Academic literature on the topic 'Recommendation graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Recommendation graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Recommendation graph"
Jiang, Liwei, Guanghui Yan, Hao Luo, and Wenwen Chang. "Improved Collaborative Recommendation Model: Integrating Knowledge Embedding and Graph Contrastive Learning." Electronics 12, no. 20 (October 13, 2023): 4238. http://dx.doi.org/10.3390/electronics12204238.
Full textChen, Fukun, Guisheng Yin, Yuxin Dong, Gesu Li, and Weiqi Zhang. "KHGCN: Knowledge-Enhanced Recommendation with Hierarchical Graph Capsule Network." Entropy 25, no. 4 (April 20, 2023): 697. http://dx.doi.org/10.3390/e25040697.
Full textTolety, Venkata Bhanu Prasad, and Evani Venkateswara Prasad. "Graph Neural Networks for E-Learning Recommendation Systems." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9s (August 31, 2023): 43–50. http://dx.doi.org/10.17762/ijritcc.v11i9s.7395.
Full textWang, Yan, Zhixuan Chu, Xin Ouyang, Simeng Wang, Hongyan Hao, Yue Shen, Jinjie Gu, et al. "LLMRG: Improving Recommendations through Large Language Model Reasoning Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 17 (March 24, 2024): 19189–96. http://dx.doi.org/10.1609/aaai.v38i17.29887.
Full textLiu, Jiawei, Haihan Gao, Chuan Shi, Hongtao Cheng, and Qianlong Xie. "Self-Supervised Spatio-Temporal Graph Learning for Point-of-Interest Recommendation." Applied Sciences 13, no. 15 (August 1, 2023): 8885. http://dx.doi.org/10.3390/app13158885.
Full textLi, Ran, Yuexin Li, Jingsheng Lei, and Shengying Yang. "A Multi-Behavior Recommendation Method for Users Based on Graph Neural Networks." Applied Sciences 13, no. 16 (August 16, 2023): 9315. http://dx.doi.org/10.3390/app13169315.
Full textWu, Ziteng, Chengyun Song, Yunqing Chen, and Lingxuan Li. "A review of recommendation system research based on bipartite graph." MATEC Web of Conferences 336 (2021): 05010. http://dx.doi.org/10.1051/matecconf/202133605010.
Full textYu, Wenhui, Zixin Zhang, and Zheng Qin. "Low-Pass Graph Convolutional Network for Recommendation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (June 28, 2022): 8954–61. http://dx.doi.org/10.1609/aaai.v36i8.20878.
Full textZhang, Shengzhe, Liyi Chen, Chao Wang, Shuangli Li, and Hui Xiong. "Temporal Graph Contrastive Learning for Sequential Recommendation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (March 24, 2024): 9359–67. http://dx.doi.org/10.1609/aaai.v38i8.28789.
Full textZeng, Yiping, and Shumin Liu. "Research on recommendation algorithm of Graph attention Network based on Knowledge graph." Journal of Physics: Conference Series 2113, no. 1 (November 1, 2021): 012085. http://dx.doi.org/10.1088/1742-6596/2113/1/012085.
Full textDissertations / Theses on the topic "Recommendation graph"
Huang, Zan. "GRAPH-BASED ANALYSIS FOR E-COMMERCE RECOMMENDATION." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1167%5F1%5Fm.pdf&type=application/pdf.
Full textLarsson, Carl-Johan. "Movie Recommendation System Using Large Scale Graph-Processing." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200601.
Full textSöderkvist, Nils. "Recommendation system for job coaches." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446792.
Full textOzturk, Gizem. "A Hybrid Veideo Recommendation System Based On A Graph Based Algorithm." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612624/index.pdf.
Full textLandia, Nikolas. "Content-awareness and graph-based ranking for tag recommendation in folksonomies." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58069/.
Full textPriya, Rashmi. "RETAIL DATA ANALYTICS USING GRAPH DATABASE." UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/67.
Full textOlmucci, Poddubnyy Oleksandr. "Graph Neural Networks for Recommender Systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25033/.
Full textBereczki, Márk. "Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Full textRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
You, Di. "Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1321.
Full textLisena, Pasquale. "Knowledge-based music recommendation : models, algorithms and exploratory search." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.
Full textRepresenting the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
Books on the topic "Recommendation graph"
Varlamov, Oleg. Fundamentals of creating MIVAR expert systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1513119.
Full textVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Full textLevy, Barry S., ed. Social Injustice and Public Health. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190914653.001.0001.
Full textBook chapters on the topic "Recommendation graph"
Lodhi, Aminah Bilal, Muhammad Abdullah Bilal, Hafiz Syed Muhammad Bilal, Kifayat Ullah Khan, Fahad Ahmed Satti, Shah Khalid, and Sungyoung Lee. "PNRG: Knowledge Graph-Driven Methodology for Personalized Nutritional Recommendation Generation." In Digital Health Transformation, Smart Ageing, and Managing Disability, 230–38. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43950-6_20.
Full textShi, Chuan, Xiao Wang, and Philip S. Yu. "Heterogeneous Graph Representation for Recommendation." In Artificial Intelligence: Foundations, Theory, and Algorithms, 175–208. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6166-2_7.
Full textZhang, Yuanyuan, Maosheng Sun, Xiaowei Zhang, and Yonglong Zhang. "Multi-task Feature Learning for Social Recommendation." In Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction, 240–52. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6471-7_18.
Full textXue, Feng, Wenjie Zhou, Zikun Hong, and Kang Liu. "Multi-stage Knowledge Propagation Network for Recommendation." In Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction, 253–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6471-7_19.
Full textTien, Dong Nguyen, and Hai Pham Van. "Graph Neural Network Combined Knowledge Graph for Recommendation System." In Computational Data and Social Networks, 59–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66046-8_6.
Full textGuo, Zengqiang, Yan Yang, Jijie Zhang, Tianqi Zhou, and Bangyu Song. "Knowledge Graph Bidirectional Interaction Graph Convolutional Network for Recommendation." In Lecture Notes in Computer Science, 532–43. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-15931-2_44.
Full textChatterjee, Aniruddha, Sagnik Biswas, and M. Kanchana. "Patent Recommendation Engine Using Graph Database." In Computational Intelligence and Data Analytics, 475–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3391-2_36.
Full textLiufu, Yuanwei, and Hong Shen. "Social Recommendation via Graph Attentive Aggregation." In Parallel and Distributed Computing, Applications and Technologies, 369–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96772-7_34.
Full textZhu, Jinghua, Yanchang Cui, Zhuohao Zhang, and Heran Xi. "Knowledge Graph Transformer for Sequential Recommendation." In Artificial Neural Networks and Machine Learning – ICANN 2023, 459–71. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44223-0_37.
Full textWen, Bo, Shumin Deng, and Huajun Chen. "Knowledge-Enhanced Collaborative Meta Learner for Long-Tail Recommendation." In Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence, 322–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1964-9_26.
Full textConference papers on the topic "Recommendation graph"
Gôlo, Marcos P. S., Leonardo G. Moraes, Rudinei Goularte, and Ricardo M. Marcacini. "One-Class Recommendation through Unsupervised Graph Neural Networks for Link Prediction." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/kdmile.2022.227810.
Full textTian, Yijun, Chuxu Zhang, Zhichun Guo, Chao Huang, Ronald Metoyer, and Nitesh V. Chawla. "RecipeRec: A Heterogeneous Graph Learning Model for Recipe Recommendation." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/481.
Full textSang, Lei, and Lei Li. "Neural Collaborative Recommendation with Knowledge Graph." In 2020 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2020. http://dx.doi.org/10.1109/icbk50248.2020.00038.
Full textJin, Yuanyuan, Wei Zhang, Mingyou Sun, Xing Luo, and Xiaoling Wang. "Neural Restaurant-aware Dish Recommendation." In 2020 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2020. http://dx.doi.org/10.1109/icbk50248.2020.00090.
Full textCao, Bin, Jianwei Yin, Shuiguang Deng, Dongjing Wang, and Zhaohui Wu. "Graph-based workflow recommendation." In the 21st ACM international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2396761.2398466.
Full textYang, Kaige, and Laura Toni. "GRAPH-BASED RECOMMENDATION SYSTEM." In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018. http://dx.doi.org/10.1109/globalsip.2018.8646359.
Full textLi, Chaoliu, Lianghao Xia, Xubin Ren, Yaowen Ye, Yong Xu, and Chao Huang. "Graph Transformer for Recommendation." In SIGIR '23: The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3539618.3591723.
Full textXia, Lianghao, Yizhen Shao, Chao Huang, Yong Xu, Huance Xu, and Jian Pei. "Disentangled Graph Social Recommendation." In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023. http://dx.doi.org/10.1109/icde55515.2023.00180.
Full textDossena, Marco, Christopher Irwin, and Luigi Portinale. "Graph-based Recommendation using Graph Neural Networks." In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00270.
Full textZhou, Chunyi, Yuanyuan Jin, Xiaoling Wang, and Yingjie Zhang. "Conversational Music Recommendation based on Bandits." In 2020 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2020. http://dx.doi.org/10.1109/icbk50248.2020.00016.
Full textReports on the topic "Recommendation graph"
Rinaudo, Christina, William Leonard, Jaylen Hopson, Christopher Morey, Robert Hilborn, and Theresa Coumbe. Enabling understanding of artificial intelligence (AI) agent wargaming decisions through visualizations. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48418.
Full text