Academic literature on the topic 'RECOMMENDATION TECHNIQUES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RECOMMENDATION TECHNIQUES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RECOMMENDATION TECHNIQUES"
Dondekar, Anupama D., and Balwant A. Sonkamble. "Tag Recommendation Techniques for Images: A Survey." International Journal of Signal Processing Systems 5, no. 4 (December 2017): 116–22. http://dx.doi.org/10.18178/ijsps.5.4.116-122.
Full textGorli, Ravi, and Bagusetty Ajay Ram. "MRML-Movie Recommendation Model with Machine Learning Techniques." International Journal of Science and Research (IJSR) 12, no. 5 (May 5, 2023): 298–302. http://dx.doi.org/10.21275/sr23322101301.
Full textTR, Mahesh, and V Vinoth Kumar. "Clustering Techniques for Recommendation of Movies." International Journal of Data Informatics and Intelligent Computing 1, no. 2 (December 21, 2022): 16–22. http://dx.doi.org/10.59461/ijdiic.v1i2.17.
Full textTewari, Anand Shanker, and Asim Gopal Barman. "Sequencing of items in personalized recommendations using multiple recommendation techniques." Expert Systems with Applications 97 (May 2018): 70–82. http://dx.doi.org/10.1016/j.eswa.2017.12.019.
Full textAl-Absi, Mohammed Abdulhakim, and Hind R’bigui. "Process Discovery Techniques Recommendation Framework." Electronics 12, no. 14 (July 17, 2023): 3108. http://dx.doi.org/10.3390/electronics12143108.
Full textGaurkhede, Miss Pratiksha P. "Review Paper on various Recommendation Techniques of Friends Recommendation System." International Journal for Research in Applied Science and Engineering Technology 9, no. 4 (April 30, 2021): 894–97. http://dx.doi.org/10.22214/ijraset.2021.33770.
Full textNazema, Syeda. "A Survey on Feature Recommendation Techniques." International Journal on Recent and Innovation Trends in Computing and Communication 3, no. 3 (2015): 1662–68. http://dx.doi.org/10.17762/ijritcc2321-8169.1503167.
Full textKo, Hyeyoung, Suyeon Lee, Yoonseo Park, and Anna Choi. "A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields." Electronics 11, no. 1 (January 3, 2022): 141. http://dx.doi.org/10.3390/electronics11010141.
Full textDas, Joydeep, Subhashis Majumder, and Kalyani Mali. "Clustering Techniques to Improve Scalability and Accuracy of Recommender Systems." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 29, no. 04 (August 2021): 621–51. http://dx.doi.org/10.1142/s0218488521500276.
Full textKumar, Praveen, Mukesh Kumar Gupta, Channapragada Rama Seshagiri Rao, M. Bhavsingh, and M. Srilakshmi. "A Comparative Analysis of Collaborative Filtering Similarity Measurements for Recommendation Systems." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 3s (March 11, 2023): 184–92. http://dx.doi.org/10.17762/ijritcc.v11i3s.6180.
Full textDissertations / Theses on the topic "RECOMMENDATION TECHNIQUES"
Martins, Diogo Marques. "Trajectory clustering techniques with application to route recommendation." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/18581.
Full textO uso generalizado de dispositivos capazes de obter e transmitir dados sobre a localização de objetos ao longo do tempo tem permitido recolher grandes volumes de dados espácio-temporais. Por isso, tem-se assistido a uma procura crescente de técnicas e ferramentas para a análise de grandes volumes de dados espácio-temporais com o intuito de disponibilizar uma gama variada de serviços baseados na localização. Esta dissertação centra-se no desenvolvimento de um sistema para recomendaSr trajetos com base em dados históricos sobre a localização de objetos móveis ao longo do tempo. O principal problema estudado neste trabalho consiste no agrupamento de trajetórias e na extração de informação a partir dos grupos de trajetórias. Este estudo, não se restringe a dados provenientes apenas de veículos, podendo ser aplicado a outros tipos de trajetórias, por exemplo, percursos realizados por pessoas a pé ou de bicicleta. O agrupamento baseia-se numa medida de similaridade. A extração de informação consiste em criar uma trajetória representativa para cada grupo de trajetórias. As trajetórias representativas podem ser visualizadas usando uma aplicação web, sendo também possível configurar cada módulo do sistema com parâmetros desejáveis, na sua maioria distâncias limiares. Por fim, são apresentados casos de teste para avaliar o desempenho global do sistema desenvolvido.
The widespread use of devices to capture and transmit data about the location of objects over time allows collecting large volumes of spatio-temporal data. Consequently, there has been in recent years a growing demand for tools and techniques to analyze large volumes of spatio-temporal data aiming at providing a wide range of location-based services. This dissertation focuses on the development of a system for recommendation of trajectories based on historical data about the location of moving objects over time. The main issues covered in this work are trajectory clustering and extracting information from trajectory clusters. This study is not restricted to data from vehicles and can also be applied to other kinds of trajectories, for example, the movement of runners or bikes. The clustering is based on a similarity measure. The information extraction consists in creating a representative trajectory for the trajectories clusters. Finally, representative trajectories are displayed using a web application and it is also possible to configure each system module with desired parameters, mostly distance thresholds. Finally, case studies are presented to evaluate the developed system.
Vahabi, Hossein. "Recommendation techniques for Web search and social media." Thesis, IMT Alti Studi Lucca, 2012. http://e-theses.imtlucca.it/86/1/Vahabi_phdthesis.pdf.
Full textAlabdulrahman, Rabaa. "Towards Personalized Recommendation Systems: Domain-Driven Machine Learning Techniques and Frameworks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41012.
Full textAleksandra, Klašnja-Milićević. "Personalized Recommendation Based on Collaborative Tagging Techniques for an e‐Learning System." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2013. https://www.cris.uns.ac.rs/record.jsf?recordId=83535&source=NDLTD&language=en.
Full textPredmet istraživanja disertacije obuhvata personalizaciju tutorskih sistema za elektronsko učenje primenom tehnika kolaborativnog tagovanja (collaborative tagging techniques) integrisanih u sisteme za generisanje preporuka (recommender systems). Tagovi, kao oblik meta podataka, predstavljaju proizvoljne ključne reči ili fraze koje korisnik može da upotrebi za označavanje različitih sadržaja. Pored toga što tagovi korisnicima pružaju pomoć u organizaciji sadržaja, oni su korisni i u izražavanju mišljenja korisnika. Veliki broj informacija koje korisnici pružaju o sebi kroz aktivnosti tagovanja otvorio je mogućnost primene tagova u generisanju preporuka. Istraživanje disertacije je usmereno na analizu i definisanje poboljšanih modela za odabir tagova koji otkrivaju sklonosti i osobine korisnika potrebne za generisanje personalizovanih preporuka. Razmatrane su i mogućnosti primene tako dobijenih modela za personalizaciju tutorskih sistema. Personalizovani tutorski sistemi korisniku pružaju optimalne putanje kretanja i adekvatne aktivnosti učenja na osnovu njegovih osobina, njegovog stila učenja, znanja koje on poseduje u toj oblasti, kao i prethodnog iskustva korisnika sistema koji imaju slične karakteristike. Modeli definisani u disertaciji u praksi su evaluirani na tutorskom sistemu za učenje programskog jezika Java.
Nagi, Mohamad. "Integrating Network Analysis and Data Mining Techniques into Effective Framework for Web Mining and Recommendation. A Framework for Web Mining and Recommendation." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14200.
Full textGuerrini, Gabriele. "Analysis, design and implementation of a parking recommendation system applying machine learning techniques." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23162/.
Full textCabir, Hassane Natu Hassane. "A Comparison Of Different Recommendation Techniques For A Hybrid Mobile Game Recommender System." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615173/index.pdf.
Full texts taste, personalized recommender systems require accurate user models of characteristics, preferences and needs. Collaborative filtering is a widely accepted technique to provide recommendations based on ratings of similar users, But it suffers from several issues like data sparsity and cold start. In one-class collaborative filtering, a special type of collaborative filtering methods that aims to deal with datasets that lack counter-examples, the challenge is even greater, since these datasets are even sparser. In this thesis, we present a series of experiments conducted on a real-life customer purchase database from a major Turkish E-Commerce site. The sparsity problem is handled by the use of content-based technique combined with TFIDF weights, memory based collaborative filtering combined with different similarity measures and also hybrids approaches, and also model based collaborative filtering with the use of Singular Value Decomposition (SVD). Our study showed that the binary similarity measure and SVD outperform conventional measures in this OCCF dataset.
Videla, Cavieres Iván Fernando. "Improvement of recommendation system for a wholesale store chain using advanced data mining techniques." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/133522.
Full textIngeniero Civil Industrial
En las empresas de Retail, las áreas de Customer Intelligence tienen muchas oportunidades de mejorar sus decisiones estratégicas a partir de la información que podrían obtener de los registros de interacciones con sus clientes. Sin embargo se ha convertido en un desafío poder procesar estos grandes volúmenes de datos. Uno de los problemas que se enfrentan día a día es segmentar o agrupar clientes. La mayoría de las empresas generan agrupaciones según nivel de gasto, no por similitud en sus canastas de compra, como propone la literatura. Otro desafío de estas empresas es aumentar las ventas en cada visita del cliente y fidelizar. Una de las técnicas utilizadas para lograrlo es usar sistemas de recomendación. En este trabajo se proceso ́ alrededor de medio billón de registros transaccionales de una cadena de supermercados mayorista. Al aplicar las técnicas tradicionales de Clustering y Market Basket Analysis los resultados son de baja calidad, haciendo muy difícil la interpretación, además no se logra identificar grupos que permitan clasificar a un cliente de acuerdo a sus compras históricas. Entendiendo que la presencia simultánea de dos productos en una misma boleta implica una relación entre ellos, se usó un método de graph mining basado en redes sociales que permitió obtener grupos de productos identificables que denominamos comunidades, a las que puede pertenecer un cliente. La robustez del modelo se comprueba por la estabilidad de los grupos generados en distintos periodos de tiempo. Bajo las mismas restricciones que la empresa exige, se generan recomendaciones basadas en las compras históricas y en la pertenencia de los clientes a los distintos grupos de productos. De esta manera, los clientes reciben recomendaciones mucho más pertinentes y no solo son basadas en los que otros clientes también compraron. La novedosa forma de resolver el problema de segmentar clientes ayuda a mejorar en un 140% el actual método de recomendaciones que utiliza la cadena Chilena de supermercados mayoristas. Esto se traduce en un aumento de más de 430% de los ingresos posibles.
Holländer, John. "Investigating the performance of matrix factorization techniques applied on purchase data for recommendation purposes." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20624.
Full textBambia, Meriam. "Jointly integrating current context and social influence for improving recommendation." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30110/document.
Full textDue to the diversity of alternative contents to choose and the change of users' preferences, real-time prediction of users' preferences in certain users' circumstances becomes increasingly hard for recommender systems. However, most existing context-aware approaches use only current time and location separately, and ignore other contextual information on which users' preferences may undoubtedly depend (e.g. weather, occasion). Furthermore, they fail to jointly consider these contextual information with social interactions between users. On the other hand, solving classic recommender problems (e.g. no seen items by a new user known as cold start problem, and no enough co-rated items with other users with similar preference as sparsity problem) is of significance importance since it is drawn by several works. In our thesis work, we propose a context-based approach that leverages jointly current contextual information and social influence in order to improve items recommendation. In particular, we propose a probabilistic model that aims to predict the relevance of items in respect with the user's current context. We considered several current context elements such as time, location, occasion, week day, location and weather. In order to avoid strong probabilities which leads to sparsity problem, we used Laplace smoothing technique. On the other hand, we argue that information from social relationships has potential influence on users' preferences. Thus, we assume that social influence depends not only on friends' ratings but also on social similarity between users. We proposed a social-based model that estimates the relevance of an item in respect with the social influence around the user on the relevance of this item. The user-friend social similarity information may be established based on social interactions between users and their friends (e.g. recommendations, tags, comments). Therefore, we argue that social similarity could be integrated using a similarity measure. Social influence is then jointly integrated based on user-friend similarity measure in order to estimate users' preferences. We conducted a comprehensive effectiveness evaluation on real dataset crawled from Pinhole social TV platform. This dataset includes viewer-video accessing history and viewers' friendship networks. In addition, we collected contextual information for each viewer-video accessing history captured by the plat form system. The platform system captures and records the last contextual information to which the viewer is faced while watching such a video. In our evaluation, we adopt Time-aware Collaborative Filtering, Time-Dependent Profile and Social Network-aware Matrix Factorization as baseline models. The evaluation focused on two recommendation tasks. The first one is the video list recommendation task and the second one is video rating prediction task. We evaluated the impact of each viewing context element in prediction performance. We tested the ability of our model to solve data sparsity and viewer cold start recommendation problems. The experimental results highlighted the effectiveness of our model compared to the considered baselines. Experimental results demonstrate that our approach outperforms time-aware and social network-based approaches. In the sparsity and cold start tests, our approach returns consistently accurate predictions at different values of data sparsity
Books on the topic "RECOMMENDATION TECHNIQUES"
Obuhova, Galina, and Galina Klimova. Fundamentals of public communication skills: practical recommendations. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1090527.
Full textCouncil of Europe. Committee of Ministers. Special investigation techniques in relation to serious crimes including acts of terrorism: Recommendation Rec(2005)10 adopted by the Committee of Ministers of the Council of Europe on 20 April 2005 and explanatory memorandum. Strasbourg: Council of Europe Publishing, 2005.
Find full textWiggers, Willem J. H. Drafting contracts: Techniques, best practice rules and recommendations related to contract drafting. Deventer: Kluwer, 2011.
Find full textauthor, Maslov D. E., and Russia (Federation). Ministerstvo vnutrennikh del. Nizhegorodskai︠a︡ akademii︠a︡, eds. I︠U︡ridicheskai︠a︡ rekomendat︠s︡ii︠a︡: Doktrina, praktika, tekhnika : monografii︠a︡ = Legal Recommendation : Doctrine, Practice, Technique : Monograph. Moskva: Prospekt, 2021.
Find full textInternational Telegraph and Telephone Consultative Committee. Plenary Assembly. Red book.: Open systems interconnection (OSI) system description techniques : recommendations X.200-X.250. Geneva: International Telecommunication Union, 1985.
Find full textRhodes, Tina Gabriele. Investigation of a relaxation technique: Personal control expectancies and adherence to practice recommendations. Roehampton: University of Surrey Roehampton, 2002.
Find full textGuide to integrating forensic techniques into incident response: Recommendations of the National Institute of Standards and Technology. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2006.
Find full textWorld Health Organization (WHO). WHO recommendations on rabies post-exposure treatment and the correct technique of intradermal immunization against rabies. London: Stationery Office, 1999.
Find full textUnited States. Dept. of Housing and Urban Development. Office of Policy Development and Research., ed. Manufactured homes: Saving money by saving energy : energy-saving tips, techniques and recommendations for owners of manufactured (mobile) homes. [Washington, D.C: U.S. Dept. of Housing and Urban Development, 2005.
Find full textBeloshistaya, Anna. Mathematics in primary school: teaching methods. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1070170.
Full textBook chapters on the topic "RECOMMENDATION TECHNIQUES"
Jingxian, Huang. "Research on Intelligent Recommendation Method of e-commerce Hot Information Based on User Interest Recommendation." In Simulation Tools and Techniques, 153–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72795-6_13.
Full textRaghuwanshi, Sandeep K., and R. K. Pateriya. "Collaborative Filtering Techniques in Recommendation Systems." In Data, Engineering and Applications, 11–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6347-4_2.
Full textJiang, Feng, Min Gao, Qingyu Xiong, Junhao Wen, and Yi Zhang. "Robust Social Recommendation Techniques: A Review." In Socially Aware Organisations and Technologies. Impact and Challenges, 53–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42102-5_6.
Full textSingh, Sanika, Aman Anand, Tanupriya Choudhury, Pankaj Sharma, and Ved P. Mishra. "Extensive Review on Product Recommendation Techniques." In Data Driven Approach Towards Disruptive Technologies, 549–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9873-9_43.
Full textAcharya, Soumya S., Nandita Nupur, Priyabrat Sahoo, and Paresh Baidya. "Mood-Based Movie Recommendation System." In Biologically Inspired Techniques in Many Criteria Decision Making, 151–58. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8739-6_13.
Full textWang, Xiaofeng, Dongming Tang, Hui Zheng, and Ke Zhang. "Study and Implementation of Minority Mobile Application Recommendation Software." In Simulation Tools and Techniques, 559–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32216-8_54.
Full textRadja, Priyanka. "Personalized Recommendation Techniques in Social Tagging Systems." In Soft Computing Systems, 35–45. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1936-5_4.
Full textKaur, Kamaljit, and Kanwalvir Singh Dhindsa. "Classification of Followee Recommendation Techniques in Twitter." In Advances in Intelligent Systems and Computing, 527–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29516-5_41.
Full textDhanalakshmi, P., P. Dileep Kumar Reddy, Sasikumar Gurumurthy, and K. Lalitha. "Web User Clustering Techniques for Recommendation Systems." In Lecture Notes in Electrical Engineering, 1885–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1420-3_192.
Full textRaghuwanshi, Sandeep K., and R. K. Pateriya. "Recommendation Systems: Techniques, Challenges, Application, and Evaluation." In Advances in Intelligent Systems and Computing, 151–64. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1595-4_12.
Full textConference papers on the topic "RECOMMENDATION TECHNIQUES"
Melchiori, Michele. "Hybrid techniques for web APIs recommendation." In the 1st International Workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1966901.1966905.
Full textD'cunha, Arlina, and Vandana Patil. "Friend recommendation techniques in social network." In 2015 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, 2015. http://dx.doi.org/10.1109/iccict.2015.7045669.
Full textTodkar, Omkar, S. Z. Gawali, and Aniket D. Kadam. "Recommendation engine feedback session strategy for mapping user search goals (FFS: Recommendation system)." In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755581.
Full textKoetphrom, Nanthaphat, Panachai Charusangvittaya, and Daricha Sutivong. "Comparing Filtering Techniques in Restaurant Recommendation System." In 2018 2nd International Conference on Engineering Innovation (ICEI). IEEE, 2018. http://dx.doi.org/10.1109/icei18.2018.8448528.
Full textNinaus, Gerald, Florian Reinfrank, Martin Stettinger, and Alexander Felfernig. "Content-based recommendation techniques for requirements engineering." In 2014 IEEE 1st International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). IEEE, 2014. http://dx.doi.org/10.1109/aire.2014.6894853.
Full textJena, Kartik Chandra, Sushruta Mishra, Soumya Sahoo, and Brojo Kishore Mishra. "Principles, techniques and evaluation of recommendation systems." In 2017 International Conference on Inventive Systems and Control (ICISC). IEEE, 2017. http://dx.doi.org/10.1109/icisc.2017.8068649.
Full textKokate, Shrikant, Ashwini Gaikwad, Pranita Patil, Manisha Gutte, and Kalyani Shinde. "Traveler's Recommendation System Using Data Mining Techniques." In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). IEEE, 2018. http://dx.doi.org/10.1109/iccubea.2018.8697862.
Full textSheeba, J. I., and S. Pradeep Devaneyan. "Recommendation of Keywords using Swarm Intelligence Techniques." In ICIA-16: International Conference on Informatics and Analytics. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2980258.2980286.
Full textOliveira, Amanda, and Frederico Durao. "A Group Recommendation Model Using Diversification Techniques." In Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, 2021. http://dx.doi.org/10.24251/hicss.2021.326.
Full textBaltrunas, Linas, Bernd Ludwig, and Francesco Ricci. "Matrix factorization techniques for context aware recommendation." In the fifth ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2043932.2043988.
Full textReports on the topic "RECOMMENDATION TECHNIQUES"
P. D. Mattie, J. A. McNeish, D. S. Sevougian, and R. W. Andrews. Methods and Techniques Used to Convey Total System Performance Assessment Analyses and Results for Site Recommendation at Yucca Mountain, Nevada, USA. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/786563.
Full textEiber. L51786 Development of Optimized Nondestructive Inspection Methods for Hot Tap Branch Connection Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1998. http://dx.doi.org/10.55274/r0010388.
Full textUlrich, Timothy J. II. Recommendations for acoustic techniques that meet facility requirements. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052352.
Full textBalick, Lee K., John R. Hummel, James A. Smith, and Daniel S. Kimes. One-Dimensional Temperature Modeling Techniques. Review and Recommendations. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada231098.
Full textIseley, D. T., and D. H. Cowling. L51697 Obstacle Detection to Facilitate Horizontal Directional Drilling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1994. http://dx.doi.org/10.55274/r0010134.
Full textJosten, N. E., S. T. Marts, and G. S. Carpenter. Use of noninvasive geophysical techniques for the in situ vitrification program. Volume 3, Discussion and recommendations. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10139473.
Full textGray. L51594 Review Pipe Integrity--Stress State Measurement Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1989. http://dx.doi.org/10.55274/r0010566.
Full textTABUNOV, I. A., A. P. LAPINA, M. M. KOSTYCHEV, P. S. BEREZINA, and A. V. NIKIFOROVA. METHODOLOGICAL RECOMMENDATIONS FOR COACHES WORKING WITH CHILD ATHLETES ENGAGED IN ROCK CLIMBING. SIB-Expertise, December 2022. http://dx.doi.org/10.12731/er0621.06122022.
Full textMiller, Mr Michael J. DTPH56-06-T-000017 In-Field Welding and Coating Protocols. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2009. http://dx.doi.org/10.55274/r0012117.
Full textThompson, Marshall, and Ramez Hajj. Flexible Pavement Recycling Techniques: A Summary of Activities. Illinois Center for Transportation, July 2021. http://dx.doi.org/10.36501/0197-9191/21-022.
Full text