Journal articles on the topic 'Reentrant Cavity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reentrant Cavity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Migliuolo, M., and T. G. Castner. "Novel tunable reentrant microwave cavity." Review of Scientific Instruments 59, no. 2 (February 1988): 388–90. http://dx.doi.org/10.1063/1.1140216.
Full textPaoloni, Claudio. "Periodically Allocated Reentrant Cavity Klystron." IEEE Transactions on Electron Devices 61, no. 6 (June 2014): 1687–91. http://dx.doi.org/10.1109/ted.2014.2301813.
Full textUhlman, James S. "A Note on the Development of a Nonlinear Axisymmetric Reentrant Jet Cavitation Model." Journal of Ship Research 50, no. 03 (September 1, 2006): 259–67. http://dx.doi.org/10.5957/jsr.2006.50.3.259.
Full textSheng-Lung Huang, Ying-Hui Chen, Pi-Ling Huang, Jui-Yun Yi, and Huy-Zu Cheng. "Multi-reentrant nonplanar ring laser cavity." IEEE Journal of Quantum Electronics 38, no. 10 (October 2002): 1301–8. http://dx.doi.org/10.1109/jqe.2002.802955.
Full textCarvalho, N. C., Y. Fan, J.-M. Le Floch, and M. E. Tobar. "Piezoelectric voltage coupled reentrant cavity resonator." Review of Scientific Instruments 85, no. 10 (October 2014): 104705. http://dx.doi.org/10.1063/1.4897482.
Full textTiwari, Ashish Kumar, and P. R. Hannurkar. "Electromagnetic Analysis of Reentrant Klystron Cavity." Journal of Infrared, Millimeter, and Terahertz Waves 31, no. 10 (August 25, 2010): 1221–24. http://dx.doi.org/10.1007/s10762-010-9701-5.
Full textBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "Effect of Beam tunnels on Resonant Frequency of Cylindrical Reentrant Cavity." Defence Science Journal 71, no. 03 (May 17, 2021): 332–36. http://dx.doi.org/10.14429/dsj.71.16814.
Full textNouroozi, M., M. Pasandidehfard, and M. H. Djavareshkian. "Simulation of Partial and Supercavitating Flows around Axisymmetric and Quasi-3D Bodies by Boundary Element Method Using Simple and Reentrant Jet Models at the Closure Zone of Cavity." Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1593849.
Full textSeo, Dongjin, Alex M. Schrader, Szu-Ying Chen, Yair Kaufman, Thomas R. Cristiani, Steven H. Page, Peter H. Koenig, Yonas Gizaw, Dong Woog Lee, and Jacob N. Israelachvili. "Rates of cavity filling by liquids." Proceedings of the National Academy of Sciences 115, no. 32 (July 19, 2018): 8070–75. http://dx.doi.org/10.1073/pnas.1804437115.
Full textFan, Yaohui, Zhengyu Zhang, Natalia C. Carvalho, Jean-Michel Le Floch, Qingxiao Shan, and Michael E. Tobar. "Investigation of Higher Order Reentrant Modes of a Cylindrical Reentrant-Ring Cavity Resonator." IEEE Transactions on Microwave Theory and Techniques 62, no. 8 (August 2014): 1657–62. http://dx.doi.org/10.1109/tmtt.2014.2331625.
Full textBrown, M. R., T. E. Sheridan, and M. A. Hayes. "Reentrant cavity as a low‐power plasma source." Review of Scientific Instruments 57, no. 12 (December 1986): 2957–60. http://dx.doi.org/10.1063/1.1139023.
Full textCarter, R. G., Jinjun Feng, and U. Becker. "Calculation of the Properties of Reentrant Cylindrical Cavity Resonators." IEEE Transactions on Microwave Theory and Techniques 55, no. 12 (December 2007): 2531–38. http://dx.doi.org/10.1109/tmtt.2007.909750.
Full textBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and S. K. Datta. "A Broadband Rectangular Reentrant Cavity for Multiple-Beam Klystron." IEEE Transactions on Electron Devices 66, no. 7 (July 2019): 3168–70. http://dx.doi.org/10.1109/ted.2019.2916222.
Full textHuang, Pi-Ling, Chun-Jen Weng, Hung-T'sang Tuan, Shen-Chuang Pei, Yung-Hsin Chang, and Sheng-Lung Huang. "Polarization Analysis of a Nonplanar Reentrant Ring Laser Cavity." Japanese Journal of Applied Physics 42, Part 1, No. 6A (June 15, 2003): 3403–8. http://dx.doi.org/10.1143/jjap.42.3403.
Full textTuan, Hung-Tsang, and Sheng-Lung Huang. "Analysis of reentrant two-mirror nonplanar ring laser cavity." Journal of the Optical Society of America A 22, no. 11 (November 1, 2005): 2476. http://dx.doi.org/10.1364/josaa.22.002476.
Full textde Paula, L. A. N., M. Goryachev, and M. E. Tobar. "Experiments match simulations in a multiple post reentrant cavity." Review of Scientific Instruments 88, no. 12 (December 2017): 125104. http://dx.doi.org/10.1063/1.4997626.
Full textIshihara, Y., and N. Wadamori. "Localized heating characteristics of hyperthermia using a reentrant cavity." Journal of Medical Engineering & Technology 32, no. 5 (January 2008): 348–57. http://dx.doi.org/10.1080/03091900802058953.
Full textLi, XiaoJing, ShunQi Zheng, BaoRong Zhao, XiWen Zhang, and WeiZhong Tang. "Design and Numerical Simulation of Novel Reentrant Microwave Cavity." Physics Procedia 22 (2011): 101–6. http://dx.doi.org/10.1016/j.phpro.2011.11.016.
Full textOnodera, T., and T. Hoashi. "Generalized representation of beam coupling coefficient in ungridded reentrant cavity." IEEE Transactions on Electron Devices 45, no. 8 (1998): 1858–60. http://dx.doi.org/10.1109/16.704395.
Full textLu, Fei, Yanjie Guo, Qiulin Tan, Tanyong Wei, Guozhu Wu, Haixing Wang, Lei Zhang, Xiaowei Guo, and Jijun Xiong. "Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications." Journal of Sensors 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/3417562.
Full textSrinivasan, Sudharsan, and Pierre-André Duperrex. "Dielectric-Filled Reentrant Cavity Resonator as a Low-Intensity Proton Beam Diagnostic." Instruments 2, no. 4 (November 7, 2018): 24. http://dx.doi.org/10.3390/instruments2040024.
Full textMuzhaimey, Syarif Syahrul Syazwan, Nik Nazri Nik Ghazali, Mohd Zamri Zainon, Irfan Anjum Badruddin, Mohamed Hussien, Sarfaraz Kamangar, and N. Ameer Ahammad. "Numerical Investigation of Heat Transfer Enhancement in a Microchannel with Conical-Shaped Reentrant Cavity." Mathematics 10, no. 22 (November 18, 2022): 4330. http://dx.doi.org/10.3390/math10224330.
Full textWang, Minwen, Xin Zhuo, Mingtong Zhao, Mengtong Qiu, Wei Chen, and Zhongming Wang. "Design and prototype test of a high-sensitivity reentrant-cavity based Schottky pickup." Review of Scientific Instruments 94, no. 3 (March 1, 2023): 033301. http://dx.doi.org/10.1063/5.0134286.
Full textXia, Z. X., Y. J. Cheng, and Y. Fan. "Frequency-reconfigurable TM010-mode reentrant cylindrical cavity for microwave material processing." Journal of Electromagnetic Waves and Applications 27, no. 5 (January 30, 2013): 605–14. http://dx.doi.org/10.1080/09205071.2013.758224.
Full textKedzierski, M. A., and L. Lin. "Pool boiling of HFO-1336mzz(Z) on a reentrant cavity surface." International Journal of Refrigeration 104 (August 2019): 476–83. http://dx.doi.org/10.1016/j.ijrefrig.2019.02.022.
Full textIshihara, Y., Y. Kameyama, Y. Minegishi, and N. Wadamori. "Heating applicator based on reentrant cavity with optimized local heating characteristics." International Journal of Hyperthermia 24, no. 8 (January 2008): 694–704. http://dx.doi.org/10.1080/02656730802117064.
Full textBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "A Post-Loaded Rectangular Reentrant Cavity for Broadband Multiple-Beam Klystron." IEEE Electron Device Letters 41, no. 6 (June 2020): 916–19. http://dx.doi.org/10.1109/led.2020.2989103.
Full textBeck, B. L., K. A. Jenkins, and J. R. Fitzsimmons. "Geometry comparisons of an 11-T coaxial reentrant cavity (ReCav) coil." Concepts in Magnetic Resonance 18B, no. 1 (July 2003): 24–27. http://dx.doi.org/10.1002/cmr.b.10074.
Full textZhang, Guang Jian, and Wei Dong Shi. "Numerical Modeling of Unsteady Cloud Cavitation around a Clark-Y Hydrofoil Based on Modified SST Model." Applied Mechanics and Materials 448-453 (October 2013): 3340–43. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.3340.
Full textGoryashko, V. A., M. Jobs, L. H. Duc, J. Ericsson, and R. Ruber. "12-Way 100 kW Reentrant Cavity-Based Power Combiner With Doorknob Couplers." IEEE Microwave and Wireless Components Letters 28, no. 2 (February 2018): 111–13. http://dx.doi.org/10.1109/lmwc.2017.2780619.
Full textSaimi, Motohiro, Eiji Shiohama, and Tsutomu Kobayashi. "A study of electrodeless microwave HID lamps with a reentrant-type cavity." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 86, Appendix (2002): 84. http://dx.doi.org/10.2150/jieij1980.86.appendix_84.
Full textZeng, Jian, Lang Lin, Yong Tang, Yalong Sun, and Wei Yuan. "Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array." International Journal of Heat and Mass Transfer 104 (January 2017): 918–29. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.007.
Full textLe, Q., J. P. Franc, and J. M. Michel. "Partial Cavities: Global Behavior and Mean Pressure Distribution." Journal of Fluids Engineering 115, no. 2 (June 1, 1993): 243–48. http://dx.doi.org/10.1115/1.2910131.
Full textMa, Jixu, Yukang Chen, and Jie Huang. "A Microwave Displacement Sensor Based on SIW Double Reentrant Cavity with Ring Gaps." Progress In Electromagnetics Research M 113 (2022): 35–45. http://dx.doi.org/10.2528/pierm22050102.
Full textIshihara, Yasutoshi, Yuya Gotanda, Naoki Wadamori, and Jin-ichi Matsuda. "Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors." Review of Scientific Instruments 78, no. 2 (February 2007): 024301. http://dx.doi.org/10.1063/1.2437203.
Full textHuang, Pi-Ling, Chun-Ren Weng, Huy-Zu Cheng, and Sheng-Lung Huang. "A Passively Q-Switched Laser Constructed by a Two-Mirror Reentrant Ring Cavity." Japanese Journal of Applied Physics 40, Part 2, No. 5B (May 15, 2001): L508—L510. http://dx.doi.org/10.1143/jjap.40.l508.
Full textGu, Wei, Yousheng He, and Tianqun Hu. "Transcritical Patterns of Cavitating Flow and Trends of Acoustic Level." Journal of Fluids Engineering 123, no. 4 (June 6, 2001): 850–56. http://dx.doi.org/10.1115/1.1412233.
Full textLiao, Dong, Yinchuang Yang, and Huihe Qiu. "Droplet impact dynamics and heat transfer on nanostructured doubly reentrant cavity under freezing temperature." Physics of Fluids 33, no. 5 (May 2021): 052005. http://dx.doi.org/10.1063/5.0050400.
Full textKazuma, Hiroyuki, Yoshiaki Saitoh, Michio Miyakawa, and Jun'ichi Hori. "Heating Characteristics with Reentrant Resonant-Cavity Applicator. An Experimental Study with Small Phantom Model." Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 12, no. 4 (1996): 401–9. http://dx.doi.org/10.3191/thermalmedicine.12.401.
Full textWang, Yonghui, Zhixian Ma, and Jili Zhang. "Precise determination of R134a boiling bundle effect on a column of reentrant cavity tubes." Applied Thermal Engineering 199 (November 2021): 117612. http://dx.doi.org/10.1016/j.applthermaleng.2021.117612.
Full textYasui, Toshiaki, Hirokazu Tahara, and Takao Yoshikawa. "Plasma Generation and Beam Extraction on Reentrant-Cavity-Type Electron Cyclotron Resonance Ion Source." Japanese Journal of Applied Physics 33, Part 1, No. 8 (August 15, 1994): 4787–92. http://dx.doi.org/10.1143/jjap.33.4787.
Full textGoyal, A., R. C. Jaeger, S. H. Bhavnani, C. D. Ellis, N. K. Phadke, M. Azimi-Rashti, and J. S. Goodling. "Formation of silicon reentrant cavity heat sinks using anisotropic etching and direct wafer bonding." IEEE Electron Device Letters 14, no. 1 (January 1993): 29–32. http://dx.doi.org/10.1109/55.215090.
Full textKedzierski, M. A., and L. Lin. "Pool boiling of R515A, R1234ze(E), and R1233zd(E) on a reentrant cavity surface." International Journal of Heat and Mass Transfer 161 (November 2020): 120252. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120252.
Full textKedzierski, M. A. "Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface." International Journal of Refrigeration 49 (January 2015): 36–48. http://dx.doi.org/10.1016/j.ijrefrig.2014.09.012.
Full textWang, Yonghui, Jili Zhang, and Zhixian Ma. "Experimental study of pool boiling on a novel reentrant cavity tube surface with R134a." International Journal of Heat and Mass Transfer 135 (June 2019): 124–30. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.128.
Full textJi, Wen-Tao, Chuang-Yao Zhao, Ding-Cai Zhang, Peng-Fei Zhao, Zeng-Yao Li, Ya-Ling He, and Wen-Quan Tao. "Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux." Applied Thermal Engineering 127 (December 2017): 1364–71. http://dx.doi.org/10.1016/j.applthermaleng.2017.08.130.
Full textDuncan, J. H., and S. Zhang. "On the interaction of a collapsing cavity and a compliant wall." Journal of Fluid Mechanics 226 (May 1991): 401–23. http://dx.doi.org/10.1017/s0022112091002446.
Full textBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "Equivalent Circuit Analysis of a Rectangular Double-Reentrant Cavity With Circular Cylindrical Ferrule for Klystrons." IEEE Transactions on Electron Devices 66, no. 11 (November 2019): 4952–56. http://dx.doi.org/10.1109/ted.2019.2942778.
Full textZhang, Shiwei, Lang Lin, Gong Chen, Heng Tang, Jian Zeng, Wei Yuan, and Yong Tang. "Experimental study on the capillary performance of aluminum micro-grooved wicks with reentrant cavity array." International Journal of Heat and Mass Transfer 139 (August 2019): 917–27. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.091.
Full textKashiwa, T., M. Miyakawa, T. Tsukamoto, and Y. Kanai. "Resonant frequency analysis of reentrant resonant cavity applicator by using FEM and FD-TD method." IEEE Transactions on Magnetics 36, no. 4 (July 2000): 1750–53. http://dx.doi.org/10.1109/20.877782.
Full text