Academic literature on the topic 'Reconnaissance faciale automatisée'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reconnaissance faciale automatisée.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reconnaissance faciale automatisée"

1

Messaoudi, Aïssa. "Les défis de l’IA dans l’éducation : de la protection des données aux biais algorithmiques." Médiations et médiatisations, no. 18 (October 30, 2024): 148–60. http://dx.doi.org/10.52358/mm.vi18.409.

Full text
Abstract:
Cet article examine l'impact de l'intelligence artificielle (IA) sur le domaine de l'éducation, et en explore les avantages et les défis. Le recours à l'IA dans le secteur éducatif offre de nombreux avantages tels que l'automatisation des tâches administratives répétitives et la personnalisation des parcours d’apprentissage. Cependant, cela soulève des préoccupations éthiques quant à la protection des données individuelles et au risque de biais algorithmiques. En outre, nous abordons d’autres défis : ceux liés à l’opposition entre l'évaluation automatisée et l'évaluation humaine ainsi que les implications complexes de la reconnaissance faciale dans un contexte éducatif. Il est essentiel qu’une approche réfléchie et éthique dans le déploiement de l'IA en éducation soit pensée en soulignant la nécessité de principes éthiques précis et transparents, et d'une réflexion pédagogique approfondie. Nous préconisons l'utilisation d'outils IA open source pour favoriser la transparence et la conformité aux réglementations en vigueur.
APA, Harvard, Vancouver, ISO, and other styles
2

Molnar, Petra, and Isabelle Saint-Saëns. "Les nouvelles technologies frontalières." Plein droit 140, no. 1 (May 28, 2024): 39–42. http://dx.doi.org/10.3917/pld.140.0041.

Full text
Abstract:
Les espaces frontaliers comme ceux de l’urgence humanitaire, où la réglementation est délibérément limitée, constituent des terrains d’essai privilégiés pour le déploiement des nouvelles technologies de la surveillance. À l’échelle mondiale, fichiers numériques, chiens-robots, détecteurs de mensonges, reconnaissance faciale, etc., viennent étoffer l’arsenal sécuritaire des États pour automatiser le contrôle des frontières. Mais qu’en est-il de la préservation des droits fondamentaux des personnes visées par ces dispositifs ? Malgré l’usage croissant des systèmes d’intelligence artificielle, la réglementation internationale reste, semble-t-il, bien silencieuse.
APA, Harvard, Vancouver, ISO, and other styles
3

Fontaine, D., and S. Santucci-Sivolotto. "Évaluer la douleur par reconnaissance automatique de l’expression faciale : un espoir illusoire ou la réalité pour demain ?" Douleur et Analgésie 34, no. 3 (September 2021): 155–61. http://dx.doi.org/10.3166/dea-2021-0174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nzobonimpa, Stany. "Algorithmes et intelligence artificielle : une note sur l’état de la réglementation des technologies utilisant la reconnaissance faciale automatique au Canada et aux États-Unis." Revue Gouvernance 19, no. 2 (2022): 99. http://dx.doi.org/10.7202/1094078ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braun Binder, Nadja, Eliane Kunz, and Liliane Obrecht. "Maschinelle Gesichtserkennung im öffentlichen Raum." sui generis, April 11, 2022. http://dx.doi.org/10.21257/sg.204.

Full text
Abstract:
Der Einsatz von maschineller Gesichtserkennung im öffentlichen Raum birgt die Gefahr einer gesellschaftlichen Massenüberwachung. Werden dabei biometrische Daten, die ein Individuum eindeutig identifizieren, genutzt, handelt es sich nach dem neuen Datenschutzgesetz um eine Bearbeitung besonders schützenswerter Personendaten. Die maschinelle Gesichtserkennung ist in der Schweiz regulatorisch kaum umrissen. Dabei sind Überlegungen dazu dringend geboten. Dies ergibt sich einerseits aus der Grundrechtsrelevanz der Thematik, andererseits fordern zivil-gesellschaftliche Organisationen ein entsprechendes Verbot. Auch die geplante EU-Regelung zur künstlichen Intelligenz, in der die Gesichtserkennung enthalten ist, sollte in den Erwägungen berücksichtigt werden. Vor diesem Hintergrund gibt der vorliegende Aufsatz einen Überblick über die im Zusammenhang mit maschineller Gesichtserkennung im öffentlichen Raum auftre-tenden Rechtsfragen und befasst sich mit der Frage der Notwendigkeit eines Verbots oder Moratoriums. -- L’utilisation de la reconnaissance faciale automatique dans l’espace public comporte le risque d’une surveillance de masse de la société. Si des données biométriques identifiant clairement un individu sont utilisées, il s’agit, selon la nou- velle loi sur la protection des données, d’un traitement de données personnelles sensibles. En Suisse, la reconnaissance faciale automatique n’est guère encadrée par la réglementation. Il est pourtant urgent de réfléchir à cette question. Cela résulte, d’une part, de l’importance de cette question en termes de droits fondamentaux et, d’autre part, de la volonté de certaines organisations de la société civile d’interdire une telle utilisation de ces données. La réglementation européenne prévue en matière d’intelligence artificielle, qui inclut la reconnaissance faciale, devrait également être prise en compte dans les réflexions. Dans ce contexte, le présent article donne un aperçu des questions juridiques qui se posent s’agissant de la reconnaissance faciale automatique dans l’espace public et se penche sur la question de la nécessité d’une interdiction ou d’un moratoire.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Reconnaissance faciale automatisée"

1

Maalej, Ahmed. "Reconnaissance d'Expressions Faciale 3D Basée sur l'Analyse de Forme et l'Apprentissage Automatique." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2012. http://tel.archives-ouvertes.fr/tel-00726298.

Full text
Abstract:
La reconnaissance des expressions faciales est une tâche difficile, qui a reçu un intérêt croissant au sein de la communauté des chercheurs, et qui impacte les applications dans des domaines liés à l'interaction homme-machine (IHM). Dans le but de construire des systèmes IHM approchant le comportement humain et emotionnellement intelligents, les scientifiques essaient d'introduire la composante émotionnelle dans ce type de systèmes. Le développement récent des capteurs d'acquisition 3D a fait que les données 3D deviennent de plus en plus disponibles, et ce type de données vient pour remédier à des problèmes inhérents aux données 2D tels que les variations d'éclairage, de pose et d'échelle et de faible résolution. Plusieurs bases de données 3D du visage sont publiquement disponibles pour les chercheurs dans le domaine de la reconnaissance d'expression faciale leur permettant ainsi de valider et d'évaluer leurs approches. Cette thèse traite le problème la reconnaissance d'expressions faciale et propose une approche basée sur l'analyse de forme pour la reconnaissance d'expressions dans des cadres de données 3D statiques et 3D dynamiques. Tout d'abord, une représentation du modèle 3D du visage basée sur les courbes est proposée pour décrire les traits du visage. Puis, utilisant ces courbes, l'information de forme qui leur est liée est quantifiée en utilisant un cadre de travail basé sur la géométrie Riemannienne. Nous obtenons ainsi des scores de similarité entre les différentes formes locales du visage. Nous constituons, alors, l'ensemble des descripteurs d'expressions associées à chaque surface faciale. Enfin, ces descripteurs sont utilisés pour la classification l'expressions moyennant des algorithmes d'apprentissage automatique. Des expérimentations exhaustives sont alors entreprises pour valider notre approche. Des résultats de taux de reconnaissance d'expressions de l'ordre de 98.81% pour l'approche 3D statique, et de l'ordre de 93.83% pour l'approche 3D dynamique sont alors atteints, et sont comparés par rapport aux résultats des travaux de l'état de l'art.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdat, Faiza. "Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques." Thesis, Metz, 2010. http://www.theses.fr/2010METZ035S/document.

Full text
Abstract:
Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours
This thesis presents a generic method for automatic recognition of emotions from a bimodal system based on facial expressions and physiological signals. This data processing approach leads to better extraction of information and is more reliable than single modality. The proposed algorithm for facial expression recognition is based on the distance variation of facial muscles from the neutral state and on the classification by means of Support Vector Machines (SVM). And the emotion recognition from physiological signals is based on the classification of statistical parameters by the same classifier. In order to have a more reliable recognition system, we have combined the facial expressions and physiological signals. The direct combination of such information is not trivial giving the differences of characteristics (such as frequency, amplitude, variation, and dimensionality). To remedy this, we have merged the information at different levels of implementation. At feature-level fusion, we have tested the mutual information approach for selecting the most relevant and principal component analysis to reduce their dimensionality. For decision-level fusion we have implemented two methods; the first based on voting process and another based on dynamic Bayesian networks. The optimal results were obtained with the fusion of features based on Principal Component Analysis. These methods have been tested on a database developed in our laboratory from healthy subjects and inducing with IAPS pictures. A self-assessment step has been applied to all subjects in order to improve the annotation of images used for induction. The obtained results have shown good performance even in presence of variability among individuals and the emotional state variability for several days
APA, Harvard, Vancouver, ISO, and other styles
3

Abdat, Faiza. "Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques." Electronic Thesis or Diss., Metz, 2010. http://www.theses.fr/2010METZ035S.

Full text
Abstract:
Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours
This thesis presents a generic method for automatic recognition of emotions from a bimodal system based on facial expressions and physiological signals. This data processing approach leads to better extraction of information and is more reliable than single modality. The proposed algorithm for facial expression recognition is based on the distance variation of facial muscles from the neutral state and on the classification by means of Support Vector Machines (SVM). And the emotion recognition from physiological signals is based on the classification of statistical parameters by the same classifier. In order to have a more reliable recognition system, we have combined the facial expressions and physiological signals. The direct combination of such information is not trivial giving the differences of characteristics (such as frequency, amplitude, variation, and dimensionality). To remedy this, we have merged the information at different levels of implementation. At feature-level fusion, we have tested the mutual information approach for selecting the most relevant and principal component analysis to reduce their dimensionality. For decision-level fusion we have implemented two methods; the first based on voting process and another based on dynamic Bayesian networks. The optimal results were obtained with the fusion of features based on Principal Component Analysis. These methods have been tested on a database developed in our laboratory from healthy subjects and inducing with IAPS pictures. A self-assessment step has been applied to all subjects in order to improve the annotation of images used for induction. The obtained results have shown good performance even in presence of variability among individuals and the emotional state variability for several days
APA, Harvard, Vancouver, ISO, and other styles
4

Al, chanti Dawood. "Analyse Automatique des Macro et Micro Expressions Faciales : Détection et Reconnaissance par Machine Learning." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT058.

Full text
Abstract:
L’analyse automatique des expressions faciales représente à l’heure actuelle une problématique importante associée à de multiples applications telles que la reconnaissance de visages ou encore les interactions homme machine. Dans cette thèse, nous nous attaquons au problème de la reconnaissance d’expressions faciales à partir d’une image ou d’une séquence d’images. Nous abordons le problème sous trois angles.Tout d’abord, nous étudions les macro-expressions faciales et nous proposons de comparer l’efficacité de trois descripteurs différents. Cela conduit au développement d’un algorithme de reconnaissance d’expressions basé sur des descripteurs bas niveau encodés dans un modèle de type sac de mots, puis d’un algorithme basé sur des descripteurs de moyen niveau associés à une représentation éparse et enfin d’un algorithme d’apprentissage profond tenant compte de descripteurs haut niveau. Notre objectif lors de la comparaison de ces trois algorithmes est de trouver la représentation des informations de visages la plus discriminante pour reconnaitre des expressions faciales en étant donc capable de s’affranchir des sources de variabilités que sont les facteurs de variabilité intrinsèques tels que l’apparence du visage ou la manière de réaliser une expression donnée et les facteurs de variabilité extrinsèques tels que les variations d’illumination, de pose, d’échelle, de résolution, de bruit ou d’occultations. Nous examinons aussi l’apport de descripteurs spatio-temporels capables de prendre en compte des informations dynamiques utiles pour séparer les classes ambigües.La grosse limitation des méthodes de classification supervisée est qu’elles sont très coûteuses en termes de labélisation de données. Afin de s’affranchir en partie de cette limitation, nous avons étudié dans un second temps, comment utiliser des méthodes de transfert d’apprentissage de manière à essayer d’étendre les modèles appris sur un ensemble donné de classes d’émotions à des expressions inconnues du processus d’apprentissage. Ainsi nous nous sommes intéressés à l’adaptation de domaine et à l’apprentissage avec peu ou pas de données labélisées. La méthode proposée nous permet de traiter des données non labélisées provenant de distributions différentes de celles du domaine source de l’apprentissage ou encore des données qui ne concernent pas les mêmes labels mais qui partagent le même contexte. Le transfert de connaissance s’appuie sur un apprentissage euclidien et des réseaux de neurones convolutifs de manière à définir une fonction de mise en correspondance entre les informations visuelles provenant des expressions faciales et un espace sémantique issu d’un modèle de langage naturel.Dans un troisième temps, nous nous sommes intéressés à la reconnaissance des micro-expressions faciales. Nous proposons un algorithme destiné à localiser ces micro-expressions dans une séquence d’images depuis l’image initiale (onset image) jusqu’à l’image finale (offset image) et à déterminer les régions des images qui sont affectées par les micro-déformations associées aux micro-expressions. Le problème est abordé sous un angle de détection d’anomalies ce qui se justifie par le fait que les déformations engendrées par les micro-expressions sont a priori un phénomène plus rare que celles produites par toutes les autres causes de déformation du visage telles que les macro-expressions, les clignements des yeux, les mouvements de la tête… Ainsi nous proposons un réseau de neurones auto-encodeur récurrent destiné à capturer les changements spatiaux et temporels associés à toutes les déformations du visage autres que celles dues aux micro-expressions. Ensuite, nous apprenons un modèle statistique basé sur un mélange de gaussiennes afin d’estimer la densité de probabilité de ces déformations autres que celles dues aux micro-expressions.Tous nos algorithmes sont testés et évalués sur des bases d’expressions faciales actées et/ou spontanées
Facial expression analysis is an important problem in many biometric tasks, such as face recognition, face animation, affective computing and human computer interface. In this thesis, we aim at analyzing facial expressions of a face using images and video sequences. We divided the problem into three leading parts.First, we study Macro Facial Expressions for Emotion Recognition and we propose three different levels of feature representations. Low-level feature through a Bag of Visual Word model, mid-level feature through Sparse Representation and hierarchical features through a Deep Learning based method. The objective of doing this is to find the most effective and efficient representation that contains distinctive information of expressions and that overcomes various challenges coming from: 1) intrinsic factors such as appearance and expressiveness variability and 2) extrinsic factors such as illumination, pose, scale and imaging parameters, e.g., resolution, focus, imaging, noise. Then, we incorporate the time dimension to extract spatio-temporal features with the objective to describe subtle feature deformations to discriminate ambiguous classes.Second, we direct our research toward transfer learning, where we aim at Adapting Facial Expression Category Models to New Domains and Tasks. Thus we study domain adaptation and zero shot learning for developing a method that solves the two tasks jointly. Our method is suitable for unlabelled target datasets coming from different data distributions than the source domain and for unlabelled target datasets with different label distributions but sharing the same context as the source domain. Therefore, to permit knowledge transfer between domains and tasks, we use Euclidean learning and Convolutional Neural Networks to design a mapping function that map the visual information coming from facial expressions into a semantic space coming from a Natural Language model that encodes the visual attribute description or use the label information. The consistency between the two subspaces is maximized by aligning them using the visual feature distribution.Third, we study Micro Facial Expression Detection. We propose an algorithm to spot micro-expression segments including the onset and offset frames and to spatially pinpoint in each image space the regions involved in the micro-facial muscle movements. The problem is formulated into Anomaly Detection due to the fact that micro-expressions occur infrequently and thus leading to few data generation compared to natural facial behaviours. In this manner, first, we propose a deep Recurrent Convolutional Auto-Encoder to capture spatial and motion feature changes of natural facial behaviours. Then, a statistical based model for estimating the probability density function of normal facial behaviours while associating a discriminating score to spot micro-expressions is learned based on a Gaussian Mixture Model. Finally, an adaptive thresholding technique for identifying micro expressions from natural facial behaviour is proposed.Our algorithms are tested over deliberate and spontaneous facial expression benchmarks
APA, Harvard, Vancouver, ISO, and other styles
5

Ouzar, Yassine. "Reconnaissance automatique sans contact de l'état affectif de la personne par fusion physio-visuelle à partir de vidéo du visage." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0076.

Full text
Abstract:
La reconnaissance automatique de l'état affectif reste un sujet difficile en raison de la complexité des émotions / stress, qui impliquent des éléments expérientiels, comportementaux et physiologiques. Comme il est difficile de décrire l'état affectif de la personne de manière exhaustive en termes de modalités uniques, des études récentes se sont concentrées sur des stratégies de fusion afin d'exploiter la complémentarité des signaux multimodaux. L'objectif principal de cette thèse consiste à étudier la faisabilité d'une fusion physio-visuelle pour la reconnaissance automatique de l'état affectif de la personne (émotions / stress) à partir des vidéos du visage. La fusion des expressions faciales et des signaux physiologiques permet de tirer les avantages de chaque modalité. Les expressions faciales sont simple à acquérir et permettent d'avoir une vision externe de l'état affectif, tandis que les signaux physiologiques permettent d'améliorer la fiabilité et relever le problème des expressions faciales contrefaites. Les recherches développées dans cette thèse se situent à l'intersection de l'intelligence artificielle, l'informatique affective ainsi que l'ingénierie biomédicale. Notre contribution s'axe sur deux aspects. Nous proposons en premier lieu une nouvelle approche bout-en-bout permettant d'estimer la fréquence cardiaque à partir d'enregistrements vidéo du visage à l'aide du principe de photopléthysmographie par imagerie (iPPG). La méthode repose sur un réseau spatio-temporel profond (X-iPPGNet) qui apprend le concept d'iPPG à partir de zéro, sans incorporer de connaissances préalables ni passer par l'extraction manuelle des signaux iPPG. Le seconde aspect porte sur une chaine de traitement physio-visuelle pour la reconnaissance automatique des émotions spontanées et du stress à partir des vidéos du visage. Le modèle proposé comprend deux étages permettant d'extraire les caractéristiques de chaque modalité. Le pipeline physiologique est commun au système de reconnaissance d'émotion et celui du stress. Il est basé sur MTTS-CAN, une méthode récente d'estimation du signal iPPG. Deux modèles neuronaux distincts ont été utilisés pour prédire les émotions et le stress de la personne à partir des informations visuelles contenues dans la vidéo (e.g. expressions faciales) : un réseau spatio-temporel combinant le module Squeeze-Excitation et l'architecture Xception pour estimer l'état émotionnel et une approche d'apprentissage par transfert pour l'estimation du niveau de stress. Cette approche a été privilégiée afin de réduire les efforts de développement et surmonter le problème du manque de données. Une fusion des caractéristiques physiologiques et des expressions faciales est ensuite effectuée pour prédire les états émotionnels ou de stress
Human affective state recognition remains a challenging topic due to the complexity of emotions, which involves experiential, behavioral, and physiological elements. Since it is difficult to comprehensively describe emotion in terms of single modalities, recent studies have focused on artificial intelligence approaches and fusion strategy to exploit the complementarity of multimodal signals using artificial intelligence approaches. The main objective is to study the feasibility of a physio-visual fusion for the recognition of the affective state of the person (emotions/stress) from facial videos. The fusion of facial expressions and physiological signals allows to take advantage of each modality. Facial expressions are easy to acquire and provide an external view of the affective state, while physiological signals improve reliability and address the problem of falsified facial expressions. The research developed in this thesis lies at the intersection of artificial intelligence, affective computing, and biomedical engineering. Our contribution focuses on two points. First, we propose a new end-to-end approach for instantaneous pulse rate estimation directly from facial video recordings using the principle of imaging photoplethysmography (iPPG). This method is based on a deep spatio-temporal network (X-iPPGNet) that learns the iPPG concept from scratch, without incorporating prior knowledge or going through manual iPPG signal extraction. The second contribution focuses on a physio-visual fusion for spontaneous emotions and stress recognition from facial videos. The proposed model includes two pipelines to extract the features of each modality. The physiological pipeline is common to both the emotion and stress recognition systems. It is based on MTTS-CAN, a recent method for estimating the iPPG signal, while two distinct neural models were used to predict the person's emotions and stress from the visual information contained in the video (e.g. facial expressions): a spatio-temporal network combining the Squeeze-Excitation module and the Xception architecture for estimating the emotional state and a transfer learning approach for estimating the stress level. This approach reduces development effort and overcomes the lack of data. A fusion of physiological and facial features is then performed to predict the emotional or stress states
APA, Harvard, Vancouver, ISO, and other styles
6

Alashkar, Taleb. "3D dynamic facial sequences analysis for face recognition and emotion detection." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10109/document.

Full text
Abstract:
L’étude menée dans le cadre de cette thèse vise l’étude du rôle de la dynamique de formes faciales 3D à révéler l’identité des personnes et leurs états émotionnels. Pour se faire, nous avons proposé un cadre géométrique pour l’étude des formes faciales 3D et leurs dynamiques dans le temps. Une séquence 3D est d’abord divisée en courtes sous-séquences, puis chacune des sous-séquences obtenues est représentée dans une variété de Grassmann (ensemble des sous-espaces linéaires de dimension fixe). Nous avons exploité la géométrie de ces variétés pour comparer des sous-séquences 3D, calculer des statistiques (telles que des moyennes) et quantifier la divergence entre des éléments d’une même variété Grassmannienne. Nous avons aussi proposé deux représentations possibles pour les deux applications cibles – (1) la première est basée sur les dictionnaires (de sous-espaces) associée à des techniques de Dictionary Learning Sparse Coding pour la reconnaissance d’identité et (2) le représentation par des trajectoires paramétrées par le temps sur les Grassmanniennes couplée avec une variante de l’algorithme de classification SVM, permettant un apprentissage avec des données partielles, pour la détection précoce des émotions spontanée. Les expérimentations réalisées sur les bases publiques BU-4DFE, Cam3D et BP4D-Spontaneous montrent à la fois l’intérêt du cadre géométrique proposé (en terme de temps de calcul et de robustesse au bruit et aux données manquantes) et les représentations adoptées (dictionnaires pour la reconnaissance d’identité et trajectoires pour la détection précoce des émotions spontanées)
In this thesis, we have investigated the problems of identity recognition and emotion detection from facial 3D shapes animations (called 4D faces). In particular, we have studied the role of facial (shapes) dynamics in revealing the human identity and their exhibited spontaneous emotion. To this end, we have adopted a comprehensive geometric framework for the purpose of analyzing 3D faces and their dynamics across time. That is, a sequence of 3D faces is first split to an indexed collection of short-term sub-sequences that are represented as matrix (subspace) which define a special matrix manifold called, Grassmann manifold (set of k-dimensional linear subspaces). The geometry of the underlying space is used to effectively compare the 3D sub-sequences, compute statistical summaries (e.g. sample mean, etc.) and quantify densely the divergence between subspaces. Two different representations have been proposed to address the problems of face recognition and emotion detection. They are respectively (1) a dictionary (of subspaces) representation associated to Dictionary Learning and Sparse Coding techniques and (2) a time-parameterized curve (trajectory) representation on the underlying space associated with the Structured-Output SVM classifier for early emotion detection. Experimental evaluations conducted on publicly available BU-4DFE, BU4D-Spontaneous and Cam3D Kinect datasets illustrate the effectiveness of these representations and the algorithmic solutions for identity recognition and emotion detection proposed in this thesis
APA, Harvard, Vancouver, ISO, and other styles
7

Moufidi, Abderrazzaq. "Machine Learning-Based Multimodal integration for Short Utterance-Based Biometrics Identification and Engagement Detection." Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0026.

Full text
Abstract:
Le progrès rapide et la démocratisation de la technologie ont conduit à l’abondance des capteurs. Par conséquent, l’intégration de ces diverses modalités pourrait présenter un avantage considérable pour de nombreuses applications dans la vie réelle, telles que la reconnaissance biométrique ou la détection d’engagement des élèves. Dans le domaine de la multimodalité, les chercheurs ont établi des architectures variées de fusion, allant des approches de fusion précoce, hybride et tardive. Cependant, ces architectures peuvent avoir des limites en ce qui concerne des signaux temporels d’une durée courte, ce qui nécessite un changement de paradigme vers le développement de techniques d’apprentissage automatique multimodales qui promettent une précision et une efficacité pour l’analyse de ces données courtes. Dans cette thèse, nous nous appuyons sur l’intégration de la multimodalité pour relever les défis précédents, allant de l’identification biométrique supervisée à la détection non supervisée de l’engagement des étudiants. La première contribution de ce doctorat porte sur l’intégration de la Wavelet Scattering Transform à plusieurs couches avec une architecture profonde appelée x-vectors, grâce à laquelle nous avons amélioré la performance de l’identification du locuteur dans des scénarios impliquant des énoncés courts tout en réduisant le nombre de paramètres nécessaires à l’entraînement. En s’appuyant sur les avantages de la multimodalité, on a proposé une architecture de fusion tardive combinant des vidéos de la profondeur des lèvres et des signaux audios a permis d’améliorer la précision de l’identification dans le cas d’énoncés courts, en utilisant des méthodes efficaces et moins coûteuses pour extraire des caractéristiques spatio-temporelles. Dans le domaine des défis biométriques, il y a la menace de l’émergence des "deepfakes". Ainsi, nous nous sommes concentrés sur l’élaboration d’une méthode de détection des "deepfakes" basée sur des méthodes mathématiques compréhensibles et sur une version finement ajustée de notre précédente fusion tardive appliquée aux vidéos RVB des lèvres et aux audios. En utilisant des méthodes de détection d’anomalies conçues spécifiquement pour les modalités audio et visuelles, l’étude a démontré des capacités de détection robustes dans divers ensembles de données et conditions, soulignant l’importance des approches multimodales pour contrer l’évolution des techniques de deepfake. S’étendant aux contextes éducatifs, la thèse explore la détection multimodale de l’engagement des étudiants dans une classe. En utilisant des capteurs abordables pour acquérir les signaux du rythme cardiaque et les expressions faciales, l’étude a développé un ensemble de données reproductibles et un plan pour identifier des moments significatifs, tout en tenant compte des nuances culturelles. L’analyse des expressions faciales à l’aide de Vision Transformer (ViT) fusionnée avec le traitement des signaux de fréquence cardiaque, validée par des observations d’experts, a mis en évidence le potentiel du suivi des élèves afin d’améliorer la qualité d’enseignement
The rapid advancement and democratization of technology have led to an abundance of sensors. Consequently, the integration of these diverse modalities presents an advantage for numerous real-life applications, such as biometrics recognition and engage ment detection. In the field of multimodality, researchers have developed various fusion ar chitectures, ranging from early, hybrid, to late fusion approaches. However, these architec tures may have limitations involving short utterances and brief video segments, necessi tating a paradigm shift towards the development of multimodal machine learning techniques that promise precision and efficiency for short-duration data analysis. In this thesis, we lean on integration of multimodality to tackle these previous challenges ranging from supervised biometrics identification to unsupervised student engagement detection. This PhD began with the first contribution on the integration of multiscale Wavelet Scattering Transform with x-vectors architecture, through which we enhanced the accuracy of speaker identification in scenarios involving short utterances. Going through multimodality benefits, a late fusion architecture combining lips depth videos and audio signals further improved identification accuracy under short utterances, utilizing an effective and less computational methods to extract spatiotemporal features. In the realm of biometrics challenges, there is the threat emergence of deepfakes. There-fore, we focalized on elaborating a deepfake detection methods based on, shallow learning and a fine-tuned architecture of our previous late fusion architecture applied on RGB lips videos and audios. By employing hand-crafted anomaly detection methods for both audio and visual modalities, the study demonstrated robust detection capabilities across various datasets and conditions, emphasizing the importance of multimodal approaches in countering evolving deepfake techniques. Expanding to educational contexts, the dissertation explores multimodal student engagement detection in classrooms. Using low-cost sensors to capture Heart Rate signals and facial expressions, the study developed a reproducible dataset and pipeline for identifying significant moments, accounting for cultural nuances. The analysis of facial expressions using Vision Transformer (ViT) fused with heart rate signal processing, validated through expert observations, showcased the potential for real-time monitoring to enhance educational outcomes through timely interventions
APA, Harvard, Vancouver, ISO, and other styles
8

Allaert, Benjamin. "Analyse des expressions faciales dans un flux vidéo." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I021/document.

Full text
Abstract:
De nos jours, dans des domaines tels que la sécurité et la santé, une forte demande consiste à pouvoir analyser le comportement des personnes en s'appuyant notamment sur l'analyse faciale. Dans cette thèse, nous explorons de nouvelles approches à destination de systèmes d’acquisition peu contraints. Plus spécifiquement, nous nous intéressons à l'analyse des expressions faciales en présence de variation d'intensité et de variations de pose du visage. Notre première contribution s'intéresse à la caractérisation précise des variations d'intensité des expressions faciales. Nous proposons un descripteur innovant appelé LMP qui s'appuie sur les propriétés physiques déformables du visage afin de conserver uniquement les directions principales du mouvement facial induit par les expressions. La particularité principale de notre travail est de pouvoir caractériser à la fois les micro et les macro expressions, en utilisant le même système d'analyse. Notre deuxième contribution concerne la prise en compte des variations de pose. Souvent, une étape de normalisation est employée afin d'obtenir une invariance aux transformations géométriques. Cependant, ces méthodes sont utilisées sans connaître leur impact sur les expressions faciales. Pour cela, nous proposons un système d'acquisition innovant appelé SNaP-2DFe. Ce système permet de capturer simultanément un visage dans un plan fixe et dans un plan mobile. Grâce à cela, nous fournissons une connaissance du visage à reconstruire malgré les occultations induites par les rotations de la tête. Nous montrons que les récentes méthodes de normalisation ne sont pas parfaitement adaptées pour l'analyse des expressions faciales
Facial expression recognition has attracted great interest over the past decade in wide application areas, such as human behavior analysis, e-health and marketing. In this thesis we explore a new approach to step forward towards in-the-wild expression recognition. Special attention has been paid to encode respectively small/large facial expression amplitudes, and to analyze facial expressions in presence of varying head pose. The first challenge addressed concerns varying facial expression amplitudes. We propose an innovative motion descriptor called LMP. This descriptor takes into account mechanical facial skin deformation properties. When extracting motion information from the face, the unified approach deals with inconsistencies and noise, caused by face characteristics. The main originality of our approach is a unified approach for both micro and macro expression recognition, with the same facial recognition framework. The second challenge addressed concerns important head pose variations. In facial expression analysis, the face registration step must ensure that minimal deformation appears. Registration techniques must be used with care in presence of unconstrained head pose as facial texture transformations apply. Hence, it is valuable to estimate the impact of alignment-related induced noise on the global recognition performance. For this, we propose a new database, called SNaP-2DFe, allowing to study the impact of head pose and intra-facial occlusions on expression recognition approaches. We prove that the usage of face registration approach does not seem adequate for preserving the features encoding facial expression deformations
APA, Harvard, Vancouver, ISO, and other styles
9

Deramgozin, Mohammadmahdi. "Développement de modèles de reconnaissance des expressions faciales à base d’apprentissage profond pour les applications embarquées." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0286.

Full text
Abstract:
Le domaine de la Reconnaissance des Émotions Faciales (FER) est est d'une importance capitale pour faire progresser les interactions homme-machine et trouve sa place dans de nombreuses applications comme par exemple le domaine de la santé pour traiter la dépression et l'anxiété. En utilisant des Réseaux Neuronaux Convolutifs (CNN), cette thèse présente une série de modèles visant à optimiser la détection et l'interprétation des émotions. Le modèle initial présenté dans cette thèse est de faible complexité et économe en ressources lui permettant de rivaliser favorablement avec les solutions de l'état de l'art sur un nombre limité de jeux de données, ce qui en fait une bonne base pour les systèmes à ressources limitées. Pour identifier et capturer toute la complexité et l'ambiguïté des émotions humaines, ce modèle initial est amélioré en intégrant les Unités d'Action faciales (AU). Cette approche affine non seulement la détection des émotions mais fournit également une interprétabilité des décisions fournies par le modèle en identifiant des AU spécifiques liées à chaque émotion. Une amélioration significative est atteinte en introduisant des mécanismes d'attention neuronale—à la fois spatiaux et par canal— au modèle initial. Ainsi, le modèle basé sur ces mécanismes d'attention se focalise uniquement sur les caractéristiques faciales les plus saillantes. Cela permet au modèle CNN de s'adapter bien aux scénarios du monde réel, tels que des expressions faciales partiellement obscurcies ou subtiles. La thèse aboutit à un modèle CNN optimisé et efficace en termes de calcul et d'empreinte mémoire, le rendant parfaitement adapté pour les environnements à ressources limitées comme les systèmes embarqués. Tout en fournissant une solution robuste pour la FER, des perspectives et voies pour des travaux futurs, tels que des applications en temps réel et des techniques avancées pour l'interprétabilité du modèle, sont également identifiées
The field of Facial Emotion Recognition (FER) is pivotal in advancing human-machine interactions and finds essential applications in healthcare for conditions like depression and anxiety. Leveraging Convolutional Neural Networks (CNNs), this thesis presents a progression of models aimed at optimizing emotion detection and interpretation. The initial model is resource-frugal but competes favorably with state-of-the-art solutions, making it a strong candidate for embedded systems constrained in computational and memory resources. To capture the complexity and ambiguity of human emotions, the research work presented in this thesis enhances this CNN-based foundational model by incorporating facial Action Units (AUs). This approach not only refines emotion detection but also provides interpretability by identifying specific AUs tied to each emotion. Further sophistication is achieved by introducing neural attention mechanisms—both spatial and channel-based—improving the model's focus on salient facial features. This makes the CNN-based model adapted well to real-world scenarios, such as partially obscured or subtle facial expressions. Based on the previous results, in this thesis we propose finally an optimized, yet computationally efficient, CNN model that is ideal for resource-limited environments like embedded systems. While it provides a robust solution for FER, this research also identifies perspectives for future work, such as real-time applications and advanced techniques for model interpretability
APA, Harvard, Vancouver, ISO, and other styles
10

Ruiz, hernandez John alexander. "Analyse faciale avec dérivées Gaussiennes." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00646718.

Full text
Abstract:
Dans cette thèse, nous explorons l'utilisation des dérivées Gaussiennes multi-échelles comme représentation initiale pour la détection, la reconnaissance et la classification des visages humains dans des images. Nous montrons qu'un algorithme rapide, $O(N)$, de construction d'une pyramide binomiale peut être utilisé pour extraire des dérivées Gaussiennes avec une réponse impulsionnelle identique à un facteur d'échelle $sqrt{2}$>. Nous montrons ensuite qu'un vecteur composé de ces dérivées à différentes échelles et à différents ordres en chaque pixel peut être utilisé comme base pour les algorithmes de détection, de classification et de reconnaissance lesquels atteignent ou dépassent les performances de l'état de l'art avec un coût de calcul réduit. De plus l'utilisation de coefficients entiers, avec une complexité de calcul et des exigences mémoires en $O(N)$ font qu'une telle approche est appropriée pour des applications temps réel embarquées sur des systèmes mobiles. Nous testons cette représentation en utilisant trois problèmes classiques d'analyse d'images faciales : détection de visages, reconnaissance de visages et estimation de l'âge. Pour la détection de visages, nous examinons les dérivées Gaussiennes multi-échelles comme une alternative aux ondelettes de Haar pour une utilisation dans la construction d'une cascade de classifieurs linéaires appris avec l'algorithme Adaboost, popularisé par Viola and Jones. Nous montrons que la représentation pyramidale peut être utilisée pour optimiser le processus de détection en adaptant la position des dérivées dans la cascade. Dans ces experiences nous sommes capables de montrer que nous pouvons obtenir des niveaux de performances de détection similaires (mesurés par des courbes ROC) avec une réduction importante du coût de calcul. Pour la reconnaissance de visages et l'estimation de l'âge, nous montrons que les dérivées Gaussiennes multi-échelles peuvent être utilisées pour calculer une représentation tensorielle qui conserve l'information faciale la plus importante. Nous montrons que combinée à l'Analyse Multilinéaire en Composantes Principales et à la méthode Kernel Discriminative Common Vectors (KDCV), cette représentation tensorielle peut mener à un algorithme qui est similaire aux techniques concurrentes pour la reconnaissance de visages avec un coût de calcul réduit. Pour l'estimation de l'âge à partir d'images faciales, nous montrons que notre représentation tensorielle utilisant les dérivées de Gaussiennes multi-échelles peut être utilisée avec une machine à vecteur de pertinence pour fournir une estimation de l'âge avec des niveaux de performances similaires aux méthodes de l'état de l'art.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reconnaissance faciale automatisée"

1

Monteiro, Stephen. "La reconnaissance faciale automatique promue au rang de nécessité sociale." In Attentes et promesses technoscientifiques, 117–36. Les Presses de l’Université de Montréal, 2022. http://dx.doi.org/10.1515/9782760645028-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography