Academic literature on the topic 'Regular polytopes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regular polytopes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Regular polytopes"
Lalvani, Haresh. "Higher Dimensional Periodic Table Of Regular And Semi-Regular Polytopes." International Journal of Space Structures 11, no. 1-2 (April 1996): 155–71. http://dx.doi.org/10.1177/026635119601-222.
Full textSchulte, Egon, and Asia Ivić Weiss. "Free Extensions of Chiral Polytopes." Canadian Journal of Mathematics 47, no. 3 (June 1, 1995): 641–54. http://dx.doi.org/10.4153/cjm-1995-033-7.
Full textCONNOR, THOMAS, DIMITRI LEEMANS, and MARK MIXER. "ABSTRACT REGULAR POLYTOPES FOR THE O'NAN GROUP." International Journal of Algebra and Computation 24, no. 01 (February 2014): 59–68. http://dx.doi.org/10.1142/s0218196714500052.
Full textComes, Jonathan. "Regular Polytopes." Mathematics Enthusiast 1, no. 2 (October 1, 2004): 30–37. http://dx.doi.org/10.54870/1551-3440.1007.
Full textHou, Dong-Dong, Yan-Quan Feng, and Dimitri Leemans. "Existence of regular 3-polytopes of order 2𝑛." Journal of Group Theory 22, no. 4 (July 1, 2019): 579–616. http://dx.doi.org/10.1515/jgth-2018-0155.
Full textBoya, Luis J., and Cristian Rivera. "On Regular Polytopes." Reports on Mathematical Physics 71, no. 2 (April 2013): 149–61. http://dx.doi.org/10.1016/s0034-4877(13)60026-9.
Full textCuypers, Hans. "Regular quaternionic polytopes." Linear Algebra and its Applications 226-228 (September 1995): 311–29. http://dx.doi.org/10.1016/0024-3795(95)00149-l.
Full textMcMullen, Peter, and Egon Schulte. "Flat regular polytopes." Annals of Combinatorics 1, no. 1 (December 1997): 261–78. http://dx.doi.org/10.1007/bf02558480.
Full textCoxeter, H. S. M. "Regular and semi-regular polytopes. II." Mathematische Zeitschrift 188, no. 4 (December 1985): 559–91. http://dx.doi.org/10.1007/bf01161657.
Full textCoxeter, H. S. M. "Regular and semi-regular polytopes. III." Mathematische Zeitschrift 200, no. 1 (March 1988): 3–45. http://dx.doi.org/10.1007/bf01161745.
Full textDissertations / Theses on the topic "Regular polytopes"
Duke, Helene. "A Study of the Rigidity of Regular Polytopes." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366271197.
Full textBeteto, Marco Antonio Leite. "Less conservative conditions for the robust and Gain-Scheduled LQR-state derivative controllers design /." Ilha Solteira, 2019. http://hdl.handle.net/11449/180976.
Full textResumo: Neste trabalho é proposta a resolução do problema do regulador linear quadrático (Linear Quadratic Regulator - LQR) via desigualdades matriciais lineares (Linear Matrix Inequalities - LMIs) para sistemas lineares e invariantes no tempo sujeitos a incertezas politópicas, bem como para sistemas lineares sujeitos a parâmetros variantes no tempo (Linear Parameter Varying - LPV). O projeto dos controladores é baseado na realimentação derivativa. A escolha da realimentação derivativa se dá devido à sua fácil implementação em certas aplicações como, por exemplo, no controle de vibrações. Os sinais usados na realimentação são aceleração e velocidade, sendo obtidos por meio de acelerômetros. Por meio do método proposto é possível obter condições LMIs para a síntese de controladores que garantam a estabilização do sistema em malha fechada, sendo que os controladores possuem desempenho otimizado. Para a formulação das condições LMIs, uma função de Lyapunov do tipo quadrática é utilizada. Exemplos teóricos e simulações são utilizados como forma de validação dos métodos propostos, além de mostrar que os novos resultados apresentam condições menos conservadoras. Além disso, ao final é apresentada uma implementação prática em um sistema de suspensão ativa, produzida pela Quanser®.
Abstract: The resolution of linear quadratic regulator (LQR) problem via linear matrix inequalities (LMIs) for linear time-invariant systems subject to polytopic uncertainties, as linear systems subjects to linear parameter varying (LPV), is proposed in this work. The controllers' designs are based on the state derivative feedback. The aim to the choice of the state derivative feedback is your easy implementation in a class of mechanical systems, such as in vibration control, for example. The signals used for feedback are acceleration and velocity, it is obtained by means of accelerometers. Through the proposed method it is possible to obtain LMIs conditions for the synthesis of controllers that guarantee the stabilisation of the closed-loop system, being that the controllers have optimised performance. For the LMIs conditions formulations, a Lyapunov function of type quadratic is used. As a form of validation, theoretical examples and simulations are performed, besides to show that the new results are less conservative. Furthermore, a practical implementation in an active suspension system, produced by Quanser®, is performed.
Mestre
Bruni, Matteo. "Incremental Learning of Stationary Representations." Doctoral thesis, 2021. http://hdl.handle.net/2158/1237986.
Full textBooks on the topic "Regular polytopes"
Coxeter, H. S. M. Regular complex polytopes. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.
Find full textChang, Peter Chung Yuen. Quantum field theory on regular polytopes. Manchester: University of Manchester, 1993.
Find full textDoran, B., Egon Schulte, M. Ismail, Peter McMullen, and G. C. Rota. Abstract Regular Polytopes. Cambridge University Press, 2004.
Find full textMcmullen, Peter, and Egon Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.
Find full textMcMullen, Peter. Geometric Regular Polytopes. University of Cambridge ESOL Examinations, 2020.
Find full textSchulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2009.
Find full textBook chapters on the topic "Regular polytopes"
Johnson, D. L. "Regular Polytopes." In Springer Undergraduate Mathematics Series, 155–66. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0243-4_12.
Full textMcMullen, Peter. "Rigidity of Regular Polytopes." In Rigidity and Symmetry, 253–78. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0781-6_13.
Full textMcMullen, Peter. "Modern Developments in Regular Polytopes." In Polytopes: Abstract, Convex and Computational, 97–124. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6_5.
Full textLee, C. "Regular triangulations of convex polytopes." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 443–56. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/004/35.
Full textDe Loera, Jesús A., Jörg Rambau, and Francisco Santos. "Regular Triangulations and Secondary Polytopes." In Triangulations, 209–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12971-1_5.
Full textSchulte, Egon. "Classification of Locally Toroidal Regular Polytopes." In Polytopes: Abstract, Convex and Computational, 125–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6_6.
Full textMcMullen, Peter. "New Regular Compounds of 4-Polytopes." In Bolyai Society Mathematical Studies, 307–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57413-3_12.
Full textSchulte, Egon. "Regular Incidence Complexes, Polytopes, and C-Groups." In Discrete Geometry and Symmetry, 311–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78434-2_18.
Full textDowns, Martin, and Gareth A. Jones. "Möbius Inversion in Suzuki Groups and Enumeration of Regular Objects." In Symmetries in Graphs, Maps, and Polytopes, 97–127. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30451-9_5.
Full textBanchoff, Thomas F. "Torus Decompostions of Regular Polytopes in 4-space." In Shaping Space, 257–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-387-92714-5_20.
Full textConference papers on the topic "Regular polytopes"
Shahid, Salman, Sakti Pramanik, and Charles B. Owen. "Minimum bounding boxes for regular cross-polytopes." In the 27th Annual ACM Symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2245276.2245447.
Full textBueno, Jose Nuno A. D., Kaio D. T. Rocha, Lucas B. Marcos, and Marco H. Terra. "Mode-Independent Regulator for Polytopic Markov Jump Linear Systems*." In 2022 30th Mediterranean Conference on Control and Automation (MED). IEEE, 2022. http://dx.doi.org/10.1109/med54222.2022.9837134.
Full text