Academic literature on the topic 'Refractory complex concentrated alloy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Refractory complex concentrated alloy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Refractory complex concentrated alloy"

1

Butler, T. M., and K. J. Chaput. "Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA)." Journal of Alloys and Compounds 787 (May 2019): 606–17. http://dx.doi.org/10.1016/j.jallcom.2019.02.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, Yuefei, Gang Wang, Shiwei Wu, Yongkun Mu, Yun Yi, Yandong Jia, Peter K. Liaw, Tongyi Zhang, and Chain-Tsuan Liu. "A lightweight refractory complex concentrated alloy with high strength and uniform ductility." Applied Materials Today 27 (June 2022): 101429. http://dx.doi.org/10.1016/j.apmt.2022.101429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Senkov, O. N., S. Gorsse, and D. B. Miracle. "High temperature strength of refractory complex concentrated alloys." Acta Materialia 175 (August 2019): 394–405. http://dx.doi.org/10.1016/j.actamat.2019.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsakiropoulos, Panos. "Refractory Metal (Nb) Intermetallic Composites, High Entropy Alloys, Complex Concentrated Alloys and the Alloy Design Methodology NICE—Mise-en-scène † Patterns of Thought and Progress." Materials 14, no. 4 (February 19, 2021): 989. http://dx.doi.org/10.3390/ma14040989.

Full text
Abstract:
The paper reflects on the usefulness of the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration) for the development of new Nb-containing metallic ultra-high-temperature materials (UHTMs), namely refractory metal (Nb) intermetallic composites (RM(Nb)ICs), refractory high entropy alloys (RHEAs) and refractory complex concentrated alloys (RCCAs), in which the same phases can be present, specifically bcc solid solution(s), M5Si3 silicide(s) and Laves phases. The reasons why a new alloy design methodology was sought and the foundations on which NICE was built are discussed. It is shown that the alloying behavior of RM(Nb)ICs, RHEAs and RCCAs can be described by the same parameters. The practicality of parameter maps inspired by NICE for describing/understanding the alloying behavior and properties of alloys and their phases is demonstrated. It is described how NICE helps the alloy developer to understand better the alloys s/he develops and what s/he can do and predict (calculate) with NICE. The paper expands on RM(Nb)ICs, RHEAs and RCCAs with B, Ge or Sn, the addition of which and the presence of A15 compounds is recommended in RHEAs and RCCAs to achieve a balance of properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Mu, Zhaohan Zhang, Arashdeep S. Thind, Guodong Ren, Rohan Mishra, and Katharine M. Flores. "Microstructure and properties of NbVZr refractory complex concentrated alloys." Acta Materialia 213 (July 2021): 116919. http://dx.doi.org/10.1016/j.actamat.2021.116919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsakiropoulos, Panos. "On the Stability of Complex Concentrated (CC)/High Entropy (HE) Solid Solutions and the Contamination with Oxygen of Solid Solutions in Refractory Metal Intermetallic Composites (RM(Nb)ICs) and Refractory Complex Concentrated Alloys (RCCAs)." Materials 15, no. 23 (November 28, 2022): 8479. http://dx.doi.org/10.3390/ma15238479.

Full text
Abstract:
In as-cast (AC) or heat-treated (HT) metallic ultra-high temperature materials often “conventional” and complex-concentrated (CC) or high-entropy (HE) solid solutions (sss) are observed. Refractory metal containing bcc sss also are contaminated with oxygen. This paper studied the stability of CC/HE Nbss and the contamination with oxygen of Nbss in RM(INb)ICs, RM(Nb)ICs/RCCAs and RM(Nb)ICs/RHEAs. “Conventional” and CC/HE Nbss were compared. “Conventional” Nbss can be Ti-rich only in AC alloys. Ti-rich Nbss is not observed in HT alloys. In B containing alloys the Ti-rich Nbss is usually CC/HE. The CC/HE Nbss is stable in HT alloys with simultaneous addition of Mo, W with Hf, Ge+Sn. The implications for alloy design of correlations between the parameter δ of “conventional” and CC/HE Nbss with the B or the Ge+Sn concentration in the Nbss and of relationships of other solutes with the B or Ge+Sn content are discussed. The CC/HE Nbss has low Δχ, VEC and Ω and high ΔSmix, |ΔHmix| and δ parameters, and is formed in alloys that have high entropy of mixing. These parameters are compared with those of single-phase bcc ss HEAs and differences in ΔHmix, δ, Δχ and Ω, and similarities in ΔSmix and VEC are discussed. Relationships between the parameters of alloy and “conventional” Nbss also apply for CC/HE Nbss. The parameters δss and Ωss, and VECss and VECalloy can differentiate between types of alloying additions and their concentrations and are key regarding the formation or not of CC/HE Nbss. After isothermal oxidation at a pest temperature (800 oC/100 h) the contaminated with oxygen Nbss in the diffusion zone is CC/HE Nbss, whereas the Nbss in the bulk can be “conventional” Nbss or CC/HE Nbss. The parameters of “uncontaminated” and contaminated with oxygen sss are linked with linear relationships. There are correlations between the oxygen concentration in contaminated sss in the diffusion zone and the bulk of alloys with the parameters ΔχNbss, δNbss and VECNbss, the values of which increase with increasing oxygen concentration in the ss. The effects of contamination with oxygen of the near surface areas of a HT RM(Nb)IC with Al, Cr, Hf, Si, Sn, Ti and V additions and a high vol.% Nbss on the hardness and Young’s modulus of the Nbss, and contributions to the hardness of the Nbss in B free or B containing alloys are discussed. The hardness and Young’s modulus of the bcc ss increased linearly with its oxygen concentration and the change in hardness and Young’s modulus due to contamination increased linearly with [O]2/3.
APA, Harvard, Vancouver, ISO, and other styles
7

Zacharis, Eleftherios, Claire Utton, and Panos Tsakiropoulos. "A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide-Based Alloys-RM(Nb)ICs with Ti Addition and Comparison with Refractory Complex Concentrated Alloys (RCCAs)." Materials 15, no. 13 (June 30, 2022): 4596. http://dx.doi.org/10.3390/ma15134596.

Full text
Abstract:
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. We also examine the hardness and phases of these alloys. The nominal compositions (at.%) of the alloys were Nb-24Ti-18Si-5Hf-5Sn (EZ2), Nb-24Ti-18Si-5Al-5Hf-5Sn (EZ5), Nb-24Ti-18Si-5Cr-5Hf-5Sn (EZ6), and Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn (EZ8). All four alloys had density less than 7.3 g/cm3. The Nbss was stable in EZ2 and EZ6 and the C14-NbCr2 Laves phase in EZ6 and EZ8. In all four alloys, the A15-Nb3X (X = Al,Si,Sn) and the tetragonal and hexagonal Nb5Si3 were stable. Eutectics of Nbss + Nb5Si3 and Nbss + C14-NbCr2 formed in the cast alloys without and with Cr addition, respectively. In all four alloys, Nb3Si was not formed. In the heat-treated alloys EZ5 and EZ8, A15-Nb3X precipitated in the Nb5Si3 grains. The chemical compositions of Nbss + C14-NbCr2 eutectics and some Nb5Si3 silicides and lamellar microstructures corresponded to high-entropy or complex concentrated phases (compositionally complex phases). Microstructures and properties were considered from the perspective of the alloy design methodology NICE. The vol.% Nbss increased with increasing ΔχNbss. The hardness of the alloys respectively increased and decreased with increasing vol.% of A15-Nb3X and Nbss. The hardness of the A15-Nb3X increased with its parameter Δχ, and the hardness of the Nbss increased with its parameters δ and Δχ. The room-temperature-specific strength of the alloys was in the range 271.7 to 416.5 MPa cm3g−1. The effect of the synergy of Hf and Sn, or Hf and B, or Hf and Ge on the macrosegregation of solutes, microstructures, and properties of RM(Nb)ICs/RCCAs from this study and others is compared. Phase transformations involving compositionally complex phases are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Thandorn, Tophan, and Panos Tsakiropoulos. "On the Microstructure and Properties of Nb-Ti-Cr-Al-B-Si-X (X = Hf, Sn, Ta) Refractory Complex Concentrated Alloys." Materials 14, no. 24 (December 10, 2021): 7615. http://dx.doi.org/10.3390/ma14247615.

Full text
Abstract:
We studied the effect of the addition of Hf, Sn, or Ta on the density, macrosegregation, microstructure, hardness and oxidation of three refractory metal intermetallic composites based on Nb (RM(Nb)ICs) that were also complex concentrated alloys (i.e., RM(Nb)ICs/RCCAs), namely, the alloys TT5, TT6, and TT7, which had the nominal compositions (at.%) Nb-24Ti-18Si-5Al-5B-5Cr-6Ta, Nb-24Ti-18Si-4Al-6B-5Cr-4Sn and Nb-24Ti-17Si-5Al-6B-5Cr-5Hf, respectively. The alloys were compared with B containing and B free RM(Nb)ICs. The macrosegregation of B, Ti, and Si was reduced with the addition, respectively of Hf, Sn or Ta, Sn or Ta, and Hf or Sn. All three alloys had densities less than 7 g/cm3. The alloy TT6 had the highest specific strength in the as cast and heat-treated conditions, which was also higher than that of RCCAs and refractory metal high entropy alloys (RHEAs). The bcc solid solution Nbss and the tetragonal T2 and hexagonal D88 silicides were stable in the alloys TT5 and TT7, whereas in TT6 the stable phases were the A15-Nb3Sn and the T2 and D88 silicides. All three alloys did not pest at 800 °C, where only the scale that was formed on TT5 spalled off. At 1200 °C, the scale of TT5 spalled off, but not the scales of TT6 and TT7. Compared with the B free alloys, the synergy of B with Ta was the least effective regarding oxidation at 800 and 1200 °C. Macrosegregation of solutes, the chemical composition of phases, the hardness of the Nbss and the alloys, and the oxidation of the alloys at 800 and 1200 °C were considered from the perspective of the Niobium Intermetallic Composite Elaboration (NICE) alloy design methodology. Relationships between properties and the parameters VEC, δ, and Δχ of alloy or phase and between parameters were discussed. The trends of parameters and the location of alloys and phases in parameter maps were in agreement with NICE.
APA, Harvard, Vancouver, ISO, and other styles
9

Senkov, O. N., D. B. Miracle, and S. I. Rao. "Correlations to improve room temperature ductility of refractory complex concentrated alloys." Materials Science and Engineering: A 820 (July 2021): 141512. http://dx.doi.org/10.1016/j.msea.2021.141512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aksoy, Doruk, Megan J. McCarthy, Ian Geiger, Diran Apelian, Horst Hahn, Enrique J. Lavernia, Jian Luo, Huolin Xin, and Timothy J. Rupert. "Chemical order transitions within extended interfacial segregation zones in NbMoTaW." Journal of Applied Physics 132, no. 23 (December 21, 2022): 235302. http://dx.doi.org/10.1063/5.0122502.

Full text
Abstract:
Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. An analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Refractory complex concentrated alloy"

1

Komarasamy, Mageshwari. "Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822829/.

Full text
Abstract:
The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain size did not affect the dislocation mechanisms and kinetics. This further bolstered the hypothesis. The second part deals with deformation characteristics of Al-Mg-Sc alloy. The microstructure obtained from the severe plastic deformation (SPD) techniques differ in dislocation density, grain/cell size, and in the grain boundary character distribution. Therefore, it is vital to understand the deformation behavior of the UFG materials produced by various SPD techniques, as the microstructural features basically control the deformation mechanisms. In this study, a detailed analysis was made to understand the deformation mechanisms operative in various regimes of a stress-strain in UFG Al-Mg-Sc alloy produced via friction stir processing. The stress-strain curves exhibited serrations from the onset of yielding to the point of sample failure. The serration amplitude and frequency was higher in UFG material as compared to CG material. Furthermore, the microstructural features that result in the serrated flow were investigated along with the avalanche characteristics. The presence of both ultrafine grains and Al3Sc precipitates were the necessary conditions to reach the critical stress required to push the grain boundary into a critical state to set off an avalanche. The microstructural conditions that did not satisfy both the requirements did not exhibit deep serrations.
APA, Harvard, Vancouver, ISO, and other styles
2

Mikler, Calvin. "Laser Additive Manufacturing of Magnetic Materials." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011873/.

Full text
Abstract:
A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. This shift in phase stability subsequently affected the magnetic properties, specifically saturation magnetization. Ni-Fe-Mo and Ni-Fe-V permalloys were deposited from an elemental blend of powders as well. Both systems exhibited featureless microstructures dominated by an fcc phase. Magnetic measurements yielded saturation magnetizations on par with conventionally processed permalloys, however coercivities were significantly larger; this difference is attributed to microstructural defects that occur during the additive manufacturing process.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Refractory complex concentrated alloy"

1

Kublanovsky, Valeriy S., Oksana L. Bersirova, Yulia S. Yapontseva, Tetyana V. Maltseva, Vasyl M. Nikitenko, Eugen A. Babenkov, Sergei V. Devyatkin, et al. "Electrochemical synthesis of nanostructured super-alloys with valuable electrochemical, electrocatalytic and corrosion properties." In NEW FUNCTIONAL SUBSTANCES AND MATERIALS FOR CHEMICAL ENGINEERING, 130–45. PH “Akademperiodyka”, 2021. http://dx.doi.org/10.15407/akademperiodyka.444.130.

Full text
Abstract:
A study of the electrochemical formation of functional coatings by binary and ternary alloys M1M2, M1M3, M1M2M3 (where M1 is 3d6-8 metal of the iron subgroup: Fe, Co, Ni, and M2 is Mo, W; M3 is Re), from complex aqueous solutions and ionic melts. Such alloys are called "superalloys" due to a wide range of valuable physicochemical (corrosive, electrocatalytic) and functional properties and are designed to operate in extreme temperature and power modes with simultaneous exposure to an aggressive environment. The presence of rhenium in the alloy also simultaneously increases its strength and ductility (the so-called "rhenium effect"). A fundamentally new electrolyte (highly concentrated ammonia-acetate) has been developed for the formation of molybdenum alloys (NiMo, CoMo, FeMo) with a maximum content of a refractory component (about 85 at.%), such as those that exhibit a high electrocatalytic effect in the hydrogen evolution reaction (HER). The deposition of binary CoRe and ternary CoWRe alloys from a citrate electrolyte was carried out. The influence of the composition of solutions and electrolysis parameters on the chemical and phase composition, structure and properties of coatings has been established. The parameters of pulse electrolysis for obtaining multilayer CoMo and CoW coatings from carbamide melts containing cobalt and molybdenum / tungsten oxides have been determined.
APA, Harvard, Vancouver, ISO, and other styles
2

Price, T. Douglas. "Bronze Age Warriors." In Europe before Rome. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199914708.003.0008.

Full text
Abstract:
The European Bronze Age took place during the third and second millennia BC. This same period witnessed the first civilizations and empires in Mesopotamia and the Nile Valley—the first cities, the first states, the first writing systems, and many other innovations. Europe unquestionably felt the impact of these changes. Partially in response to these developments, and 1,000 years before the classical civilizations of Greece, 2,000 years before Rome, the Aegean area witnessed the emergence of more complex societies on Crete and the Greek mainland. The Minoan palaces and Mykenean (also known as Mycenaean) citadels were urban centers of these civilizations and the focal points of industry, commerce, religion, military power, and central accumulation. North of the Alps, there was much less political integration; societies operated on a smaller scale. This pattern continued essentially until the Roman conquest of France and much of Britain, shortly before the Common Era. More details on the developments in southern and northern Europe are provided in subsequent sections of this chapter. Bronze defines this period and becomes the dominant metal in Europe. As noted earlier, it has several advantages over copper. Because it holds an edge much better, most of the early bronze objects were weapons: swords, daggers, spearheads, and arrowheads, in the context of continuing warfare. Bronze is an alloy of copper and tin or arsenic. Initially it was made from copper and arsenic to form arsenic bronze. Some copper ores naturally contain a good bit of arsenic, and smelting these ores may have accidentally created an early form of bronze. Copper ores are available and fairly widespread in Europe from Ireland to Bulgaria. Sources are concentrated in mountainous regions and more often found in the Alps and to the south and east. Some of these copper sources were incredibly productive. The Mitterberg mines near Salzburg in Austria, with tunnels up to 100 m (330 m) in length, may have produced as much as 18,000 tons of copper. Bronze production in Europe began in the Aegean region with the rise of early civilizations on Crete and mainland Greece.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Refractory complex concentrated alloy"

1

Mitrica, Dumitru, Denisa Vonica, Marian Burada, Mihai Tudor Olaru, Beatrice Adriana Serban, Ioana Cristina Badea, and Ioana Anasiei. "Corrosion Behavior of Al7Cu0.2Si0.2Zn0.2Mg0.1 Complex Concentrated Alloy, in 3wt% and 5wt% Na Cl Solution." In CMDWC 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ANASIEI, Ioana, Ioana Cristina BADEA, Beatrice Adriana SERBAN, Mihai Tudor OLARU, Denisa VONICA, Lidia LICU, Marian BURADA, and Dumitru MITRICA. "RESEARCHES REGARDING STRUCTURAL CHARACTERISTICS OF A NEW COMPLEX CONCENTRATED ALLOY OBTAINED BY RAPID SOLIDIFICATION." In METAL 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/metal.2021.4225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salavati, Saeid, Larry Pershin, Thomas W. Coyle, and Javad Mostaghimi. "The Effect of Heat Treatment on Mechanical Properties of Thermally Sprayed Sandwich Structure Beams." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0167.

Full text
Abstract:
Abstract The application of metallic foam core sandwich structures in engineering components has been of particular interest in recent years because of their unique mechanical and thermal properties. Thermal spraying of the skin on the foam structure has recently been employed as a novel cost-efficient method for fabrication of these structures from refractory materials with complex shapes that could not otherwise be easily fabricated. The mechanical behavior of these structures under flexural loading is important in most applications. Previous studies have suggested that heat treatment of the thermally sprayed sandwich structures could improve the ductility of the skins and so affect the failure mode. In the present study the mechanical behavior of sandwich beams prepared from arc sprayed alloy 625 skin on 40 ppi nickel foam was characterized under four point bending. The ductility of the arc sprayed alloy 625 coatings was improved after heat treatment at 1100ºC and 900ºC while the yield point was reduced. Heat treatment of the sandwich beams reduced the danger of catastrophic failure.
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia, David, R. Joey Griffiths, and Hang Z. Yu. "Additive Friction Stir Deposition for Fabrication of Silicon Carbide Metal Matrix Composites." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8532.

Full text
Abstract:
Abstract Additive friction stir deposition is an emerging solid-state additive manufacturing technology that has shown promise for bulk fabrication of metals and metal-matrix composites. Here, we perform a preliminary investigation into the influence of tool geometries on the particle distribution and matrix-particle coherence of SiC in the matrix of Aluminum Alloy 6061 and commercially pure Copper. Two tool geometries have been used: (1) a simple, featureless tool and (2) a complex geometry tool with four surface protrusions. For the simple tool geometry, the Al-SiC is observed to have less uniform bulk distribution of the reinforcement phase, resulting in regions of highly concentrated SiC reinforcement (up to 69 area%). The Cu-SiC sample produced with the simple geometry tool has a homogeneous distribution. The samples produced with the complex geometry tool show more uniform distribution of SiC reinforcement throughout the bulk of the deposit with local reinforcement concentrations reaching up to 42 area% and 28 area% for the Al and Cu matrix, respectively. All tool geometries create samples with good interfaces that have continuous contact between the particle and matrix phases, even including particles with sharp angles and non-spherical surfaces. Further optimization of tool geometries and processing conditions can lead to improved control of the reinforcement phase distribution and enable design of metal-matrix composites with tailored site-specific properties.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography