Academic literature on the topic 'Regolith Geochronology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regolith Geochronology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Regolith Geochronology"

1

Bird, Michael I., and Allan R. Chivas. "Stable-isotope geochronology of the Australian regolith." Geochimica et Cosmochimica Acta 53, no. 12 (December 1989): 3239–56. http://dx.doi.org/10.1016/0016-7037(89)90104-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bengtson, Stefan, Birger Rasmussen, Jian-Wei Zi, Ian R. Fletcher, James G. Gehling, and Bruce Runnegar. "Eocene animal trace fossils in 1.7-billion-year-old metaquartzites." Proceedings of the National Academy of Sciences 118, no. 40 (September 27, 2021): e2105707118. http://dx.doi.org/10.1073/pnas.2105707118.

Full text
Abstract:
The Paleoproterozoic (1.7 Ga [billion years ago]) metasedimentary rocks of the Mount Barren Group in southwestern Australia contain burrows indistinguishable from ichnogenera Thalassinoides, Ophiomorpha, Teichichnus, and Taenidium, known from firmgrounds and softgrounds. The metamorphic fabric in the host rock is largely retained, and because the most resilient rocks in the sequence, the metaquartzites, are too hard for animal burrowing, the trace fossils have been interpreted as predating the last metamorphic event in the region. Since this event is dated at 1.2 Ga, this would bestow advanced animals an anomalously early age. We have studied the field relationships, petrographic fabric, and geochronology of the rocks and demonstrate that the burrowing took place during an Eocene transgression over a weathered regolith. At this time, the metaquartzites of the inundated surface had been weathered to friable sandstones or loose sands (arenized), allowing for animal burrowing. Subsequent to this event, there was a resilicification of the quartzites, filling the pore space with syntaxial quartz cement forming silcretes. Where the sand grains had not been dislocated during weathering, the metamorphic fabric was seemingly restored, and the rocks again assumed the appearance of hard metaquartzites impenetrable to animal burrowing.
APA, Harvard, Vancouver, ISO, and other styles
3

Morris, Paul, Bradley Pillans, Frances Williams, Nigel Spooner, Carmen Krapf, and Nadir de Souza Kovacs. "Combining geochemistry and geochronology of transported regolith to reveal bedrock-hosted mineralization in the arid east Wongatha area of south central Western Australia." Geochemistry: Exploration, Environment, Analysis 18, no. 3 (April 23, 2018): 216–28. http://dx.doi.org/10.1144/geochem2017-056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ansart, C., C. Quantin, D. Calmels, T. Allard, J. Y. Roig, R. Coueffe, B. Heller, et al. "(U-Th)/He Geochronology Constraints on Lateritic Duricrust Formation on the Guiana Shield." Frontiers in Earth Science 10 (June 1, 2022). http://dx.doi.org/10.3389/feart.2022.888993.

Full text
Abstract:
Thick regoliths developed under tropical climate, namely, laterites, resulting from long-term and pronounced geochemical and mineralogical rearrangement of the parent rock in response to environmental changes. Little information is available on the timing of laterite and bauxite formations, especially on the chronology of the main weathering episodes responsible for lateritic cover formation on the Guiana shield. For this purpose, we focused on both lateritic and bauxitic duricrusts developed over the Paleoproterozoic Greenstone Belt in the Brownsberg, Suriname. The duricrust samples have a relatively simple mineralogy (i.e., goethite, gibbsite, hematite, and kaolinite) but reveal, when observed at a microscopic scale, a complex history of formation with multiple episodes of dissolution/reprecipitation. The (U-Th)/He dating of 179 Fe-oxides subsamples shows that duricrusts sampled at the top of the Brownsberg plateau have ages ranging from <0.8 Ma to ∼19 Ma. In contrast, Fe-oxides extracted from detrital duricrust boulders collected downslope indicate formation ages up to 36 Ma. This age discrepancy may indicate that a main episode of physical erosion affected this region between ca. 30 and 20 Ma. Consistently, the bauxite sampled at the mountaintop indicates a younger phase of formation, with Fe-oxides recementing fragments of a preexisting bauxitic material older than ∼15 Ma. Geochronological data also reveal a long-lasting weathering history until the present day, with multiple generations of Fe-oxides in the bauxite and the duricrusts resulting from successive cycles of dissolution and reprecipitation of Fe-oxides associated with redox cycles. This long-lasting weathering history led to geochemical remobilization and apparent enrichment in some relatively immobile elements, such as REE, aluminum, and vanadium, especially in the duricrust sampled at the mountaintop. Our geochronological, mineralogical, and geochemical study of Fe- and Al-crusts from the Brownsberg mountain provide constraints on the evolution of environmental conditions prevailing since the early Oligocene in Suriname.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Regolith Geochronology"

1

Smith, Martin Lancaster. "Towards a geochronology for long-term landscape evolution, Northwestern New South Wales /." View thesis entry in Australian Digital Theses Program, 2006. http://thesis.anu.edu.au/public/adt-ANU20061026.141414/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Martin Lancaster, and martin smith@anu edu au. "Towards a Geochronology for Long-term Landscape Evolution, Northwestern New South Wales." The Australian National University. Research School of Earth Sciences, 2006. http://thesis.anu.edu.au./public/adt-ANU20061026.141414.

Full text
Abstract:
The study area extends from west of the Great Divide to the Broken Hill and Tibooburra regions of far western New South Wales, encompassing several important mining districts that not only include the famous Broken Hill lodes (Pb-Zn-Ag), but also Parkes (Cu-Au), Peak Hill (Au), Cobar (Cu-Au-Zn) and White Cliffs (opal). The area is generally semi-arid to arid undulating to flat terrain covered by sparse vegetation. ¶ During the Cretaceous, an extensive sea retreated across vast plains, with rivers draining from the south and east. After the uplift of the Great Divide associated with opening of the Tasman Sea in the Late Cretaceous, drainage swung to the west, cutting across the Darling River Lineament. The Murray-Darling Basin depression developed as a depocentre during the Paleogene. Climates also underwent dramatic change during the Cenozoic, from warm-humid to cooler, more seasonal climates, to the arid conditions prevalent today. Up until now, there has been very little temporal constraint on the development of this landscape over this time period. This study seeks to address the timing of various weathering and landscape evolution events in northwestern New South Wales. ¶ The application of various regolith dating methods was undertaken. Palaeomagnetic dating, clay δ18O dating, (U+Th)/He and U-Pb dating were all investigated. Palaeomagnetic and clay dating methods have been well established in Australian regolith studies for the last 30 years. More recently, (U+Th)/He dating has been successfully trialled both overseas and in Australia. U-Pb dating of regolith materials has not been undertaken. Each method dates different regolith forming processes and materials. Palaeomagnetic and clay dating were both successfully carried out for sites across northwestern New South Wales, providing a multi-technique approach to resolving the timing of weathering events. Although (U+Th)/He dating was unsuccessful, there is scope for further refinement of the technique, and its application to regolith dating. U-Pb dating was also unsuccessfully applied to late-stage anatase, which is a cement in many Australian silcretes. ¶ Results from this study indicate that the landscape evolution and weathering history of northwestern New South Wales dates back at least 60 million years, probably 100 million years, and perhaps even as far back as 180 million years. The results imply that northwestern New South Wales was continuously sub-aerially exposed for the last 100 Ma, indicating that marine sedimentation in the Murray-Darling and Eromanga-Surat Basins was separated by this exposed region. The ages also provide further evidence for episodic deep chemical weathering under certain climatic conditions across the region, and add to the data from across Australia for similar events. In particular, the palaeomagnetic ages, which cluster at ~60 ± 10 Ma and 15 ± 10 Ma, are recorded in other palaeomagnetic dating studies of Australian regolith. The clay ages are more continuous across the field area, but show older clays in the Eromanga Basin sediments at White Cliffs and Lightning Ridge, Eocene clays in the Cobar region, and Oligocene – Miocene clays in the Broken Hill region, indicating progressively younger clay formation from east to west across northwestern New South Wales, in broad agreement with previously published clay weathering ages from around Australia. ¶ These weathering ages can be reconciled with reconstructions of Australian climates from previously published work, which show a cooling trend over the last 40 Ma, following an extended period of high mean annual temperatures in the Paleocene and Eocene. In conjunction with this cooling, total precipitation decreased, and rainfall became more seasonal. The weathering ages fall within periods of wetness (clay formation), the onset of seasonal climate (clay formation and palaeomagnetic weathering ages) and the initiation of aridity in the late Miocene (palaeomagnetic weathering ages). ¶ This study provides initial weathering ages for northwestern New South Wales, and, a broad geochronology for the development of the landscape of the region. Building on the results of this study, there is much scope for further geochronological work in the region.
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Martin Lancaster. "Towards a Geochronology for Long-term Landscape Evolution, Northwestern New South Wales." Phd thesis, 2006. http://hdl.handle.net/1885/48194.

Full text
Abstract:
The study area extends from west of the Great Divide to the Broken Hill and Tibooburra regions of far western New South Wales, encompassing several important mining districts that not only include the famous Broken Hill lodes (Pb-Zn-Ag), but also Parkes (Cu-Au), Peak Hill (Au), Cobar (Cu-Au-Zn) and White Cliffs (opal). The area is generally semi-arid to arid undulating to flat terrain covered by sparse vegetation. ¶ During the Cretaceous, an extensive sea retreated across vast plains, with rivers draining from the south and east. After the uplift of the Great Divide associated with opening of the Tasman Sea in the Late Cretaceous, drainage swung to the west, cutting across the Darling River Lineament. The Murray-Darling Basin depression developed as a depocentre during the Paleogene. Climates also underwent dramatic change during the Cenozoic, from warm-humid to cooler, more seasonal climates, to the arid conditions prevalent today. Up until now, there has been very little temporal constraint on the development of this landscape over this time period. This study seeks to address the timing of various weathering and landscape evolution events in northwestern New South Wales. ¶ ...
APA, Harvard, Vancouver, ISO, and other styles
4

Dammer, Dusan. "Geochronology of chemical weathering processes in the northern and western Australian regolith." Phd thesis, 1995. http://hdl.handle.net/1885/140465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

(9673769), William E. Odom III. "Dating the Cenozoic incision history of the Tennessee and Shenandoah Rivers with cosmogenic nuclides and 40Ar/39Ar in manganese oxides." Thesis, 2020.

Find full text
Abstract:
The post-orogenic history of the Appalachian Mountains, particularly the persistence of rough topography and the degree of river incision throughout the region, has been a longstanding focus of geomorphology studies. Numerous models have been developed to explain the evolution of this landscape, variously invoking episodic or continuous processes of uplift and erosion to drive the generation or reduction of topographic relief. Recently, late Cenozoic uplift has found favor as a mechanism for rejuvenating the topography of the southern and central Appalachians. This hypothesis has drawn on longitudinal river profiles, seismic tomography, and offshore sediment records as evidence of Neogene uplift.

Radiometric dating of surficial deposits provides a means to directly test models of episodic and continuous landscape evolution, as well as the Neogene uplift hypothesis. The research described in this thesis dates surficial sediments (river terraces, alluvial fans, and a filled sinkhole) and supergene manganese oxides using 26Al/10Be burial dating and 40Ar/39Ar geochronology, respectively. Our cosmogenic 26Al/10Be dating provides detailed histories of aggradation and incision along the Shenandoah and Tennessee Rivers since the early Pliocene. 40Ar/39Ar dating of manganese oxides permits estimates of surface preservation and denudation in the Shenandoah Valley and nearby watersheds throughout the Cenozoic.

The results of our work in the Shenandoah Valley, Tennessee River basin, and intervening areas indicate that the Appalachians experienced no significant pulse of uplift during the Cenozoic. Long-term preservation of supergene manganese oxides dates as far back as the Eocene, demonstrating minimal denudation and discontinuous formation that lend evidence to episodic landscape evolution models. Cosmogenic26Al/10Be burial ages along the Shenandoah and Tennessee Rivers reveal Pliocene aggradation, with enhanced deposition in the Shenandoah Valley during the mid-Piacenzian Warm Period. Both rivers likely experienced incision during the Pleistocene, likely due to climatic fluctuations. These results demonstrate that while the Appalachian landscape has remained largely unchanged for tens of millions of years, rapid Pleistocene changes in base level recently triggered significant incision of major drainages.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Regolith Geochronology"

1

Crow, Carolyn, Lars Borg, William Cassata, and Sean Pomeroy. "Coordinated Geochronology of an Apollo Regolith Fragment." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.8203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography