Academic literature on the topic 'Reconstruction de la densité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reconstruction de la densité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reconstruction de la densité"
Rutherford, S., M. E. Mann, T. J. Osborn, K. R. Briffa, P D Jones, R. S. Bradley, and M. K. Hughes. "Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain." Journal of Climate 18, no. 13 (July 1, 2005): 2308–29. http://dx.doi.org/10.1175/jcli3351.1.
Full textRus, Guillermo, and Juan Melchor. "Logical Inference Framework for Experimental Design of Mechanical Characterization Procedures." Sensors 18, no. 9 (September 7, 2018): 2984. http://dx.doi.org/10.3390/s18092984.
Full textIonita, Sabina, Serban Popescu, and Ioan Lascar. "Polypropylene meshes and other alloplastic implants for soft tissue and cartilage nasal reconstructive surgery – a literature review." Romanian Journal of Rhinology 5, no. 18 (June 1, 2015): 87–94. http://dx.doi.org/10.1515/rjr-2015-0010.
Full textDurbec, M., N. Mayer, D. Vertu-Ciolino, F. Disant, F. Mallein-Gerin, and E. Perrier-Groult. "Reconstruction du cartilage nasal par ingénierie tissulaire à base de polyéthylène de haute densité et d’un hydrogel." Pathologie Biologie 62, no. 3 (June 2014): 137–45. http://dx.doi.org/10.1016/j.patbio.2014.03.001.
Full textHasenberger, Birgit, and João Alves. "AVIATOR: Morphological object reconstruction in 3D." Astronomy & Astrophysics 633 (January 2020): A132. http://dx.doi.org/10.1051/0004-6361/201936095.
Full textHe, Yuhang, Zhiheng Ma, Xing Wei, Xiaopeng Hong, Wei Ke, and Yihong Gong. "Error-Aware Density Isomorphism Reconstruction for Unsupervised Cross-Domain Crowd Counting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (May 18, 2021): 1540–48. http://dx.doi.org/10.1609/aaai.v35i2.16245.
Full textJäger, M., P. Hübner, D. Haitz, and B. Jutzi. "A COMPARATIVE NEURAL RADIANCE FIELD (NERF) 3D ANALYSIS OF CAMERA POSES FROM HOLOLENS TRAJECTORIES AND STRUCTURE FROM MOTION." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-1/W1-2023 (May 25, 2023): 207–13. http://dx.doi.org/10.5194/isprs-archives-xlviii-1-w1-2023-207-2023.
Full textSkamarock, William C., and Maximo Menchaca. "Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Reconstructions for Forward-in-Time Schemes." Monthly Weather Review 138, no. 12 (December 1, 2010): 4497–508. http://dx.doi.org/10.1175/2010mwr3390.1.
Full textKunz, Torben, Andrew M. Dolman, and Thomas Laepple. "A spectral approach to estimating the timescale-dependent uncertainty of paleoclimate records – Part 1: Theoretical concept." Climate of the Past 16, no. 4 (August 11, 2020): 1469–92. http://dx.doi.org/10.5194/cp-16-1469-2020.
Full textSoufan, Alexandre T., Jan M. Ruijter, Maurice JB Van Den Hoff, and Antoon FM Moorman. "QUANTITATIVE 3D RECONSTRUCTIONS AS IDENTIFICATION TOOL IN HEART DEVELOPMENT." Image Analysis & Stereology 20, no. 3 (May 3, 2011): 193. http://dx.doi.org/10.5566/ias.v20.p193-198.
Full textDissertations / Theses on the topic "Reconstruction de la densité"
Yan, Zeyin. "Reconstruction de densité d'impulsion et détermination de la matrice densité réduite à un électron." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC001/document.
Full textHigh resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) are commonly used to model charge and spin densities in position space. Additionally, Compton scattering (CS) and magnetic Compton scattering (MCS) are the main techniques to observe the most diffuse electrons and unpaired electrons by providing the “Directional Compton Profiles" (DCPs) and ”Directional magnetic Compton Profiles" (DMCPs), respectively. A set of such DCPs (DMCPs) can be used to reconstruct two-dimensional or three-dimensional electron momentum density. Since all these techniques describe the same electrons in different space representations, we concentrate on associating the electron momentum density reconstructed from DCPs (resp. DMCPs) with electron density refined using XRD (resp. PND) data.The confrontation between theory and experiment, or between different experiments, providing several sets of experimental data, is generally obtained from the reconstructed electron densities and compared with theoretical results in position and momentum spaces. The challenge of comparing the results obtained by ab-initio computations and experimental approaches (in the Nit(SMe)Ph case) shows the necessity of a multiple experiments joint refinement and also the improvement of theoretical computation models. It proves that, in the case of a spin resolved electron density, a mere Hartree-Fock or DFT approach is not sufficient. In the YTiO3 case, a joint analysis of position and momentum spaces (PND & MCS) highlights the possible ferromagnetic pathway along Ti--O1--Ti. Therefore, a “super-position" spin density is proposed and proves to allow cross-checking the coherence between experimental electron densities in posittion and momentum spaces, without having recourse to ab initio results. Furthermore, an ”isolated Ti model" based on PND refined orbital coefficients emphasizes the importance of metal-oxygen coherent coupling to properly account for observations in momentum space.A one-electron reduced density matrix (1-RDM) approach is proposed as a fundamental basis for systematically combining position and momentum spaces. To reconstruct 1-RDM from a periodic ab initio computation, an "iterative cluster" approach is proposed. On this basis, it becomes possible to obtain a theoretical spin resolved 1-RDM along specific chemical bonding paths. It allows a clarification of the difference between Ti--O1--Ti and Ti--O2--Ti spin couplings in YTiO3. It shows that interaction contributions between atoms (metal and oxygen atoms) are different depending on whether the property is represented in position or momentum spaces. This is clearly observed in metal-oxygen chemical bonds and can be illustrated by an orbital resolved contribution analysis. Quantities for electron descriptions in phase space, such as the Moyal function, can also be determinerd by this "cluster model", which might be of particular interest if Compton scattering in Bragg positions could be generalized. The preliminary results of a simple spin resolved 1-RDM refinement model are exposed. The model respects the N-representability and is adapted for various experimental data (e.g.: XRD, PND, CS, MCS, XMD etc.). The potential of this model is not limited to a spin analysis but its use is limited here to the unpaired electrons description. The limitations of this model are analysed and possible improvements in the future are also proposed
Klose, Gerd. "Density matrix reconstruction of a large angular momentum." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290012.
Full textBianchetti, Morales Rennan. "Density profile reconstruction methods for extraordinary mode reflectometry." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0031/document.
Full textThe goal of this PhD is to improve the data analysis techniques of frequency swept reflectometry for determination of the density profile of fusion plasmas. There has been significant improvements in the last two decades on the hardware design and signal extraction techniques, but the data analysis is lagging behind and require further improvements to meet the required standards for continuous operation in future reactors. The improvements obtained in this thesis on the reconstruction of density profiles provide a better accuracy in a shorter time, even in the presence of a density hole, also enabling sufficiently precise measurements of the properties of turbulence used to validate numerical models, and allowing real-time monitoring of the shape and position of the plasma
Khalaf, Reem. "Image reconstruction for optical tomography using photon density waves." Thesis, University of Hertfordshire, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302304.
Full textLehovich, Andre. "List-mode SPECT reconstruction using empirical likelihood." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1098%5F1%5Fm.pdf&type=application/pdf.
Full textZhang, Yu. "Further application of hydroxyapatite reinforced high density polyethylene composite - skull reconstruction implants." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414001.
Full textTafas, Jihad. "An algorithm for two-dimensional density reconstruction in proton computed tomography (PCT)." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3281.
Full textMeredith, Kelly Robyn. "The Influence of Soil Reconstruction Methods on Mineral Sands Mine Soil Properties." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31006.
Full textMaster of Science
Martin, Lorca Dario. "Implementation And Comparison Of Reconstruction Algorithms For Magnetic Resonance." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608250/index.pdf.
Full textSun, Hongyan. "An investigation into the use of scattered photons to improve 2D Position Emission Tomography (PET) functional imaging quality." Hindawi Publishing Corporation, 2012. http://hdl.handle.net/1993/31031.
Full textFebruary 2016
Books on the topic "Reconstruction de la densité"
Kim, Sukkoo. The reconstruction of the American urban landscape in the twentieth century. Cambridge, MA: National Bureau of Economic Research, 2002.
Find full text(France), École nationale supérieure des beaux-arts. Densité +,- O. Paris: Ecole nationale supérieure des beaux-arts, 2004.
Find full textMcBride, R. A. Soil degradation risk indicator: Soil compaction component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Find full textNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Techniques expérimentales liées à l'aérodynamique à basse densité. Neuilly-sur-Seine: AGARD, 1990.
Find full text1944-, Sarrazin Pierre, ed. L' espace et la densité: Entretiens avec Michel-Pierre Sarrazin. Montréal: Hexagone, 1993.
Find full textMies van der Rohe, Ludwig, 1886-1969. and Ramos Fernando, eds. Mies van der Rohe, espace et densité: Mur, colonne, interférences. Gollion: InFolio, 2006.
Find full textS, MacLean Alex, ed. Visualizing density. Cambridge, Mass: Lincoln Institute of Land Policy, 2007.
Find full textRuggiero, Adriane. Reconstruction. New York: Marshall Cavendish Benchmark, 2006.
Find full textReconstruction. Edina, Minn: Abdo Pub., 2005.
Find full textReconstruction. New York: AV2 by Weigl, 2014.
Find full textBook chapters on the topic "Reconstruction de la densité"
Korostelev, A. P., and A. B. Tsybakov. "Estimation of Support of a Density." In Minimax Theory of Image Reconstruction, 182–97. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2712-0_7.
Full textLiu, Tang-Kue, Rong-Sen Yang, and Ying-Feng Hwang. "Distal Femoral Bone Density Following Total Knee Arthroplasty." In Reconstruction of the Knee Joint, 318–23. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-68464-0_41.
Full textSchweingruber, Fritz H., and Keith R. Briffa. "Tree-Ring Density Networks for Climate Reconstruction." In Climatic Variations and Forcing Mechanisms of the Last 2000 Years, 43–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61113-1_3.
Full textJonsson, Erik, and Michael Felsberg. "Reconstruction of Probability Density Functions from Channel Representations." In Image Analysis, 491–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_50.
Full textMyszkowski, Karol. "Lighting Reconstruction Using Fast and Adaptive Density Estimation Techniques." In Eurographics, 251–62. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6858-5_23.
Full textReimer, Manfred. "Approximation of Density Functions and Reconstruction of the Approximant." In International Series of Numerical Mathematics, 253–61. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8067-1_14.
Full textLouis, Alfred K., Uwe Schmitt, Felix Darvas, Helmut Büchner, and Manfred Fuchs. "Spatio-Temporal Current Density Reconstruction from EEG-/MEG-Data." In Mathematics — Key Technology for the Future, 472–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55753-8_38.
Full textMarchevsky, Ilia K., and Georgy A. Shcheglov. "Double Layer Potential Density Reconstruction Procedure for 3D Vortex Methods." In Lecture Notes in Computational Science and Engineering, 287–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30705-9_25.
Full textBrida, G., M. Genovese, M. Gramegna, P. Traina, L. Ciavarella, S. Olivares, and M. G. A. Paris. "Interferometric Technique for Density Matrix Reconstruction by On/Off Detectors." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 233–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11731-2_28.
Full textBremer, M., and M. Grewing. "An Iterative Method for the Reconstruction of Two-Dimensional Density Distributions." In Planetary Nebulae, 218. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2088-3_90.
Full textConference papers on the topic "Reconstruction de la densité"
Gellee, T., and B. Philippe. "Utilisation combinée des biomatériaux xénogéniques et d’os autologue en chirurgie reconstructrice préimplantaire : Réflexions à propos de quatre indications méconnues." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602008.
Full textYang, Hui, Hao Zhou, Bing Dong, Wentao Zhou, Weiguo Gu, Xinyu Zhang, Qingxin Lei, Chenyu Shan, and Dezhong Wang. "A Novel Transmission Reconstruction Algorithm for Radioactive Drum Characterization." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-90126.
Full textSpencer, Mark F., Jeffrey R. Beck, Jeremy P. Bos, and Terry J. Brennan. "Investigation of branch-point density using traditional wave-optics techniques." In Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2018, edited by Jean J. Dolne and Philip J. Bones. SPIE, 2018. http://dx.doi.org/10.1117/12.2319871.
Full textGeorge, Jacob, Thomas P. Jenkins, James D. Trolinger, Benjamin Buckner, and Cecil F. Hess. "Simultaneous measurements of density field and wavefront distortions in high speed flows." In Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2017, edited by Jean J. Dolne and Rick P. Millane. SPIE, 2017. http://dx.doi.org/10.1117/12.2275883.
Full textRangel, Esteban, Nan Li, Salman Habib, Tom Peterka, Ankit Agrawal, Wei-Keng Liao, and Alok Choudhary. "Parallel DTFE Surface Density Field Reconstruction." In 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016. http://dx.doi.org/10.1109/cluster.2016.40.
Full textEckman, Peter M., and Gregory W. Faris. "Convolution Backprojection Reconstruction from Photon Density Waves." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.ria305.
Full textPearcy, J. A., G. D. Sutcliffe, T. M. Johnson, B. L. Reichelt, S. G. Dannhoff, D. Barnak, J. Frenje, M. Gatu-Johnson, R. D. Petrasso, and C. K. Li. "Investigation of Electromagnetic Fields in HEDP Experiments Using Proton Radiography." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/3d.2023.jtu4a.11.
Full textWiedeman, Christopher, Wenxiang Cong, and Ge Wang. "Simultaneous electron density and attenuation coefficient reconstruction." In Developments in X-Ray Tomography XIII, edited by Bert Müller and Ge Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2596280.
Full textDupe, F. X., M. J. Fadili, and J. L. Starch. "Data augmentation for galaxy density map reconstruction." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6115674.
Full textAnastasio, Mark A., Daxin Shi, and Thomas Deffieux. "Image reconstruction in variable density acoustic tomography." In Medical Imaging, edited by William F. Walker and Stanislav Y. Emelianov. SPIE, 2005. http://dx.doi.org/10.1117/12.596131.
Full textReports on the topic "Reconstruction de la densité"
Sjue, Sky K. (TOWARD) DENSITY RECONSTRUCTION FROM PROTON FLASH RADIOGRAPHS USING THE BAYES INFERENCE ENGINE. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1093344.
Full textKlasky, Marc, Michelle Espy, Jennifer Disterhaupt, and Michael McCann. High Fidelity Tomographic Density Reconstructions. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1827564.
Full textKlasky, Marc, Balasubramanya Nadiga, Jennifer Disterhaupt, Trevor Wilcox, Luke Hovey, Theodore Mockler, Christopher Fryer, et al. Uncertainties in Density and Simulation Parameters for Radiographic Reconstructions Using Machine Learning. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1632660.
Full textBrochardt, Gary C. Causal Reconstruction. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada271692.
Full textNicault, A., L. Cournoyer, T. Labarre, and Y. Bégin. Analyse des relations entre le climat et les séries temporelles de densité de cerne. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328074.
Full textShearer, Allan W., and Neive Tierney. Bagby Street Reconstruction. Landscape Architecture Foundation, 2015. http://dx.doi.org/10.31353/cs1000.
Full textAl-Chaar, Ghassan, Carey Baxter, Ammar Elmajdoub, Kevin Cupka-Head, and George Calfas. Pre-reconstruction planning. Engineer Research and Development Center (U.S.), March 2019. http://dx.doi.org/10.21079/11681/32321.
Full textKazman, Rick, Liam O'Brien, and Chris Verhoef. Architecture Reconstruction Guidelines. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada388707.
Full textBuchbinder, Daniel, and Renata Khelemsky. Orbital Floor Reconstruction. Touch Surgery Simulations, June 2015. http://dx.doi.org/10.18556/touchsurgery/2015.s0050.
Full textStrittmatter, P. A., and E. K. Hege. Speckle Image Reconstruction. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada158653.
Full text