx.doi.org/10.1007/s12013-013-9550-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Maruyama, Tatsuro, and Nobuo N. Noda. "Autophagy-regulating protease Atg4: structure, function, regulation and inhibition." Journal of Antibiotics 71, no. 1 (September 13, 2017): 72–78. http://dx.doi.org/10.1038/ja.2017.104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kashida, Shunnichi, Dan Ohtan Wang, Hirohide Saito, and Zoher Gueroui. "Nanoparticle-based local translation reveals mRNA as a translation-coupled scaffold with anchoring function." Proceedings of the National Academy of Sciences 116, no. 27 (June 19, 2019): 13346–51. http://dx.doi.org/10.1073/pnas.1900310116.

Full text
Abstract:
The spatial regulation of messenger RNA (mRNA) translation is central to cellular functions and relies on numerous complex processes. Biomimetic approaches could bypass these endogenous complex processes, improve our comprehension of the regulation, and allow for controlling local translation regulations and functions. However, the causality between local translation and nascent protein function remains elusive. Here, we developed a nanoparticle (NP)-based strategy to magnetically control mRNA spatial patterns in mammalian cell extracts and investigate how local translation impacts nascent protein localization and function. By monitoring the translation of the magnetically localized mRNAs, we show that mRNA–NP complexes operate as a source for the continuous production of proteins from defined positions. By applying this approach to actin-binding proteins, we triggered the local formation of actin cytoskeletons and identified the minimal requirements for spatial control of the actin filament network. In addition, our bottom-up approach identified a role for mRNA as a translation-coupled scaffold for the function of nascent N-terminal protein domains. Our approach will serve as a platform for regulating mRNA localization and investigating the function of nascent protein domains during translation.
APA, Harvard, Vancouver, ISO, and other styles
18

Fitzpatrick, F. "Cyclooxygenase Enzymes: Regulation and Function." Current Pharmaceutical Design 10, no. 6 (February 1, 2004): 577–88. http://dx.doi.org/10.2174/1381612043453144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yuan, Sarah Y., and Robert R. Rigor. "Regulation of Endothelial Barrier Function." Colloquium Series on Integrated Systems Physiology: From Molecule to Function 3, no. 1 (February 18, 2011): 1–146. http://dx.doi.org/10.4199/c00025ed1v01y201101isp013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lychkova, A. E. "Nervous Regulation оf Thyroid Function." Annals of the Russian academy of medical sciences 68, no. 6 (2013): 49–55. http://dx.doi.org/10.15690/vramn.v68i6.673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Stuenkel, Cynthia A. "Neural Regulation of Pituitary Function." Epilepsia 32, s6 (December 1991): S2—S10. http://dx.doi.org/10.1111/j.1528-1157.1991.tb05888.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lu, Weisi, Yi Zhang, Dan Liu, Zhou Songyang, and Ma Wan. "Telomeres—structure, function, and regulation." Experimental Cell Research 319, no. 2 (January 2013): 133–41. http://dx.doi.org/10.1016/j.yexcr.2012.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mellis, David, and Andrea Caporali. "MicroRNA regulation of vascular function." Vascular Biology 1, no. 1 (July 19, 2019): H41—H46. http://dx.doi.org/10.1530/vb-19-0009.

Full text
Abstract:
MicroRNAs (miRNAs) are small non-coding RNAs that orchestrate genetic networks by modulating gene expression. Given their importance in vascular development, homeostasis and diseases, along with the technical feasibility in deploying their function in vivo, the so-called ‘vascular miRNAs’ have become key targets for therapeutic intervention. Herein, we have summarised the state-of-the-art on vascular miRNAs and we have discussed the role miRNA biogenesis and the extracellular vesicles (EVs) miRNA transport in vascular biology.
APA, Harvard, Vancouver, ISO, and other styles
24

Basinou, Vasiliki, Jung-sub Park, Christopher R. Cederroth, and Barbara Canlon. "Circadian regulation of auditory function." Hearing Research 347 (April 2017): 47–55. http://dx.doi.org/10.1016/j.heares.2016.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

ASANUMA, Hiroyuki. "Photo-regulation of DNA Function." Kobunshi 52, no. 3 (2003): 139. http://dx.doi.org/10.1295/kobunshi.52.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lala, P. K., C. H. Graham, J. J. Lysiak, and N. K. S. Khoo. "TGFβ regulation of trophoblast function." Placenta 17, no. 5-6 (July 1996): A5. http://dx.doi.org/10.1016/s0143-4004(96)90081-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lala, Peeyush K., Charles H. Graham, Jeffrey J. Lysiak, Nelson K. S. Khoo, and G. S. Hamilton. "TGFβ regulation of trophoblast function." Placenta 19 (January 1998): 149–57. http://dx.doi.org/10.1016/s0143-4004(98)80012-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Martin, T. John, and Nobuyuki Udagawa. "Hormonal Regulation of Osteoclast Function." Trends in Endocrinology & Metabolism 9, no. 1 (January 1998): 6–12. http://dx.doi.org/10.1016/s1043-2760(98)00005-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lang, F., E. Tschernko, and D. Haussinger. "Hepatic regulation of renal function." Experimental Physiology 77, no. 5 (September 1, 1992): 663–73. http://dx.doi.org/10.1113/expphysiol.1992.sp003632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Handy, Diane E., and Joseph Loscalzo. "Redox Regulation of Mitochondrial Function." Antioxidants & Redox Signaling 16, no. 11 (June 2012): 1323–67. http://dx.doi.org/10.1089/ars.2011.4123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jones, L. C. "Genetic regulation of endothelial function." Heart 91, no. 10 (October 1, 2005): 1275–77. http://dx.doi.org/10.1136/hrt.2005.061325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lefebvre, H., V. Contesse, C. Delarue, H. Vaudry, and J. Kuhn. "Serotonergic Regulation of Adrenocortical Function." Hormone and Metabolic Research 30, no. 06/07 (January 1998): 398–403. http://dx.doi.org/10.1055/s-2007-978904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MORI, Takahide, and Masatsune FUKUOKA. "Immune Regulation of Ovarian Function." Folia Endocrinologica Japonica 68, no. 11 (1992): 1151–57. http://dx.doi.org/10.1507/endocrine1927.68.11_1151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kameoka, Hiromu, and Junko Kyozuka. "Spatial regulation of strigolactone function." Journal of Experimental Botany 69, no. 9 (December 30, 2017): 2255–64. http://dx.doi.org/10.1093/jxb/erx434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Minshall, Richard D., William C. Sessa, Radu V. Stan, Richard G. W. Anderson, and Asrar B. Malik. "Caveolin regulation of endothelial function." American Journal of Physiology-Lung Cellular and Molecular Physiology 285, no. 6 (December 2003): L1179—L1183. http://dx.doi.org/10.1152/ajplung.00242.2003.

Full text
Abstract:
Caveolae are the sites in the cell membrane responsible for concentrating an array of signaling molecules critical for cell function. Recent studies have begun to identify the functions of caveolin-1, the 22-kDa caveolar protein that oligomerizes and inserts into the cytoplasmic face of the plasma membrane. Caveolin-1 appears to regulate caveolar internalization by stabilizing caveolae at the plasma membrane rather than controlling the shape of the membrane invagination. Because caveolin-1 is a scaffolding protein, it has also been hypothesized to function as a “master regulator” of signaling molecules in caveolae. Deletion of the caveolin-1 gene in mice resulted in cardiac hypertrophy and lung fibrosis, indicating its importance in cardiac and lung development. In the endothelium, caveolin-1 regulates nitric oxide signaling by binding to and inhibiting endothelial nitric oxide synthase (eNOS). Increased cytosolic Ca2+or activation of the kinase Akt leads to eNOS activation and its dissociation from caveolin-1. Caveolae have also been proposed as the vesicle carriers responsible for transcellular transport (transcytosis) in endothelial cells. Transcytosis, the primary means of albumin transport across continuous endothelia, occurs by fission of caveolae from the membrane. This event is regulated by tyrosine phosphorylation of caveolin-1 and dynamin. As Ca2+influx channels and pumps are localized in caveolae, caveolin-1 is also an important determinant of Ca2+signaling in endothelial cells. Many of these findings were presented in San Diego, CA, at the 2003 Experimental Biology symposium “Caveolin Regulation of Endothelial Function” and are reviewed in this summary.
APA, Harvard, Vancouver, ISO, and other styles
36

Baraniuk, James N. "Neural regulation of mucosal function." Pulmonary Pharmacology & Therapeutics 21, no. 3 (June 2008): 442–48. http://dx.doi.org/10.1016/j.pupt.2007.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Karin, Michael, Zheng-gang Liu, and Ebrahim Zandi. "AP-1 function and regulation." Current Opinion in Cell Biology 9, no. 2 (April 1997): 240–46. http://dx.doi.org/10.1016/s0955-0674(97)80068-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tiku, Varnesh, and Adam Antebi. "Nucleolar Function in Lifespan Regulation." Trends in Cell Biology 28, no. 8 (August 2018): 662–72. http://dx.doi.org/10.1016/j.tcb.2018.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Murray, Michael. "CYP2J2 – regulation, function and polymorphism." Drug Metabolism Reviews 48, no. 3 (June 10, 2016): 351–68. http://dx.doi.org/10.1080/03602532.2016.1188938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Salanueva, Iñigo J., Ana Cerezo, Marta C. Guadamillas, and Miguel A. del Pozo. "Integrin regulation of caveolin function." Journal of Cellular and Molecular Medicine 11, no. 5 (September 2007): 969–80. http://dx.doi.org/10.1111/j.1582-4934.2007.00109.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

KOBAYASHI, Hideyuki, Hiroki YOKOO, Toshihiko YANAGITA, and Akihiko WADA. "Regulation of brain microvessel function." Folia Pharmacologica Japonica 119, no. 5 (2002): 281–86. http://dx.doi.org/10.1254/fpj.119.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lefaki, Maria, Nikoletta Papaevgeniou, and Niki Chondrogianni. "Redox regulation of proteasome function." Redox Biology 13 (October 2017): 452–58. http://dx.doi.org/10.1016/j.redox.2017.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kasanicki, M. A., and P. F. Pilch. "Regulation of Glucose-Transporter Function." Diabetes Care 13, no. 3 (March 1, 1990): 219–27. http://dx.doi.org/10.2337/diacare.13.3.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rzaeva, N. M. "Hypothalamic regulation of retinal function." Vestnik oftal'mologii 132, no. 3 (2016): 32. http://dx.doi.org/10.17116/oftalma2016132332-36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jonakait, G. M., W. K. Kim, M. Delgado, Y. Su, and D. Ganea. "Neuropeptide regulation of microglial function." Journal of Neurochemistry 81 (June 28, 2008): 71. http://dx.doi.org/10.1046/j.1471-4159.2002.00062.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lowy, Douglas R., and Berthe M. Willumsen. "Function and Regulation of Ras." Annual Review of Biochemistry 62, no. 1 (June 1993): 851–91. http://dx.doi.org/10.1146/annurev.bi.62.070193.004223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ustianenko, Dmytro, Sebastien M. Weyn-Vanhentenryck, and Chaolin Zhang. "Microexons: discovery, regulation, and function." Wiley Interdisciplinary Reviews: RNA 8, no. 4 (February 11, 2017): e1418. http://dx.doi.org/10.1002/wrna.1418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shostak, Anton, Jana Husse, and Henrik Oster. "Circadian regulation of adipose function." Adipocyte 2, no. 4 (October 22, 2013): 201–6. http://dx.doi.org/10.4161/adip.26007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bruzzone, Roberto, Elisabeth R. Trimble, Asllan Gjinovci, Otto Traub, Klaus Willecke, and Paolo Meda. "Regulation of Pancreatic Exocrine Function." Pancreas 2, no. 3 (May 1987): 262–71. http://dx.doi.org/10.1097/00006676-198705000-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tolosano, Emanuela, and Fiorella Altruda. "Hemopexin: Structure, Function, and Regulation." DNA and Cell Biology 21, no. 4 (April 2002): 297–306. http://dx.doi.org/10.1089/104454902753759717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography