Academic literature on the topic 'Regenerative Snubbers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regenerative Snubbers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Regenerative Snubbers"

1

Steyn, C. G. "Analysis and optimization of linear regenerative snubbers." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 5, no. 4 (March 18, 1986): 170–77. http://dx.doi.org/10.4102/satnt.v5i4.995.

Full text
Abstract:
In this article both the general linear regenerative turn-on and turn-off snubbers are analysed and optimized independently from one another, in terms of minimum energy losses. The dissipative snubber - which was up to now the only optimized snubber - now becomes merely a special case of this general regenerative snubber. Equations describing the most important parameters are presented in tables, while some energy versus snubber size graphs are also shown.
APA, Harvard, Vancouver, ISO, and other styles
2

., Soumya, A. N. Nagashree, and R. S. Geetha. "Comparision of Voltage Stress Across the MOSFET Switch of a Flyback Converter with Various Snubbers." International Journal of Innovative Science and Research Technology 5, no. 6 (July 21, 2020): 1567–71. http://dx.doi.org/10.38124/ijisrt20jun1114.

Full text
Abstract:
A Flyback converter is a simple switch-mode power supply that can be used to generate a DC output from either an AC or DC input. The converter switch is the most critical part of any converter. The voltage stress across the switch is a major issue as the high voltage spikes occur due to interaction between its output capacitance and the leakage inductance of the transformer. These spikes can be reduced with various snubbers like conventional tertiary winding, Resistor Capacitor and Diode(RCD) snubber, energy regenerative snubber and an active clamp snubber. This paper aims to analyze and compare the voltage stress across the MOSFET switch of Flyback converter with various snubber circuits.
APA, Harvard, Vancouver, ISO, and other styles
3

Steyn, C. G. "Analysis and optimization of regenerative linear snubbers." IEEE Transactions on Power Electronics 4, no. 3 (July 1989): 362–70. http://dx.doi.org/10.1109/63.39126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Swanepoel, P. H., and J. D. van Wyk. "Analysis and optimization of regenerative linear snubbers applied to switches with voltage and current tails." IEEE Transactions on Power Electronics 9, no. 4 (July 1994): 433–42. http://dx.doi.org/10.1109/63.318902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

R. Reinert, Marcos, Jonathan Dômini Sperb, Marcello Mezaroba, Cassiano Rech, and Leandro Michels. "Transformerless Doubleconversion Ups Using A Regenerative Snubber Circuit." Eletrônica de Potência 16, no. 2 (May 1, 2011): 158–67. http://dx.doi.org/10.18618/rep.2011.2.158167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Radika, P., and Subhranasu Sekar Dash. "Regenerative snubber for UPS inverter." International Journal of Power Electronics 2, no. 1 (2010): 66. http://dx.doi.org/10.1504/ijpelec.2010.029500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasasbeh, Abdalkreem, Burak Kelleci, Salih Baris Ozturk, Ahmet Aksoz, and Omar Hegazy. "SEPIC Converter with an LC Regenerative Snubber for EV Applications." Energies 13, no. 21 (November 3, 2020): 5765. http://dx.doi.org/10.3390/en13215765.

Full text
Abstract:
A Single-Ended Primary-Inductor Converter (SEPIC) converter with an Inductor-Capacitor (LC) regenerative snubber is proposed to reduce Electromagnetic Interference (EMI) for Electric Vehicle (EV) applications. The switching energy is transferred through a capacitor to an inductor which is coupled to SEPIC inductors. This technique reduces the number of components and also returns some of switching energy to SEPIC converter. The mathematical analysis and optimization of LC snubber with respect to number of turns is also presented. Spice simulations and experimental results are provided to verify its performance. The proposed LC regenerative snubber reduces the peak voltage by 16 V on the switching transistor during the switching transient. It is also indicated that 8 dB reduction is achieved in the EMI measurements at ringing frequency and 10 dB reduction at high frequency band.
APA, Harvard, Vancouver, ISO, and other styles
8

Ricardo Lima, Luiz, Yales Rômulo de Novaes, and Marcello Mezaroba. "Single Phase Three Level Npc Voltage-fed Inverter With Regenerative Snubber." Eletrônica de Potência 16, no. 4 (November 1, 2011): 320–29. http://dx.doi.org/10.18618/rep.20114.320329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mezaroba, Marcello, and Jonathan Dômini Sperb. "Auxiliary Converter With Zvs Commutation Applied To Regenerative Undeland Snubber." Eletrônica de Potência 13, no. 2 (May 1, 2008): 61–68. http://dx.doi.org/10.18618/rep.2008.2.061068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dzhunusbekov, Erlan J. "A novel semi-active regenerative snubber." Journal of Vibroengineering 22, no. 5 (August 15, 2020): 1240–50. http://dx.doi.org/10.21595/jve.2020.21005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Regenerative Snubbers"

1

Lima, Luiz Ricardo. "Inversor monofásico NPC com snubber regenerativo." Universidade do Estado de Santa Catarina, 2011. http://tede.udesc.br/handle/handle/2089.

Full text
Abstract:
Made available in DSpace on 2016-12-12T20:27:39Z (GMT). No. of bitstreams: 1 Luiz Ricardo Lima.pdf: 7933900 bytes, checksum: 225fa96a5d447127d12b2a23f0483893 (MD5) Previous issue date: 2011-08-12
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work presents a study about the NPC (Neutral Point Clamped) three-level inverter with a modified Undeland snubber and using a Buck-Boost converter to regenerate the energy processed by the snubber. Initially, qualitative and quantitative analysis of this inverter with the presence of the snubber are presented and a project methodology is proposed. The same analysis and project are presented for the Buck-Boost converter and it is shown that this converter can operate under ZVS (Zero Voltage Switching). Next, mathematical models of all circuitry necessary for the realization of the digital control of the inverter are presented and a controller is projected. Using data of the projected NPC inverter, Buck-Boost converter and digital controller, simulation results are presented. These simulations were done using software s Orcad Pspice and Simulink. Finally, implementation details and experimental results of a 1.5 kW, 800 V input voltage, 127 V output voltage and 200 kHz switching frequency prototype are presented.
Este trabalho apresenta um estudo do inversor NPC (Neutral Point Clamped) a três níveis com snubber de Undeland modificado, utilizando um conversor Buck-Boost para regeneração da energia processada pelo snubber. Inicialmente são feitas analises qualitativa e quantitativa desse inversor com a presença do snubber e é apresentada uma metodologia de projeto. As mesmas analises e projeto são feitos para o conversor Buck-Boost e é mostrado como ele pode operar com comutação ZVS (Zero Voltage Switching). A seguir são mostrados os modelos matemáticos de todos os circuitos necessários para se realizar o controle digital do inversor e é apresentado um projeto de controlador digital. Utilizando os dados de projeto do inversor NPC, do conversor Buck-Boost e do controle são apresentados os resultados de simulações feitas nos programas Orcad Pspice e Simulink. Por ultimo, são apresentados detalhes de implementação e resultados experimentais de um protótipo de 1,5 kW, 800 V de tensão de barramento, 127 V de tensão de saída e 200 kHz de freqüência de comutação.
APA, Harvard, Vancouver, ISO, and other styles
2

Sperb, Jonathan Dômini. "Projeto de um inversor trifásico com snubber de undeland regenerativo e controle digital implementado no DSP TMS320F2812." Universidade do Estado de Santa Catarina, 2007. http://tede.udesc.br/handle/handle/1886.

Full text
Abstract:
Made available in DSpace on 2016-12-12T17:38:35Z (GMT). No. of bitstreams: 1 Jonathan Domini Sperb.pdf: 5918080 bytes, checksum: ca2651157f2d17c4c98cd0a08aeee98c (MD5) Previous issue date: 2007-08-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work deals with the design and implementation of the digital instantaneous averaged values control for output voltages of the three-phase inverter with Underland s snubber, using the Buck-Boost converter for regeneration of the snubber s energy. The qualitative and quantitative analysis of the inverter power structure, snubber and auxiliary converter, as well as the project for a set of presented specifications is presented. All needed block models for the design of the control are shown, as well as the project methodology of frequency response control. Results of simulation complement the work and prove the presented methodology. For experimental validation, it s developed a three-phase inverter with snubber and auxiliary converter, with output power of 4.5kVA, switching frequency of 50kHz, and with capacity to operate with full power for output voltage from 127V up to 220V. Experimental results of the power circuits and control performance complement the study.
Este estudo trata do projeto e implementação do controle digital por valores médios instantâneos das tensões de saída do inversor trifásico com Snubber de Undeland, utilizando conversor auxiliar Buck-Boost para regeneração da energia processada pelo snubber. São apresentados os estudos qualitativo e quantitativo das estruturas do inversor, snubber e conversor auxiliar, bem como o projeto final para um conjunto de especificações apresentadas. Para a realização do controle são mostrados os modelos matemáticos de todos os blocos necessários para o projeto do controlador, assim como é apresentada uma metodologia de projeto de controle baseado na resposta em freqüência. Resultados de simulação complementam o estudo e comprovam a metodologia apresentada. Para validação experimental, é desenvolvido um protótipo do inversor com snubber e conversor auxiliar, com potência de saída de 4,5kVA, freqüência de operação de 50kHz, e com capacidade de operar com potência nominal para a faixa de tensão de saída de 127V a 220V. Resultados experimentais dos circuitos de potência e controle complementam a validação deste estudo.
APA, Harvard, Vancouver, ISO, and other styles
3

Burgardt, Ismael. "Conversor SEPIC empregando um snubber regenerativo associado a um regulador linear de corrente para acionar e controlar LEDs de potência." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1467.

Full text
Abstract:
CAPES
Este trabalho apresenta um sistema eletrônico com entrada universal utilizando um retificador SEPIC não isolado para fornecer e controlar a corrente de LEDs de potência. Um Snubber regenerativo que reduz as perdas de comutação e melhora a eficiência do sistema é proposto. Para realizar a dimerização, bem como reduzir a ondulação da corrente nos LEDs, um regulador linear de corrente é conectado na saída do conversor SEPIC. A utilização do regulador linear também permite que o conversor opere com entrada universal sem a utilização de circuitos adicionais. Para evitar perdas excessivas, o regulador é configurado para operar na região limiar da regulação. O ponto de perda mínimo do regulador é ajustado através de um circuito detector de mínimo com o sistema operando em malha fechada. As etapas de operação, as formas de onda e as principais equações do snubber regenerativo aplicado ao SEPIC são descritas no trabalho. Para verificar e validar a análise teórica são apresentados dois protótipos com potências de saída de 42 W e 145 W, variando de 15% a 100%, para o conversor operando com tensão de entrada de 90 a 240 V e alimentado 35 LEDs conectados em série.
This paper presents a universal-input AC electronic lighting system using a non-isolated SEPIC PFC rectifier to drive and control power LEDs currents. One energy regenerative snubber for reducing the converter switching losses and improve the system efficiency is proposed. The dimmable flicker-free current in the LEDs array is obtained through a linear current regulator placed in the SEPIC’s output terminals. In order to reduce the efficiency impairment, the conditions for achieving minimum energy loss in the current regulator are also detailed. Point of minimum energy loss in the linear regulator is adjusted through valley detector circuit in closed loop system operation. The operation stages as well as the theoretical waveforms and main equations at steady state of the proposed SEPIC rectifier using the regenerative snubber are described. To verify the theoretical analysis carried out, experimental results of two prototypes (42 W and 145 W) operating from 90 to 240 V and output power from 15 to 100% for 35 LEDs are also presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Rawat, Shubham. "A Novel Passive Regenerative Snubber for the Phase-Shifted Full-Bridge Converter: Analysis, Design and Experimental Verification." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5874.

Full text
Abstract:
The development of Wide Bandgap (WBG) devices has enabled power electronic converters to operate at much higher frequencies, voltages and high power. Working at a higher switching frequency minimises the size of magnetics but results in significant switching losses and electromagnetic interference (EMI) noise. Thus, it necessitates the use of soft-switching techniques to reduce these losses. Phase-Shifted Full-Bridge (PSFB) Converter is the most widely used soft-switching topology in the high-voltage and high-power, unidirectional, DC-DC conversion. The phase shift PWM control utilises the converter parasitics to achieve zero voltage switching (ZVS) turn ON. The gating technique allows the magnetic energy stored in the leakage inductance of the isolation transformer to charge and discharge the output capacitances of the inverter leg. However, the converter suffers from severe voltage overshoots across the rectifier bridge during the zero to the active state transition. The resonant circuit formed between the transformer leakage inductance and the parasitic diode capacitance of the rectifier is responsible for the high-voltage ringing. Many passive and active snubbers are presented in the literature to mitigate the high-voltage overshoots across the diode bridge. While passive snubbers are relatively simple to implement than active snubbers, they are lossy. On the other hand, the active snubbers require additional gate driver circuitry and complex control. The first part of the thesis proposes a novel passive regenerative snubber to overcome the mentioned drawbacks of the existing snubbers. The proposed snubber is ideally lossless with no control complexity. The work covers a detailed analysis of the PSFB operation with the proposed snubber while obtaining closed-form expressions for the converter state variables at the end of each topological stage. The study considers all the major converter parasitics, such as transformer leakage and magnetising inductances, and parasitic capacitances of the converter. Given the new snubber, the thesis also lays out a step-by-step PSFB design procedure utilising the analysis carried out in the first part of the work. The design aimed to develop a 100 kHz PSFB for an input voltage of 360-440 V in the output power range of 0.5-1.5 kW at a fixed output voltage of 48 V. The design approach focuses on two design objectives - All inverter switches must achieve ZVS turn ON and the desired converter gain for all possible operating conditions. A hardware prototype is built and tested. The experimental results validate the effectiveness of the snubber in reducing the voltage overshoot. Further, the analysis and design accuracy is verified using the measured state variables. The work, at last, presents the overall converter efficiency and the loss distribution among the converter components.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Regenerative Snubbers"

1

Alganidi, Adel, and Gerry Moschopoulos. "A Comparative Study of Two Passive Regenerative Snubbers for Flyback Converters." In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matsushita, Akihisa, Hiromichi Tai, Ikuo Yasuoka, and Toshiaki Matsumoto. "Inverter circuit with the regenerative passive snubber." In 2007 Power Conversion Conference - Nagoya. IEEE, 2007. http://dx.doi.org/10.1109/pccon.2007.372963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reinert, Marcos Roberto, Cassiano Rech, Marcello Mezaroba, and Leandro Michels. "Transformerless double-conversion UPS using a regenerative snubber circuit." In 2009 Brazilian Power Electronics Conference (COBEP). IEEE, 2009. http://dx.doi.org/10.1109/cobep.2009.5347714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bohra, Saumya, Arnab Sarkar, and Sandeep Anand. "Low Side Switch Based Regenerative Snubber Circuit for Flyback Converter." In 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020. http://dx.doi.org/10.1109/ecce44975.2020.9236237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mukherjee, Aniruddha, Majid Pahlevaninezhad, and Gerry Moschopoulos. "A novel ZVS resonant-type flyback microinverter with regenerative snubber." In 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. IEEE, 2014. http://dx.doi.org/10.1109/apec.2014.6803725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fernandez, David A. Porras, Roberto A. Fantino, Roderick A. Gomez Jimenez, and Juan C. Balda. "Non-Dissipative Regenerative Snubber for Isolated DC-DC Cuk Converter." In 2023 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2023. http://dx.doi.org/10.1109/apec43580.2023.10131466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tibola, Gabriel, Erik Lemmen, and Jorge L. Duarte. "Passive regenerative snubber cell applied to isolated DCM SEPIC converter." In 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016 - ECCE Asia). IEEE, 2016. http://dx.doi.org/10.1109/ipemc.2016.7512738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chih-Sheng Liao and Keyue M. Smedley. "Design of high efficiency Flyback converter with energy regenerative snubber." In 2008 IEEE Applied Power Electronics Conference and Exposition - APEC 2008. IEEE, 2008. http://dx.doi.org/10.1109/apec.2008.4522812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tibola, G., E. Lemmen, and J. L. Duarte. "Comparison between dissipative snubber and passive regenerative snubber cells as applied to isolated DCM SEPIC converters." In 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). IEEE, 2016. http://dx.doi.org/10.1109/epe.2016.7695370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petreus, Dorin, Izsak Ferencz, and Zoltan Orban. "Design of Regenerative Active Clamping Snubber for a Phase-Shift Converter." In 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2019. http://dx.doi.org/10.1109/siitme47687.2019.8990755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography