Academic literature on the topic 'Regolith properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regolith properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Regolith properties"

1

Beddingfield, Chloe B., and Richard J. Cartwright. "Miranda's Thick Regolith Indicates a Major Mantling Event from an Unknown Source." Planetary Science Journal 3, no. 11 (November 1, 2022): 253. http://dx.doi.org/10.3847/psj/ac9a4e.

Full text
Abstract:
Abstract We investigated “muted” craters and scarps across Miranda’s cratered terrain. The morphologies of the muted craters are most consistent with modification by regolith deposition instead of erosion or viscous relaxation. We used three techniques to estimate regolith thickness. (1) Analysis of muted crater depth–Diameter (d-D) ratios near the South Polar Terrain Chasma indicates that regolith mantling their floors ranges from 0.3 to 1.2 km thick. Because older craters may have collected more regolith than younger craters, the true thickness may be similar to the highest estimate. (2) Analysis of crater size–frequency distributions across the cratered terrain indicates a thickness of 1.0 ± 0.2 km. (3) Analysis of a central mound within Alonso Crater indicates a thickness of 1.4 − 0.4 + 0.3 km near Verona Rupes and may represent an upper limit. These results indicate that Miranda has one of the thickest regoliths in the solar system, which has important implications for Miranda’s interior thermal properties. Regolith appears to mantle some scarps within Arden but not Elsinore or Inverness, indicating that Arden may be the oldest corona, contrary to previous relative age estimates. In this scenario, the mantling event was ongoing during Arden’s formation but before Elsinore or Inverness formed. We propose three possible sources for Miranda’s thick regolith: (1) giant impact ejecta, (2) plume deposits, and (3) Uranian ring deposits. We favor the ring deposit hypothesis, which is consistent with the regolith’s large spatial extent, substantial thickness, and Miranda’s slightly spectrally blue color. Follow-up studies that rigorously investigate these scenarios are required.
APA, Harvard, Vancouver, ISO, and other styles
2

Hodder, A. P. W., and M. Z. Graham. "Earthquake Microzoning from Soil Properties." Earthquake Spectra 9, no. 2 (May 1993): 209–31. http://dx.doi.org/10.1193/1.1585713.

Full text
Abstract:
The extent of damage caused by an earthquake in Wellington, New Zealand, in 1968 to buildings erected on a variety of regoliths and foundation materials is correlated with the thickness of the regolith, the depth to the water table and semi-quantitative parameters derived from soil profile descriptions, particularly related to soil type and soil structure. From linear regression correlations, the expected damage for a comparable earthquake elsewhere can be determined. The model was tested for soil data for the Edgecumbe area, hit by a damaging earthquake in 1987. The predictions were sufficiently in accord with observations to suggest that soil properties that reflect the geotechnical properties of the upper parts of the regolith, particularly those that measure the shear strength, shear wave velocity and viscous damping of that material, may be useful for earthquake microzoning purposes in areas where there is a considerable thickness of unconsolidated materials above bedrock.
APA, Harvard, Vancouver, ISO, and other styles
3

Paton, M. D., A. M. Harri, T. Mäkinen, and S. F. Green. "Investigating thermal properties of gas-filled planetary regoliths using a thermal probe." Geoscientific Instrumentation, Methods and Data Systems 1, no. 1 (March 29, 2012): 7–21. http://dx.doi.org/10.5194/gi-1-7-2012.

Full text
Abstract:
Abstract. We introduce a general purpose penetrator, fitted with a heater, for measuring temperature and thermal diffusivity. Due to its simplicity of deployment and operation the penetrator is well suited for remote deployment by spacecraft into a planetary regolith. Thermal measurements in planetary regoliths are required to determine the surface energy balance and to measure their thermal properties. If the regolith is on a planet with an atmosphere a good understanding of the role of convection is required to properly interpret the measurements. This could also help to identify the significant heat and mass exchange mechanisms between the regolith and the atmosphere. To understand the role of convection in our regolith analogues we use a network of temperature sensors placed in the target. In practical applications a penetrator will push material out of the way as it enters a target possible changing its thermal properties. To investigate this effect a custom built test rig, that precisely controls and monitors the motion of the penetrator, is used. The thermal diffusivity of limestone powder and sand is derived by fitting a numerical thermal model to the temperature measurements. Convection seems to play an important role in the transfer of heat in this case. Firstly a diffusion-convection model fits the laboratory data better than a diffusivity-only model. Also the diffusivity derived from a diffusivity-convection model was found to be in good agreement with diffusivity derived using other methods published in the literature. Thermal diffusivity measurements, inspection of the horizontal temperature profiles and visual observations suggests that limestone powder is compacted more readily than sand during entry of the penetrator into the target. For both regolith analogues the disturbance of material around the penetrator was determined to have an insignificant effect on the diffusivity measurements in this case.
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, Stewart W., and Koon Meng Chua. "Properties and Mechanics of the Lunar Regolith." Applied Mechanics Reviews 46, no. 6 (June 1, 1993): 285–300. http://dx.doi.org/10.1115/1.3120358.

Full text
Abstract:
Knowledge of the lunar regolith is essential to success in lunar missions whether crewed or robotic. The regolith is the loose material overlying more intact strata on the Moon. It varies in thickness from several meters on the maria or lunar seas to many meters on the highlands of the Moon. The regolith is the material humans walked and drove on from 1969 to 1972. In the future, people will use it for radiation protection and as a resource for recovery of oxygen, silicon, iron, aluminum, and titanium. Implanted in the regolith by the solar wind are recoverable amounts of volatiles such as hydrogen and helium. Increasing our knowledge of the mechanical properties of the regolith will enable constructors of the 21st Century to build habitats, do mining, establish manufacturing, and erect telescopes on the Moon. We already know much of the regolith from robotic and astronaut missions to the Moon. There is much more to be learned.
APA, Harvard, Vancouver, ISO, and other styles
5

Sokołowska, Joanna J., Piotr Woyciechowski, and Maciej Kalinowski. "Rheological Properties of Lunar Mortars." Applied Sciences 11, no. 15 (July 28, 2021): 6961. http://dx.doi.org/10.3390/app11156961.

Full text
Abstract:
NASA has revealed that they plan to resume manned missions and ensure the permanent presence of people in the so-called habitats on the Moon by 2024. Moon habitats are expected to be built using local resources—it is planned to use lunar regolith as aggregate in lunar concrete. Lunar concrete design requires a new approach in terms of both the production technology and the operating conditions significantly different from the Earth. Considering that more and more often it is assumed that the water present on the Moon in the form of ice might be used to maintain the base, but also to construct the base structure, the authors decided to investigate slightly more traditional composites than the recently promoted sulfur and polymer composites thermally hardened and cured. Numerous compositions of cement “lunar micro-mortars” and “lunar mortars” were made and tested to study rheological properties, namely, the consistency, which largely depend on the morphology of the fine-grained filler, i.e., regolith. For obvious reasons, the lunar regolith simulant (LRS) was used in place of the original Moon regolith. The used LRS mapped the grain size distribution and morphology of the real lunar regolith. It was created for the purpose of studying the erosive effect of dusty regolith fractions on the moving parts of lunar landers and other mechanical equipment; therefore, it simulated well the behavior of regolith particles in relation to cement paste. The obtained results made it possible to develop preliminary compositions for “lunar mortars” (possible to apply in, e.g., 3D concrete printing) and to prepare, test, and evaluate mortar properties in comparison to traditional quartz mortars (under the conditions of the Earth laboratory).
APA, Harvard, Vancouver, ISO, and other styles
6

Kew, G. A., and R. J. Gilkes. "Properties of regolith beneath lateritic bauxite in the Darling Range of south Western Australia." Soil Research 45, no. 3 (2007): 164. http://dx.doi.org/10.1071/sr06128.

Full text
Abstract:
A morphological key has been developed for regolith that is exposed during mining of lateritic bauxite in the Darling Range of south Western Australia. The key distinguishes materials with different mineralogical and chemical properties. Iron oxide cemented (Zh) regolith has a gibbsitic matrix, quartz-rich (Zm) regolith has a gibbsite and kaolin matrix, and clay-rich (Zp) regolith has a kaolin matrix. An Si affinity element map (Si, Hf, Th) and a K affinity element group (K, Ba, Rb) are associated with granitic quartz-rich regolith and an Al/Fe element affinity group (Al, Fe, Ti, P, Ni, Co, Cu, Mn, Zn, Ga, Cr, V) is associated with clay and iron rich regolith. Doleritic regolith is generally associated with the Al/Fe affinity group. Although granite and granitic regolith exhibit similar element affinity groups, the abundance of elements within each is highly variable, which reflects the diversity in composition of granite within the region. The degree of euhedral character of clay-size platy crystals (kaolinite/gibbsite) does not differ for materials distinguished by the key, as both quartz-rich (Zm) and clay-rich (Zp) regolith and both granitic and doleritic saprolite contain subhedral kaolin crystals. The crystal size of platy kaolin (approximately 0.5 µm) is similar for different mine pits and for different regolith materials (Zm and Zp) within mine pits. There is a difference in halloysite tube length (0.52–1.18 µm) between mine pits, which may be related to the presence of weathered mica or to the alteration of halloysite in gibbsite-rich regolith. The internal and external diameters of halloysite tubes (about 0.11 and 0.24 µm) are similar for different mine pits and different regolith types within mine pits. The resin used during thin section preparation contains chlorine, so that determination of chlorine by EMPA provides a measure of the porosity of regolith material. A systematic negative relationship exists between chlorine concentration and total oxide weight % of porous regolith matrix determined by EMPA; both measurements provide an indication of the porosity of the clay matrix in regolith.
APA, Harvard, Vancouver, ISO, and other styles
7

Shukla, Shashwat, Valentyn Tolpekin, Shashi Kumar, and Alfred Stein. "Investigating the Retention of Solar Wind Implanted Helium-3 on the Moon from the Analysis of Multi-Wavelength Remote Sensing Data." Remote Sensing 12, no. 20 (October 14, 2020): 3350. http://dx.doi.org/10.3390/rs12203350.

Full text
Abstract:
The Moon has a large potential for space exploration and mining valuable resources. In particular, 3He provides rich sources of non-radioactive fusion fuel to fulfill cislunar and Earth’s energy demands, if found economically feasible. The present study focuses on developing advanced techniques to prospect 3He resources on the Moon from multi-sensor remote sensing perspectives. It characterizes optical changes in regolith materials due to space weathering as a new retention parameter and introduces a novel machine learning inversion model for retrieving the physical properties of the regolith. Our analysis suggests that the reddening of the soil predominantly governs the retention, along with attenuated mafic band depths. Moreover, semi-variograms show that the spatial variability of 3He is aligned with the episodic weathering events at different timescales. We also observed that pyroclastic regoliths with high dielectric constant and increased surface scattering mechanisms exhibited a 3He abundant region. For ejecta cover, the retention was weakly associated with the dielectric contrast and a circular polarization ratio (CPR), mainly because of the 3He-deficient nature of the regolith. Furthermore, cross-variograms revealed inherent cyclicity attributed to the sequential process of weathering effects. Our study provides new insights into the physical nature and near-surface alterations of lunar regoliths that influence the spatial distribution and retention of solar wind implanted 3He.
APA, Harvard, Vancouver, ISO, and other styles
8

Paton, M. D., A. M. Harri, T. Mäkinen, and S. F. Green. "A penetrator for making thermal measurements in a gas-filled planetary regolith." Geoscientific Instrumentation, Methods and Data Systems Discussions 1, no. 1 (December 22, 2011): 109–53. http://dx.doi.org/10.5194/gid-1-109-2011.

Full text
Abstract:
Abstract. We introduce a general purpose penetrator, fitted with a heater, for measuring temperature and thermal diffusivity. Due to its simplicity of deployment and operation the thermal penetrator is well suited for remote deployment by spacecraft into a planetary regolith. Thermal measurements in planetary regoliths are required to determine the surface energy balance and to measure their thermal properties. If the regolith is on a planet with an atmosphere a good understanding of the role of convection is required to properly interpret the measurements. This could also help to identify the significant heat and mass exchange mechanisms between the regolith and the atmosphere. To understand the role of convection in our regolith analogues we use a network of temperature sensors placed in the target. In practical applications a penetrator will push material out of the way as it enters a target possible changing its thermal properties. To investigate this effect a custom built test rig, that precisely controls and monitors the motion of the penetrator, is used. The thermal diffusivity of limestone powder and sand is derived by fitting a numerical thermal model to the temperature measurements. Convection seems to play an important role in the transfer of heat in this case. Firstly a diffusion-convection model fits the laboratory data better than a diffusivity-only model. Also the diffusivity derived from a diffusivity-convection model was found to be in good agreement with diffusivity derived using other methods published in the literature. Thermal diffusivity measurements, inspection of the horizontal temperature profiles and visual observations suggests that limestone powder is compacted more readily than sand during entry of the penetrator into the target. For both regolith analogues the disturbance of material around the penetrator was determined to have an insignificant effect on the diffusivity measurements in this case.
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, M.-H. Y., S. A. Thibeault, J. W. Wilson, L. C. Simonsen, L. Heilbronn, K. Chang, R. L. Kiefer, J. A. Weakley, and H. G. Maahs. "Development and Testing of in situ Materials for Human Exploration of Mars." High Performance Polymers 12, no. 1 (March 2000): 13–26. http://dx.doi.org/10.1088/0954-0083/12/1/302.

Full text
Abstract:
Interplanetary space radiation poses a serious health hazard in long-term manned space missions. Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley’s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Martian atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Martian atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance the structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned in order to validate this prediction and also to measure various structural properties.
APA, Harvard, Vancouver, ISO, and other styles
10

Innes, J. L. "Textural properties of regoliths on vegetated steep slopes in upland regions, Scotland." Transactions of the Royal Society of Edinburgh: Earth Sciences 77, no. 3 (1986): 241–50. http://dx.doi.org/10.1017/s0263593300010877.

Full text
Abstract:
ABSTRACTThe textural properties of many sediments provide a good indication of their provenance, but surprisingly little information is available on the transitional stages between the breakdown of a rock and the incorporation of the material into a fluvial sediment. These transitional stages are important as certain fractions (particularly the finer ones) may be selectively removed. Regoliths developed on steep slopes represent an early stage in the debris cascade and they are here examined in detail to assess the role of parent lithology on the textural properties of the regolith. There are substantial variations between lithologies, although the majority of regoliths are dominated by coarser fractions and are poorly sorted. Most particle size distributions show some degree of fit to both log-normal probability distributions and Rosin distributions. Differences from these can be ascribed to the processes operating on steep slopes, particularly the influx of sand- and silt-sized material by colluvial processes and the removal of clay-sized material by leaching. The regoliths form a distinct facies type which may be recognisable in the geological record.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Regolith properties"

1

Warell, Johan. "Regolith Properties of Mercury Derived from Observations and Modelling." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://publications.uu.se/theses/91-554-5535-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laffan, Shawn William, and Shawn Laffan@unsw edu au. "Inferring the Spatial Distribution of Regolith Properties Using Surface Measurable Features." The Australian National University. School of Resources, Environment and Society, 2001. http://thesis.anu.edu.au./public/adt-ANU20040714.155019.

Full text
Abstract:
The aim of this research is to determine to what extent properties of the regolith may be inferred using only features easily measured from the surface. To address this research question, a set of regolith properties from Weipa, Queensland, Australia, are analysed. The set contains five variables, oxides of Aluminium, Iron, Silica and Titanium, as well as Depth to Ironstone. This last represents the depth of the layer from which the oxides are sampled.¶ The research question is addressed in two ways. First, locations where the properties are related to modern surface hydrology are assessed using spatially explicit analyses. This is done by comparing the results of spatial association statistics using geometric and watershed-based spatial samples. Second, correlations are sought for between the regolith properties and geomorphometric indices of land surface morphology and Landsat Thematic Mapper spectral response. This is done using spatially implicit Artificial Neural Networks (ANN) and spatially explicit Geographically Weighted Regression (GWR). The results indicate that the degree to which regolith properties are related to surface measurable features is limited and spatially variable.¶ Most locations in the Weipa landscape exhibit some degree of modern hydrological control of the oxide variables at lateral distances of 120 m. This control rarely extends beyond 300 m laterally, although such locations occupy distinct positions in the landscape. Conversely, there is an extensive part of the landscape where Depth to Ironstone is under hydrological control. This occupies most of the lower elevations in the study area. Depth to Ironstone represents the depth to the redox front where iron is precipitated, but may in some parts of the landscape control the distribution of the watertable by being impermeable.¶ For the correlation analyses, the highest correlations are found with those oxides most mobile in solution. The spatially local GWR results also consistently outperform the spatially global ANN results, commonly having accuracies 40% higher at the error tolerance used. Much of this can be attributed to the localized effects of landscape evolution. Comparison of the GWR results against the local sample mean indicate that there is a relationship between regolith properties and surface measurable features at 10-15% of sample locations for the oxide variables, and 22% for Depth to Ironstone.¶ The implications of these results are significant for anyone intending to generate spatial datasets of regolith properties. If there is a low spatial density of sample data, then the effects of landscape evolution can reduce the utility of any analysis results. Instead, spatially dense, direct measurements of subsurface regolith properties are needed. While these may not be a direct measurement of the property of interest, they may provide useful additional information by which these may be inferred.
APA, Harvard, Vancouver, ISO, and other styles
3

Bell, Julie Dee. "Properties and genesis of regolith: a workingmodel for Hong Kong hillslopes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45015284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bell, Julie Dee. "Properties and genesis of regolith : a working model for Hong Kong hillslopes /." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36585208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ogunyinka, Adebayo Olutumbi. "Investigation Of Material Properties Of Sintered Black Point-1 Lunar Regolith Simulant." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30886.

Full text
Abstract:
The quest for establishing a human presence and development beyond the Earth, especially on the moon has opened up opportunities for future plans for lunar bases and settlements. However, the cost of using resources outside the lunar environment can inhibit this form of expansion, therefore the need for In Situ Resource Utilization (ISRU). The aim of this research was to investigate the possible usage of in situ resources for lunar construction and other economic development. The study evaluated different methods of material preparation using lunar regolith simulant for structural applications on the moon. The research employed the use of the regolith simulant known as Black Point-1 (BP-1). This research work presents the methodology used in developing lunar simulant and compares the properties of BP-1 regolith simulant to those of lunar soil, in terms of geotechnical and mechanical properties. Various laboratory analyses were carried out to determine these properties with the aid of thermal and analysis, particle size distribution, and XRD experiments. Our findings show that the particle size distribution and porosity of BP-1 are similar to that of the lunar regolith. The simulant was then sieved to produce four grades of powder (38 µmm, 106 µm, 212 µm and unsieved). The graded powders were then compressed to form a series of disc-shaped green compacts for sintering. The sintered samples were then subjected to compression testing. There were four different values of average compressive strength of the porosity materials ranging from lowest to highest porosity corresponding to the smallest to largest average grain sizes of 38 µm, 106 µm, unsieved and 212µm and they were 66.14MPa, 60.47MPa, 58.52MPa, 42.74 MPa, respectively. The particle size distribution was investigated on Black Point-1 simulant to determine the effect of the porosity while the bulk properties of the material were also examined for each of the four porosity grades, and this includes toughness, Poisson ratio, bulk modulus, Young’s modulus of elasticity and compressive strength. When compared with other ISRU structural materials and published data for real lunar regolith it was observed that sintered BP-1 is sufficiently strong for lunar structural applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Baloochestani, Farshad. "Estimation of Hydraulic Properties of the Shallow Aquifer System for Selected Basins in the Blue Ridge and the Piedmont Physiographic Provinces of the Southeastern U.S. Using Streamflow Recession and Baseflow Data." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/geosciences_diss/2.

Full text
Abstract:
The objectives of this research are to measure the aquifer properties (S, T, and K) of selected watersheds delineated to the U.S. Geological Survey gauging stations using streamflow recession and baseflow data and to describe the relations among the properties of shallow aquifers and the physical properties of the basins, such as slope, regolith type and thickness, and land use type. Geographic Information System (GIS) techniques are utilized to investigate critical physiographic controls on transmissivity and storage coefficients on a regional basis. Moreover, the effect of evapotranspiration on recession index is illustrated. Finally, a detailed quantitative comparison of results for the Piedmont and the Blue Ridge Physiographic Provinces in southeast of the U.S. is provided. Recession index, annual groundwater recharge, and annual baseflow data were obtained from 44 USGS-gauging stations with drainage areas larger than 2 (mi2) and less than 400 (mi2). These gauging stations are located in Georgia and North Carolina. Analyses of data focused on GIS techniques to estimate watershed parameters such as total stream length, drainage density, groundwater slope, and aquifer half-width. The hydraulic diffusivity, transmissivity, and storage coefficient of watersheds were computed using hydrograph techniques and the Olmsted and Hely, and Rorabaugh mathematical models. Median recession index values for the Blue Ridge and Piedmont Provinces are 87.8 and 74.5 (d/log cycle), respectively. Median areal diffusivity values for the Blue Ridge and Piedmont are 35,000 and 44,200 (ft2/d), respectively. Median basin-specific estimates of transmissivity for basins in the Blue Ridge and Piedmont are 150 and 410 (ft2/d), respectively. The large values of transmissivity obtained for the Piedmont regolith may be attributed to the thick regolith, low values of basin relief, and voids that develop as a result of fracturing, foliation, weathering, and fractured quartz veins in the saprolite. Median basin-specific estimates of storage coefficient for basins in the Blue Ridge and Piedmont are 0.005 and 0.009, respectively. In general, the results from this study reveal great differences in basin-specific hydraulic parameters of the regolith material within the Piedmont compared to that of the Blue Ridge Physiographic Province.
APA, Harvard, Vancouver, ISO, and other styles
7

Efford, Nicholas David. "Characterisation of the optical properties and surface roughnesses of atmosphereless planetary regoliths through photometric analysis." Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turner, Michael Lorn. "Hydraulic and physical properties of friable regolith." Phd thesis, 2007. http://hdl.handle.net/1885/151508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laffan, Shawn. "Inferring the Spatial Distribution of Regolith Properties Using Surface Measurable Features." Phd thesis, 2001. http://hdl.handle.net/1885/47656.

Full text
Abstract:
The aim of this research is to determine to what extent properties of the regolith may be inferred using only features easily measured from the surface. To address this research question, a set of regolith properties from Weipa, Queensland, Australia, are analysed. The set contains five variables, oxides of Aluminium, Iron, Silica and Titanium, as well as Depth to Ironstone. This last represents the depth of the layer from which the oxides are sampled.¶ The research question is addressed in two ways. First, locations where the properties are related to modern surface hydrology are assessed using spatially explicit analyses. This is done by comparing the results of spatial association statistics using geometric and watershed-based spatial samples. Second, correlations are sought for between the regolith properties and geomorphometric indices of land surface morphology and Landsat Thematic Mapper spectral response. This is done using spatially implicit Artificial Neural Networks (ANN) and spatially explicit Geographically Weighted Regression (GWR). The results indicate that the degree to which regolith properties are related to surface measurable features is limited and spatially variable.¶ ... ¶ The implications of these results are significant for anyone intending to generate spatial datasets of regolith properties. If there is a low spatial density of sample data, then the effects of landscape evolution can reduce the utility of any analysis results. Instead, spatially dense, direct measurements of subsurface regolith properties are needed. While these may not be a direct measurement of the property of interest, they may provide useful additional information by which these may be inferred.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Regolith properties"

1

Kozenko, A. V. Evaluation of the mechanical properties of Phobos' regolith. Washington D.C: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haskin, Larry A. Analytical, experimental, and modelling studies of lunar and terrestrial rocks: Final report--summary of research, NASA grant no. NAGW-3343, Washington University fund #1041-59981. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The scattering properties of natural terrestrial snows versus icy satellite surfaces. [San Diego]: Academic Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Regolith properties"

1

Fa, Wenzhe. "Regolith Physical Properties." In Encyclopedia of Lunar Science, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-05546-6_61-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKay, David S., and Douglas W. Ming. "Mineralogical and Chemical Properties of the Lunar Regolith." In Lunar Base Agriculture: Soils for Plant Growth, 45–68. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1989.lunarbaseagriculture.c4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Afrouzian, Ali, Kellen D. Traxel, and Amit Bandyopadhyay. "An Investigation of Mechanical Properties of Additively Manufactured Regolith Reinforced Titanium Alloy [Ti6Al4V]." In The Minerals, Metals & Materials Series, 107–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92567-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mckay, D. S., and D. W. Ming. "Properties of Lunar Regolith." In Soil Micro-Morphology: A Basic and Applied Science, Proceedings of the VIIIth International Working Meeting of Soil Micromorphology, 449–62. Elsevier, 1990. http://dx.doi.org/10.1016/s0166-2481(08)70360-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akisheva, Yulia, Yves Gourinat, Nicolas Foray, and Aidan Cowley. "Regolith and Radiation: The Cosmic Battle." In Lunar Science - Habitat and Humans [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101437.

Full text
Abstract:
This chapter discusses regolith utilization in habitat construction mainly from the point of view of radiation protection of humans on missions of long duration. It also considers other key properties such as structural robustness, thermal insulation, and micrometeoroid protection that all have to be considered in parallel when proposing regolith-based solutions. The biological hazards of radiation exposure on the Moon are presented and put in the context of lunar exploration-type missions and current astronaut career dose limits. These factors guide the research in radiation protection done with lunar regolith simulants, which are used in research and development activities on Earth due to the reduced accessibility of returned lunar samples. The ways in which regolith can be used in construction influence its protective properties. Areal density, which plays a key role in the radiation shielding capacity of a given material, can be optimized through different regolith processing techniques. At the same time, density will also affect other important properties of the construction, e.g. thermal insulation. A comprehensive picture of regolith utilization in habitat walls is drawn for the reader to understand the main aspects that are considered in habitat design and construction while maintaining the main focus on radiation protection.
APA, Harvard, Vancouver, ISO, and other styles
6

E. Koval, Natalia, Bin Gu, Daniel Muñoz-Santiburcio, and Fabiana Da Pieve. "Modeling Radiation Damage in Materials Relevant for Exploration and Settlement on the Moon." In Lunar Science - Habitat and Humans [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102808.

Full text
Abstract:
Understanding the effect of radiation on materials is fundamental for space exploration. Energetic charged particles impacting materials create electronic excitations, atomic displacements, and nuclear fragmentation. Monte Carlo particle transport simulations are the most common approach for modeling radiation damage in materials. However, radiation damage is a multiscale problem, both in time and in length, an aspect treated by the Monte Carlo simulations only to a limited extent. In this chapter, after introducing the Monte Carlo particle transport method, we present a multiscale approach to study different stages of radiation damage which allows for the synergy between the electronic and nuclear effects induced in materials. We focus on cumulative displacement effects induced by radiation below the regime of hadronic interactions. We then discuss selected studies of radiation damage in materials of importance and potential use for the exploration and settlement on the Moon, ranging from semiconductors to alloys and from polymers to the natural regolith. Additionally, we overview some of the novel materials with outstanding properties, such as low weight, increased radiation resistance, and self-healing capabilities with a potential to reduce mission costs and improve prospects for extended human exploration of extraterrestrial bodies.
APA, Harvard, Vancouver, ISO, and other styles
7

Juo, Anthony S. R., and Kathrin Franzluebbers. "Soil Formation and Classification." In Tropical Soils. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195115987.003.0010.

Full text
Abstract:
Soil is the superficial layer of the land area of the Earth and contains weathered inorganic materials, organic matter, air, and water. The branch of soil science that studies the formation and classification of soils is termed pedology. For both scientific and technical purposes, soils around the world are organized into various categories on the basis of their differences and similarities. There are two types of soil classification schemes: (i) the scientific or pedological classification schemes which group soils on the basis of morphological, physical, chemical, and mineralogical properties as well as stage of weathering; and (ii) the technical or practical classification schemes which group soils based on selected properties for specific applications in agriculture and urban development, such as making a quick appraisal of soil fertility capability of farmlands or determining the suitability of septic tank installations of a housing development site. Soils are formed from the weathering of rocks and rock debris that have been eroded and transported by water, wind, ice, or gravity to other sites within the landscape. The soil, together with any underlying weathered debris and/or weathered bedrock, is termed regolith. The formation of soils from rock and minerals may take a long period of time, that is, thousands or millions of years. The pathways of soil formation are shown in fig. 7-1. The development of distinct characteristics of a soil profile or pedon involves physical, chemical, and biological weathering processes. The weathering process that involves the breakdown of rock and minerals by the action of water, pressure, heat, and freeze, into increasingly smaller fragments or particles is called physical weathering. The processes that involve hydrolysis, dissolution, and the formation of secondary minerals, such as clay-sized layer silicates and Fe and Al oxides, are called chemical weathering. The two important and interrelated chemical processes of tropical weathering are desilication and laterization. Desilication involves the dissolution of silicate minerals, and the subsequent leaching of dissolved silica from the soil profile by rain. The loss of silica from the soil eventually leads to the formation and accumulation of Fe and Al oxides in the soil, a weathering process known as laterization.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Regolith properties"

1

Street, Jr., Kenneth W., Chandra Ray, Doug Rickman, and Daniel A. Scheiman. "Thermal Properties of Lunar Regolith Simulants." In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Batiste, S. N., and M. R. Lankton. "Lunar Regolith Geotechnical Properties: Implications for Exploration." In 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40830(188)39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klosky, J. Ledlie, Stein Sture, Hon-Yim Ko, and Frank Barnes. "Mechanical Properties of JSC-1 Lunar Regolith Simulant." In Fifth International Conference on Space. Reston, VA: American Society of Civil Engineers, 1996. http://dx.doi.org/10.1061/40177(207)94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freundlich, A., T. Kubricht, and A. Ignatiev. "Lunar regolith thin films: Vacuum evaporation and properties." In Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsuji, T., T. Kobayashi, S. Aoki, H. Kanamori, T. Aizawa, and T. Matsuoka. "Elastic Properties of Lunar Regolith from Vertical Seismic Profiling." In Thirteenth ASCE Aerospace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments, and the 5th NASA/ASCE Workshop On Granular Materials in Space Exploration. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412190.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sture, S. "A Review of Geotechnical Properties of Lunar Regolith Simulants." In 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40830(188)90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reed, Miles. "CHARACTERIZING BIOTITE AND MICROFRACTURE PROPERTIES TO UNDERSTAND REGOLITH PRODUCTION." In PRF2022—Progressive Failure of Brittle Rocks. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022pr-375970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Purrington, C. A., C. Dreyer, and P. Abel. "Volatile Prospecting through Thermal Properties of Subsurface Icy Regolith." In 18th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2023. http://dx.doi.org/10.1061/9780784484470.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jalba, C., P. Milev, P. Schulz, A. Pflug, P. Ramm, O. Gusland, I. Ghitiu, et al. "DEAR project: Lunar dust surface interactions, risk and removal investigations." In Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.019.

Full text
Abstract:
The DEAR project (Dusty Environment Application Research) investigates the interaction between lunar regolith and surfaces and components relevant for lunar exploration. Based on the TUBS regolith simulant which is representative in chemistry, size and shape properties to Moon soils to study the regolith transport, adhesion and strategies for cleaning. The regolith simulant will be applied to thermal, structural, optical sensor, sealing and other astronautic systems, providing input for requirements, justification and verification. The key applications are split in human space flight regolith investigations, wrinkled surface with random movement and hardware surfaces, flat material defined movement. The paper provides an overview of the DEAR project including a discussion of the first results, in particular vibration, shock and micro-vibration on regolith bearing surfaces. The investigation shall enable better understand the regolith layers interaction and the release mechanism, as well as potential cross contamination and cleaning strategies. The research is complemented by simulation of the regolith motion as parameter surface plasma interactions. The project is funded and supported by the European Space Agency (ESA). DEAR specifically addresses the development and testing of lunar dust removal strategies on optics, mechanisms and human space flight hardware (e.g., space suits). As the Moons regolith is known to be highly abrasive, electrically chargeable, and potentially chemically reactive, lunar dust might reduce the performance of hardware, such as cameras, thermal control surfaces and solar cells. The dust can cause malfunction on seals for on/off mechanisms or space suits. Of particular interest are risk assessment, avoidance, and cleaning techniques such as the use of electric fields to remove lunar dust from surfaces. Representative dust (e.g., regolith analogues of interesting landing sites) will be used in a dedicated test setup to evaluate risks and effects of lunar dust. We describe designs and methods developed by the DEAR consortium to deal with the regolith-related issues, in particular an electrode design to deflect regolith particles, cleaning of astronautical systems with CO2, design of a robotic arm for the testing within the DEAR chamber, regolith removal via shock, and regolith interaction with cleanroom textiles
APA, Harvard, Vancouver, ISO, and other styles
10

Mathews, Theodore, Joseph Filbert, Mohammad Tayeb Ghasr, and Reza Zoughi. "Wideband Microwave Dielectric Properties of Martian and Lunar Regolith Simulants." In 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2022. http://dx.doi.org/10.1109/i2mtc48687.2022.9806570.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Regolith properties"

1

Caritat, P. de, and U. Troitzsch. Towards a regolith mineralogy map of the Australian continent: a feasibility study in the Darling-Curnamona-Delamerian region. Geoscience Australia, 2021. http://dx.doi.org/10.11636/record.2021.035.

Full text
Abstract:
Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no national-scale maps of regolith mineralogy are available in Australia. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a feasibility study in a selected pilot area for such a national regolith mineralogy database and atlas. The area chosen for this study is within the Darling-Curnamona-Delamerian (DCD) region of southeastern Australia. The DCD region was selected as a ‘deep-dive’ data acquisition and analysis by the Exploration for the Future (2020-2024) federal government initiative managed at Geoscience Australia. One hundred NGSA sites from the DCD region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both ‘major’ and clay minerals of the bulk sample. The identified mineral phases were quartz, plagioclase, K-feldspar, calcite, dolomite, gypsum, halite, hematite, goethite, rutile, zeolite, amphibole, talc, kaolinite, illite (including muscovite and biotite), palygorskite (including interstratified illite-smectite and vermiculite), smectite (including interstratified illite-smectite), vermiculite, and chlorite. Poorly diffracting material (PDM) was also quantified and reported as ‘amorphous’. Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 wt% (weight percent) was achieved, with any mineral detection below that threshold reported as ‘trace’. Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are presented in Appendix A of this report and are downloadable as a .csv file. Mineral abundance or presence/absence maps are shown in Appendices B and C to document regional mineralogical patterns.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography