Academic literature on the topic 'Regeneration technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regeneration technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Regeneration technology"
Zhang, Haitao, Ying Wang, Zuoqiang Liu, and Quansheng Sun. "Study on Mechanical Behavior of Aging Asphalt Based on Composite Regeneration and Modification." Advances in Materials Science and Engineering 2020 (March 16, 2020): 1–11. http://dx.doi.org/10.1155/2020/1325048.
Full textLi, Junxiao, Wei Fu, and Xiaobo Yin. "Finite Element Simulation and Construction Technology Research of Cement-Emulsified Asphalt Cold Recycling System." MATEC Web of Conferences 238 (2018): 05010. http://dx.doi.org/10.1051/matecconf/201823805010.
Full textTabata, Yasuhiko. "A New Concept of Biomaterials to Induce Tissue Regeneration." Materials Science Forum 561-565 (October 2007): 1467–70. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1467.
Full textIEDA, Masaki. "Heart regeneration using reprogramming technology." Proceedings of the Japan Academy, Series B 89, no. 3 (2013): 118–28. http://dx.doi.org/10.2183/pjab.89.118.
Full textZhang, Yue, Congjie Ou, Bihong Lin, and Jincan Chen. "The Regenerative Criteria of an Irreversible Brayton Heat Engine and its General Optimum Performance Characteristics." Journal of Energy Resources Technology 128, no. 3 (October 22, 2005): 216–22. http://dx.doi.org/10.1115/1.2213272.
Full textSuzuki-Horiuchi, Yoko, Henning Schmitz, Carlotta Barlassina, David Eccles, Martina Sinn, Claudia Ortmeier, Sören Moritz, and Luca Gentile. "Transcription Factors Active in the Anterior Blastema of Schmidtea mediterranea." Biomolecules 11, no. 12 (November 28, 2021): 1782. http://dx.doi.org/10.3390/biom11121782.
Full textNigmatullin, V. R. "Technology of used motor oil regeneration." Chemistry and Technology of Fuels and Oils 48, no. 1 (March 2012): 29–32. http://dx.doi.org/10.1007/s10553-012-0332-5.
Full textTani, Shoichiro, Hiroyuki Okada, Ung-il Chung, Shinsuke Ohba, and Hironori Hojo. "The Progress of Stem Cell Technology for Skeletal Regeneration." International Journal of Molecular Sciences 22, no. 3 (January 30, 2021): 1404. http://dx.doi.org/10.3390/ijms22031404.
Full textKaszuba, Marcin D., Paweł Widomski, Tomasz Kiełczawa, and Zbigniew Gronostajski. "The use of a measuring arm with a laser scanner for analysis and support of regenerative surfacing processes of forging dies." Welding Technology Review 92, no. 3 (April 11, 2020): 23–32. http://dx.doi.org/10.26628/wtr.v92i3.1103.
Full textWang, Kun, Feng Wang, Yu Hai Guo, Hong Yan Tang, and Hua Peng Zhang. "Regeneration of the Absorbent by the PTFE Hollow Fiber Membranes Using Vacuum Membrane Regeneration Technology." Key Engineering Materials 671 (November 2015): 300–305. http://dx.doi.org/10.4028/www.scientific.net/kem.671.300.
Full textDissertations / Theses on the topic "Regeneration technology"
Moxey, Steven Richard. "Regeneration in high technology marketing channels : antecedents and decision outcomes." Thesis, University of Manchester, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625134.
Full textBramhall, Naomi F. "Cochlear hair cell regeneration from neonatal mouse supporting cells." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78149.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 86-91).
Unlike lower vertebrates, capable of spontaneous hair cell regeneration, mammals experience permanent sensorineural hearing loss following hair cell damage. Although low levels of hair cell regeneration have been demonstrated in the immature mammalian vestibular system, the cochlea has been thought to lack any spontaneous regenerative potential. Inhibition of the Notch pathway can stimulate hair cell generation in neonatal mammals, but the specific source of these new hair cells has been unclear. Here, using in vitro lineage tracing with the supporting cell markers Sox2 and Lgr5, we show that Lgr5-positive inner pillar and 3rd Deiter's cells in gentamicin-damaged organs of Corti from neonatal mice give rise to new hair cells following treatment with a Notch inhibitor. These new hair cells are generated primarily through direct transdifferentiation of supporting cells, although a small number show evidence of proliferation. Inner pillar cells show the greatest transdifferentation capability, giving rise to immature outer hair cells, and transdifferentiating in response to damage even in the absence of Notch inhibition. In vivo pharmacologic inhibition of Notch and in vivo lineage tracing with Sox2 during genetic Notch inhibition provide generally consistent results, although additional new hair cells develop in the inner hair cell region. These data suggest a spontaneous capacity for hair cell regeneration in the neonatal mammalian cochlea. In addition, the data identify Lgr5-positive supporting cells as potential hair cell progenitors, making them an attractive target for future hair cell regeneration treatments.
by Naomi F. Bramhall.
Ph.D.in Speech and hearing Bioscience and technology
Mishra, Chinmay. "On-Site Regeneration of Granular Activated Carbon : A literature study, comparison and assessment of different regeneration methods to find potential on-site regeneration method in Sweden." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291272.
Full textLäkemedel i vatten är ett stort hot mot miljö och hälsa. Kommunalt avloppsvatten består av avloppsvatten från hushåll, privata och offentliga institutioner och dagvattenavrinning. En viktig läkemedelskälla i avloppsvatten är ett läkemedel som kommer in via urin och / eller avföring. Olika tekniker finns för avlägsnande av farmaceutiska rester och andra mikroföroreningar från avloppsvatten. En sådan teknik är adsorptionen av dessa rester med hjälp av Granulärt Aktivtkor (GAC). Aktivtkor (AC) är ett kolhaltigt material med liten pordiameter, stora porvolymer och hög specifik yta rea vid bearbetning. Det anses vara det bästa adsorptionsmedlet för att adsorbera organiska, oorganiska och giftiga metalljoner som finns i avloppsvattnet. Det finns två typer av aktivtkol som används för att avlägsna farmaceutiska rester: Granulärt aktivtkol och pulveriserat aktivt kol. Denna forskning syftar till att identifiera, jämföra och bedöma befintlig regenereringsteknik för att hitta den teknik som har störst potential och använda den på ett referensavloppsreningsverk. Det finns olika metoder för regenerering av använt aktivt kol (SAC). Dessa är termisk regenerering, kemisk regenerering, biologisk regenerering, elektrokemisk regenerering, mikrovågsregenerering och våt-oxidationsregenerering. Metoderna listas och förklaras med hjälp av deras arbetsprincip, beredskap, kostnad, fördelar, nackdelar och referenser till studier där de har använts. Flera kriterier / faktorer beaktas för bedömning och jämförelse av olika regenereringsmetoder. Faktorerna poängsätts sedan med hjälp av ett viktat poängsystem. Var och en av de ovannämnda faktorerna görs mellan 0–5 och tilldelas en vikt mellan 1–3. En högre poäng betyder bättre prestanda i den givna faktorn. Medan en högre vikt betyder betydelsen av faktorn. Från bedömningen visar sig kemisk regenerering vara den mest lämpliga metoden för regenerering av GAC på plats. Den minst lämpliga metoden är biologisk regenerering med en total poäng på 39. De två bästa regenereringsmetoderna på plats är kemisk och mikrovågsregenerering. I procent har kemisk regenerering och mikrovågsregenerering en rating på 93,3% och 90%. För att validera resultatet av bedömningen används Himmerfjärdsverket som referensavloppsverk. Himmerfjärdsverket bygger om och expanderar till en högteknologisk anläggning. Den nya anläggningen kommer att bestå av modern reningsteknik och hög reningskapacitet. Den planerade nya anläggningen förväntas vara klar 2025, medan byggandet påbörjades i januari 2020. I en studie genomförd av Syvab i samarbete med Ramboll, IVL och SU anges att det skulle behövas kolförbrukning på 15–20 g / m3 vatten. Den totala kostnaden per behandlat avloppsvatten skulle sannolikt öka med 20–30% till 2027 om läkemedelsreningen genomförs på Himmerfjärdsverket med hjälp av GAC och av regenereringsmetoden utanför anläggningen. Himmerfjärdsverket kommer att konsumera 3,92 ton kol dagligen eller 27,56 ton varje vecka. Detta kommer att kosta 28,7 miljoner SEK / år för 20 000 EBV (i värsta fall) och 11,5 miljoner SEK / år för 50 000 EBV. Medan kostnaden för kemisk regenerering av GAC med högsta regenereringseffektivitet uppskattas till 27,4 miljoner SEK / år för användning av flytande NaOH-lösning och 17,7 miljoner SEK / år för användning av fast NaOH för 20 000 EBV. För mängden 573 t / år kol kommer NaOH-förbrukningen att vara 2083,5 t / år, vilket kommer att kosta 7,1 och 10,9 miljoner SEK / år för 50 000 EBV. Eftersom kostnad är en av de viktigaste faktorerna som motverkar tillämpningen av metoder som är lika tillförlitliga som termisk regenerering. Om termisk regenerering implementeras på Himmerfjärdsverket kan installationen användas för att regenerera GAC från andra reningsverk från Stockholm. 2 GAC-bio filter i serieskapare bättre förutsättningar för biologisk regenerering av GAC samt ger låga föroreningskoncentrationer och höga syrekoncentrationer. För att lägga till det producerar Himmerfjärdsverket biogas som kan användas för att uppnå höga temperaturer som krävs enligt denna metod eller generera den erforderliga elen eller båda. I alla tre fall kommer kostnaden att minskas ytterligare. Avslutningsvis har kemisk regenerering den högsta regenereringspotentialen på plats bland alla andra studerade metoder. Medan termisk regenerering är nära den andra på grund av kolförlusten. En pilotstudie krävs för att validera de regenereringseffektivitet som nämns i litteraturen och bearbetningsförhållandena och typerna av adsorbera vid Himmerfjärdsverket behöver utvärderas liksom behandlingsförhållandena.
Zhang, Zhifen. "Use of genetic transformation technology in oil crops: soybean and sunflower." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462871872.
Full textSarver, Emily Allyn. "The Ferrous Regeneration Process for Use in Alternate Anode Reaction Technology in Copper Hydrometallurgy." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/34291.
Full textMaster of Science
Okamoto, Satoshi. "Investigation of retinal regeneration by cell therapy with the induced pluripotent stem cell technology." Kyoto University, 2013. http://hdl.handle.net/2433/175084.
Full textPrina, Elisabetta. "Recreating 3D limbal architectures by two-photon polymerization for cornea regeneration." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49875/.
Full textPound, Jodie Claire. "Strategies for cartilage regeneration : use of human mesenchymal stem cells, alginate microcapsules and bioreactor technology." Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440411.
Full textViswanath, Aiswarya. "Dental stem cell delivery through new injectable matrices for spinal cord regeneration." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/47606/.
Full textBreinan, Howard Alan 1968. "Development of a collagen-glycosaminoglycan analog of extracellular matrix to facilitate articular cartilage regeneration." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49641.
Full textIncludes bibliographical references (leaves 205-220).
by Howard Alan Breinan.
Ph.D.
Books on the topic "Regeneration technology"
Yao, Ye. Ultrasonic technology for desiccant regeneration. Singapore: John Wiley & Sons Inc., 2014.
Find full textYao, Ye, and Shiqing Liu. Ultrasonic Technology for Desiccant Regeneration. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014. http://dx.doi.org/10.1002/9781118921616.
Full textBonner, F. T. Seed biology and technology of Quercus. New Orleans, La: U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station, 1987.
Find full textHunt, J. A. Mechanical site preparation and forest regeneration in Sweden and Finland: Implications for technology transfer. Victoria, B.C: Canadian Forestry Service, 1988.
Find full textGribko, Linda S. Biotic and abiotic mechanisms in the establishment of northern red oak seedlings: A review. Newtown Square, PA: USDA Forest Service, Northeastern Research Station, 2002.
Find full textHutton, T. A. The new economy of the inner city: Restructuring, regeneration, and dislocation in the 21st century metropolis. Abingdon, Oxon, UK: Routledge, 2008.
Find full textHutton, T. A. The new economy of the inner city: Restructuring, regeneration and dislocation in the 21st century metropolis. New York, NY: Routledge, 2010.
Find full textHutton, T. A. The new economy of the inner city: Restructuring, regeneration and dislocation in the 21st century metropolis. New York, NY: Routledge, 2010.
Find full textRaigrodski, Ariel J. Soft tissue management: The restorative perspective : putting concepts into practice. Chicago: Quintessence Publishing Co, Inc., 2015.
Find full textThe new economy of the inner city: Restructuring, regeneration, and dislocation in the 21st century metropolis. Abingdon, Oxon, UK: Routledge, 2008.
Find full textBook chapters on the topic "Regeneration technology"
Ajioka, Itsuki. "Molecular Technology for Injured Brain Regeneration." In Molecular Technology, 71–85. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527823987.vol2_c4.
Full textWoodyer, Ryan D., Tyler W. Johannes, and Huimin Zhao. "Regeneration of Cofactors for Enzyme Biocatalysis." In Enzyme Technology, 85–103. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35141-4_5.
Full textCastaño, Oscar, Mohamed Eltohamy, and Hae-Won Kim. "Electrospinning Technology in Tissue Regeneration." In Methods in Molecular Biology, 127–40. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-388-2_9.
Full textMondal, Sourav, Mihir Kumar Purkait, and Sirshendu De. "Surfactant-Enhanced Carbon Regeneration." In Green Chemistry and Sustainable Technology, 141–51. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6293-3_4.
Full textBasu, Bikramjit, and Sourabh Ghosh. "Assessment of Technology and Manufacturing Readiness Levels." In Biomaterials for Musculoskeletal Regeneration, 235–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3017-8_11.
Full textRigby, Sean, Gerd Modes, Stevan Jovanovic, John Wei, Koji Tanaka, Peter Moser, and Torsten Katz. "BASF Technology for CO2Capture and Regeneration." In Gas Injection for Disposal and Enhanced Recovery, 193–226. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118938607.ch11.
Full textWichmann, R., and D. Vasic-Racki. "Cofactor Regeneration at the Lab Scale." In Technology Transfer in Biotechnology, 225–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b98911.
Full textMorales, Andres, and Sara Calvo. "Digital Technology as a Tool for Social Regeneration." In Social Regeneration and Local Development, 187–208. New York, NY : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315302478-11.
Full textChoi, Jong Woo, Namkug Kim, and Chang Mo Hwang. "3D Printing Technology in Craniofacial Surgery and Salivary Gland Regeneration." In Salivary Gland Development and Regeneration, 173–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43513-8_9.
Full textKoyama, Yoshihisa, Masanori Kikuchi, Shigeo Tanaka, Junzo Tanaka, and Kazuo Takakuda. "Bone Regeneration with β-TCP/PLGC Membranes." In Advances in Science and Technology, 258–62. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-05-2.258.
Full textConference papers on the topic "Regeneration technology"
Sahruddin, Nursyaheera, and Asmarashid Ponniran. "Life Cycle Assessment And Performances of Revived Industrial Lead-Acid Batteries Through Regeneration Technology : Regeneration Technology." In Conference on Faculty Electric and Electronic 2020/1. Penerbit UTHM, 2020. http://dx.doi.org/10.30880/eeee.2020.01.01.009.
Full textStefan-Cristian, Macovei, Curelaru Alina Cornelia, and Ursache Stefan. "Battery regeneration technology using dielectric method." In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, 2014. http://dx.doi.org/10.1109/icepe.2014.6970029.
Full textGuang Chen, Lixia Xi, Yongxin Ma, Lingyu Sun, and Xiaoguang Zhang. "Regeneration of DQPSK signals using semiconductor optical amplifier-based phase regenerator." In International Conference on Advanced Infocomm Technology 2011 (ICAIT 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.1081.
Full textKjøller, Niels-Kristian, Francesco Da Ros, Kasper Meldgaard Røge, Michael Galili, and Leif K. Oxenløwe. "QPSK Regeneration without Active Phase-Locking." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.jth2a.119.
Full textCarapellucci, Roberto, and Lorena Giordano. "Enhancing Energy and Economic Performances of Combined Cycle Power Plants by Means of Gas-Cycle Regeneration." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38297.
Full textLu, Chao, Dong Guo, Wentao Zhu, Zhen Du, Mingxuan Wang, and Yang Zhang. "Research progress of honeycomb denitrification catalyst regeneration technology." In 2021 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2021. http://dx.doi.org/10.1109/ispec53008.2021.9735522.
Full textJashari, Rineta, Zana Prelvukaj, and Faton Spahiu. "Reuse and regeneration of industrial zones." In University for Business and Technology International Conference. Pristina, Kosovo: University for Business and Technology, 2017. http://dx.doi.org/10.33107/ubt-ic.2017.13.
Full textSullivan, Belle, Marc Rubin, David Tauman, Asgar Ali, and Khanjan Mehta. "Mushroom Mycelium Regeneration in Tropical Environments." In 2020 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2020. http://dx.doi.org/10.1109/ghtc46280.2020.9342848.
Full textPutrya, Boris M., Nikolay A. Bazaev, and Nikita M. Zhilo. "Electrochemical Method of Dialysate Regeneration." In 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2019. http://dx.doi.org/10.1109/usbereit.2019.8736598.
Full textGanev, Evgeni, and Bulent Sarlioglu. "Improving Load Regeneration Capability of an Aircraft." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-3189.
Full textReports on the topic "Regeneration technology"
SAMS TL and GUILLOT S. TECHNOLOGY MATURATION PLAN FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1010334.
Full textHeldebrant, David. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1151840.
Full textLopez, A., J. White, F. R. Groves, and D. P. Harrison. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 1, Feasibility of the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10113213.
Full textLopez, A., W. Huang, and J. White. Advanced sulfur control concepts in hot-gas desulfurization technology: Phase 2. Exploratory studies on the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Topical report. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/594440.
Full textPerl, Avichai, Bruce I. Reisch, and Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Full textPartap, T., and H. R. Watson. Sloping Agricultural Land Technology (SALT): A Regenerative Option for Sustainable Mountain Farming; ICIMOD Occasional Paper No. 23. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1994. http://dx.doi.org/10.53055/icimod.176.
Full textPartap, T., and H. R. Watson. Sloping Agricultural Land Technology (SALT): A Regenerative Option for Sustainable Mountain Farming; ICIMOD Occasional Paper No. 23. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1994. http://dx.doi.org/10.53055/icimod.176.
Full textShan, Yina, Praem Mehta, Duminda Perera, and Yurissa Yarela. Cost and Efficiency of Arsenic Removal from Groundwater: A Review. United Nations University Institute for Water, Environment and Health, February 2019. http://dx.doi.org/10.53328/kmwt2129.
Full text