Academic literature on the topic 'Recombinant protein'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Recombinant protein.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Recombinant protein"
Astuti, R. W., N. Wijayanti, and A. Haryanto. "Expression of Recombinant Fusion Protein from Local Isolate of Newcastle Disease Virus and Antibody Response to Recombinant Fusion Protein in Broiler Chickens Post-Vaccination." Journal of the Indonesian Tropical Animal Agriculture 45, no. 2 (May 15, 2020): 78–90. http://dx.doi.org/10.14710/jitaa.45.2.78-90.
Full textKim, Yoo-Gon, Woo-Jong Lee, Chan-Hee Won, Yong-Hee Kim, Ji-Sun Yun, Min-Seon Hong, and Chul-Soo Shin. "A study on short-term stability of recombinant protein A." Analytical Science and Technology 24, no. 3 (June 25, 2011): 193–99. http://dx.doi.org/10.5806/ast.2011.24.3.193.
Full textLewis, Peter. "Recombinant protein drugs." British Journal of Clinical Pharmacology 53, no. 4 (April 2002): 411. http://dx.doi.org/10.1046/j.1365-2125.2002.01571.x.
Full textFerrari, Luca, and Stefan G. D. Rüdiger. "Recombinant production and purification of the human protein Tau." Protein Engineering, Design and Selection 31, no. 12 (December 1, 2018): 447–55. http://dx.doi.org/10.1093/protein/gzz010.
Full textRodrigues, M., S. Li, K. Murata, D. Rodriguez, J. R. Rodriguez, I. Bacik, J. R. Bennink, J. W. Yewdell, A. Garcia-Sastre, and R. S. Nussenzweig. "Influenza and vaccinia viruses expressing malaria CD8+ T and B cell epitopes. Comparison of their immunogenicity and capacity to induce protective immunity." Journal of Immunology 153, no. 10 (November 15, 1994): 4636–48. http://dx.doi.org/10.4049/jimmunol.153.10.4636.
Full textLlompart, Blanca, Immaculada Llop-Tous, Pablo Marzabal, Margarita Torrent, Roser Pallissé, Miriam Bastida, M. Dolors Ludevid, and Fabien Walas. "Protein production from recombinant protein bodies." Process Biochemistry 45, no. 11 (November 2010): 1816–20. http://dx.doi.org/10.1016/j.procbio.2010.01.016.
Full textLobb, Leslie, Boguslaw Stec, Evan K. Kantrowitz, Akihito Yamano, Vivian Stojanoff, Ofer Markman, and Martha M. Teeter. "Expression, purification and characterization of recombinant crambin." "Protein Engineering, Design and Selection" 9, no. 12 (1996): 1233–39. http://dx.doi.org/10.1093/protein/9.12.1233.
Full textOhtake, Satoshi, and Tsutomu Arakawa. "Recombinant Therapeutic Protein Vaccines." Protein & Peptide Letters 20, no. 12 (November 2013): 1324–44. http://dx.doi.org/10.2174/092986652012131112122245.
Full textFuerst, Walter. "Recombinant Activated Protein C." Critical Care Medicine 32, no. 1 (January 2004): 311–12. http://dx.doi.org/10.1097/01.ccm.0000104932.57061.ad.
Full textStein, M.D.,, Richard A. "Recombinant Protein Expression Advances." Genetic Engineering & Biotechnology News 31, no. 16 (September 15, 2011): 34–36. http://dx.doi.org/10.1089/gen.31.16.14.
Full textDissertations / Theses on the topic "Recombinant protein"
Koscky, Paier Carlos Roberto 1983. "Padronização da expressão heterologa e de modelo de ensaio de atividade para a proteina quinase humana S6K." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/314787.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-14T12:40:52Z (GMT). No. of bitstreams: 1 KosckyPaier_CarlosRoberto_M.pdf: 3760581 bytes, checksum: 99331529324819b59a4360d60efd9b9a (MD5) Previous issue date: 2009
Resumo: A quinase de 70 kDa da proteína ribossomal S6, isoforma 1 (S6K1), é uma fosfoproteína implicada na regulação de genes relacionados ao controle da tradução em mamíferos e possui uma forma nuclear (a1) e uma citoplasmática (a2). A fosforilação do seu principal alvo, a proteína RPS6, tem sido comumente associada ao recrutamento seletivo dos 5'-TOP (5' tract of oligopyrimidine) mRNAs pela maquinaria de tradução, embora haja estudos contrariando esta hipótese. Devido às funções de seus demais alvos, S6K1 tem sido implicada na sobrevivência celular e em diversos outros processos, como crescimento, câncer e resistência à insulina. S6K1 é ativada por um mecanismo que envolve fosforilação seqüencial através da ativação das vias mTORC1 (complexo 1 do alvo da rapamicina em mamíferos) e PI3K (fosfoinositol-3 quinase). Como uma quinase da família AGC, S6K1 deve ser fosforilada por mTORC1 no resíduo Thr389 do domínio hidrofóbico e, em seguida, por PDPK1 (proteína quinase 1 dependente de fosfoinositol) no resíduo Thr229 da alça T do domínio catalítico. Estes eventos ocorrem somente após a fosforilação em diversos sítios do domínio auto-inibitório carboxiterminal, por mTORC1. O objetivo deste trabalho foi desenvolver um ensaio modelo para análise da função da S6K1 in vitro e utilizá-lo como ferramenta na elucidação do papel de proteínas adaptadoras da via de mTOR em interações com a S6K1. Para isso foi necessário produzir as proteínas recombinantes para ensaios de interação e para realização de um ensaio de atividade para a S6K1. Foram testados vários sistemas de expressão para Escherichia coli para produção das construções GST-S6K1a1-His6, GST-S6K1a2-His6 e GST-S6K1a2T389E?CT (forma a2 de S6K1 com a substituição T389E e o carboxiterminal truncado), GST-PDPK1 e GST-CDPDPK1 (domínio catalítico de PDPK1 fusionado a GST). A expressão das formas truncadas de S6K1 e PDPK1 foi mais eficiente em E. coli. Embora o rendimento tenha ficado muito aquém do esperado, foi suficiente para os ensaios de interação in vitro. Também foi feita a expressão em E. coli da região C-terminal da proteína RPS6, que é o substrato da S6K1, em fusão com a proteína D do fago ?. Posteriormente, foram montados sistemas de expressão das construções His6-S6K1a2T389E?CT e His6-CDPDPK1 em células de inseto, a partir de vetor de baculovírus. Constatou-se que essas construções são expressas na forma de fosfoproteínas em células de inseto. Ensaios de GST pull-down com GST-S6K1a2-His6 e GST-S6K1a2T389E?CT contra as duas isoformas da subunidade catalítica da PP2AC, His6-PP2ACa(maior) e His6-PP2ACa(menor), revelaram que His6-PP2ACa(maior) não interage com GST-S6K1a2-His6, embora interaja fortemente com GST-S6K1a2T389E?CT. Já a construção His6-PP2ACa(menor) interage fracamente com as construções GST-S6K1a2-His6 e GST-S6K1a2T389E?CT. Tomados em conjunto, os resultados sugerem que a presença do C-terminal não fosforilado de S6K1a2 impede a interação com PP2ACa(maior). PP2ACa(menor) comporta-se de forma completamente diferente da isoforma maior, pois a interação entre PP2ACa(menor) e S6K1a2 parece ser independente do carboxiterminal da quinase, visto que as quantidades de S6K1a2T389E?CT e de S6K1a2 inteira que interagem com PP2ACa(menor) são semelhantes. Esses resultados necessitam ainda serem confirmados in vivo. Outros experimentos de GST pull-down confirmaram que as construções de S6K1 não interagem com a4, embora interajam com TIPRL1. Se confirmado in vivo, esse resultado compõe um novo quadro na regulação coordenada entre mTOR1 e PP2A, do qual TIPRL1 parece participar. As construções genéticas e os sistemas de expressão gerados neste trabalho possibilitaram a obtenção dos reagentes necessários para analisar o mecanismo de regulação da quinase S6K1, mediado por proteínas regulatórias. Permitem também desenvolver uma série de experimentos, como busca de inibidores específicos para a S6K1, que dependem da reconstituição de ensaios de atividade in vitro com a S6K1 ativada. Contudo, o ensaio de atividade realizado não apresentou resultados satisfatórios e precisa ser desenvolvido.
Abstract: The 70kDa ribosomal S6 protein kinase 1 (S6K1) is a phosphoprotein involved in the regulation of genes related to translational control in mammals. S6K1 shows distinct nuclear (a1) and cytoplasmic (a2) forms. Phosphorylation of the S6K1 best characterized target, the protein of the small ribosomal subunit (RPS6), has been generally associated to the selective recruitment of the 5'-TOP mRNAs (5' tract of oligopyrimidine) by the translational machinery, although there is still some controversy on this issue. Due to the function of its targets, S6K1 has been implicated in several cellular processes including cell growth, cancer and insulin resistance. S6K1 is activated by a mechanism of sequential phosphorylation following activation of the mTORC1 (mammalian target of rapamycin complex 1) and PI3K (phosphoinositide-3-kinase) pathways. As a kinase of the AGC family, S6K1 activation requires mTORC1 phosphorylation of residue Thr389 of the hydrophobic domain followed by PDPK1 (phosphoinositide dependent protein kinase 1) phosphorylation of residue Thr229 at the T loop of the catalytic domain. These take place only after phosphorylation by mTORC1 of several residues of the autoinhibitory C-terminal domain. The objective of this work was to develop an assay to analyze the function of S6K1 in vitro and use it as a tool in the discovering of the functions of regulators proteins of the mTOR cascade in interactions with S6K1. For these purposes, expression systems were constructed to produce the various recombinant proteins to be used in the interaction and activity assays. Several genetic constructions were tested in Escherichia coli for the production of GST-S6K1a1-His6, GST-S6K1a2-His6 and GST-S6K1a2T389E?CT (a2 form of S6K1 with the T389E substitution and truncated carboxiterminus), GST-PDPK1 and GST-CDPDPK1 (GST fusion protein of the catalytic domain of PDPK1). The truncated forms were expressed more efficiently in E. coli. Although the yield in E. coli was lower than expected, it was sufficient to perform interaction assays. The C-terminal domain of RPS6, a substrate for S6K1, was successfully expressed in E. coli as a fusion protein with the phage ? protein D. Subsequently, expression systems for production of His6-S6K1a2T389E?CT and His6-CDPDPK1 in insect cells were constructed using baculovirus vectors. It was found that these constructs are expressed in the form of phosphoproteins in insect cells. GST pull-down assays using GST-S6K1a2-His6 e GST-S6K1a2T389E?CT to test interaction with the PP2AC isoforms His6-PP2ACa(major) and His6-PP2ACa(minor) revealed that His6-PP2ACa(major) does not interact with GST-S6K1a2-His6, although it interacts strongly with GST-S6K1a2T389E?CT. On the other hand, His6-PP2ACa(minor) interacts weakly with both GST- S6K1a2-His6 and GST-S6K1a2T389E?CT. This finding suggests that the unphosphorylated C-terminal of S6K1a2 inhibits interaction with PP2ACa(major). His6-PP2ACa(minor) behaves differently form His6-PP2ACa(major). Its interaction with S6K1a2 seems to be independent of the C-terminal since the amounts of S6K1a2T389E?CT and S6K1a2 that interact with His6-PP2ACa(minor) are similar. Future work in vivo is required to confirm these results. GST pull-down assays confirmed that a4 does not interact with the constructions of S6K1, while TIPRL1 interacts with them. If confirmed in vivo, these results provides a new perspective for the coordinated regulation between mTOR1 and PP2A, which apparently involves also TIPRL1. The genetic constructions and expression systems established in this work allow the production of the reagents required to study the mechanism of S6K1 regulation mediated by adaptor proteins. They will also allow the development of experiments such as screening for specific S6K1 inhibitors, which depend on reconstitution of S6K1 activity assays using activated S6K1. Nevertheless, the activity assay performed did not yield satisfactory outcomes and must be improved.
Mestrado
Bioquimica
Mestre em Biologia Funcional e Molecular
Tse, Muk-hei. "Investigations on recombinant Arabidopsis acyl-coenzyme A binding protein 1." View the Table of Contents & Abstract, 2005. http://sunzi.lib.hku.hk/hkuto/record/B36427664.
Full textTse, Muk-hei, and 謝牧熙. "Investigations on recombinant Arabidopsis acyl-coenzyme A binding protein 1." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36427664.
Full textCorgozinho, Carolina Nunes Costa. "Desenvolvimento de vacina baseada em sistema de liberação sustentada contendo proteína recombinante." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/60/60137/tde-31072009-083709/.
Full textIn Brazil, and in others tropical countries, the ticks have become a huge economic problem since the industry of livestock has developed. Ticks and tick-borne diseases affect animal and human health and are the cause of significant economic losses. The cattle tick Boophilus microplus is one of the most important arthropods in veterinary. This tick species causes both direct effects, such as blood sucking, and indirect effects, such as transmission of a wide variety of pathogens, which usually result in lethal infections. The gene vaccines based on Bm86 antigen, a midgut membrane-bound protein of the cattle tick B. microplus, represent a good alternative to control tick infestations, compared to chemicals. However, due to these vaccine formulations need 4 doses over the first year with booster at each 6 months to be effective, they are not suitable for countries with extensive cattle raising, like Brazil. Aiming a sustained release of Bm86 antigen, in this work we developed a single shot vaccine based on Bm86 loaded polymeric microspheres. In order to obtain desired release patterns, different formulations and processing parameters were varied, for example, the composition of the polymer, the monomer ratio lactic acid:glycolic acid and the size of the microparticles. The formulations were prepared by solvent evaporation method based on double emulsion. The formulation that presented better result as single shot vaccine was prepared with PLGA 75:25, solution 3% of PVA as stabilizer, agitation of 11000 rpm to form the primary emulsion and 800 rpm to obtain the double emulsion and solvent evaporation. The particles thus obtained presented an average size of 25 m, encapsulation ratio greater than 90% and approximately 50% of the protein was released in vitro in 60 days. Analysis by SDSPAGE and Western Blot showed that the integrity of the protein remained after encapsulation. The immunogenic studies showed that the formulation based onbiodegradable polymeric microspheres is able to elicit, with a single dose, an immune response and protection similar to that attained with 3 doses of conventional Bm86 vaccine formulations.
Ndabambi, Nonkululeko. "Recombinant expression of the pRb- and p53-interacting domains from the human RBBP6 protein for in vitro binding studies." Thesis, University of the Western Cape, 2004. http://etd.uwc.ac.za/index.php?module=etd&.
Full textBarua, Bipasha. "Design and study of Trp-cage miniproteins /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/8533.
Full textBleckwenn, Nicole Aleece. "Protein production development with recombinant vaccinia virus." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1416.
Full textThesis research directed by: Chemical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Morreale, Giacomo. "Processing of recombinant fusion protein and peptide." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615060.
Full textPesarrodona, Roches Mireia. "Supramolecular organisation and biological properties of tumor targeted, self-assembling protein nanoparticles." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/402365.
Full textRecombinant multidomain protein building-blocks have demonstrated to be an appealing biotechnological approach for the development of cell-targeted, nanoscale drug carriers on account of protein functional and architectonic versatility. The colorectal tumor targeting efficacy as well as non-toxicity of T22-empowered nanoparticles validates the potential of the de novo engineering approach developed in our research group. An approach based on end-terminal cationic peptides as pleiotropic tags in self-assembling protein building blocks. In an attempt to explore the flexibility of this approach, we have developed two protein-only nanoparticles that specifically bind CD44-receptor, namely A5G27-GFP-H6 and FNI/II/V-GFP-H6. These designed building-blocks promote the formation of ring-shaped structures which are approximately 14 nm in size, stable in plasma that can internalise cells through endocytosis in absence of cell toxicity. These targeted protein nanoparticles, together with the stability and biodistribution of other tested multifunctional self-assembling protein nanoparticles, are promising platforms for the transport of drugs or imaging agents as nanomedicines for breast cancer or other CD44-linked afflictions. Referring to microbial cell factories, many of the recombinant proteins are likely accumulated in IBs upon induction stress; however, considering non-classical structure description of these protein build-ups they represent an abundant and pure protein source. Although active protein has been obtained from IBs through mild solubilisation procedures, it is still unknown how the recovery of active protein from IBs affects the self-assembling process into protein nanoparticles. Thus, we have analyse the impact on nanoparticle structure and functionality considering the protein material source (nanoparticles from the soluble cell fraction or resolubilised from IBs) of the developed CD44-targeted protein vehicles. We have identified altered supramolecular organisation and consequently distinct in vitro and in vivo performance of cell-targeted protein nanoparticles depending on material’s origin. It is a particularly important aspect regarding recombinant production of smart and complex protein structures Albeit it has been recently known that the bacterial host directly influence the architecture and the performance of the produced protein nanoparticles, how the genetic background of E. coli strains deficient of chaperons or LPS-free affect these protein assemblies has not been addressed. In this thesis we have investigated the fine structure of CXCR4 and CD44 targeted nanoparticles produced in different E. coli strains and how their physicochemical characteristics affect the nanoparticles’ biointeractions. Results illustrate the robustness of self-assembling patterns among tumor-targeted GFP nanoparticles and also the influence of genetic background of the producing cells on shifting the distribution of oligomeric population in the pooled material. The intrinsic variability derived from the bioproduction, although being unpredictable or uncontrollable, offers a scope of nanoparticulated material from where optimal population can be selected considering their ultimate application
Comenale, Gabriela. "Expressão e purificação da proteína recombinante L2 do Papilomavírus bovino tipo-2 em sistema bacteriano." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/10/10132/tde-11102013-104819/.
Full textThe bovine papillomatosis is an infectious disease of worldwide occurrence, plaguing the Brazilian herd, without any effective attitude control, and whose illnesses associated with bladder tumors \"enzootic hematuria\" and upper digestive tract tumors \"caraguatá\" sensitive responsible for losses to livestock. Several attempts have been undertaken vaccine with prophylactic or therapeutic purposes, but without effective results. This is due to issues related to viral structure that hinder efficient manipulation for production of vaccine products. In order to obtain such information, it is necessary better understanding of the action of recombinant proteins. The bacterial cloning vectors for the expression and purification of such proteins serve different purposes. Among them, the production of immune inputs, such as diagnostic tests or vaccines. This project aimed the expression and purification of recombinant L2 capsid protein of BPV-2. The protein was expressed in bacteria and purification was carried out by affinity column. However, difficulties in the purification process, impaired the full completion of this objective. All the attempted approaches and protocols were discussed and potential solutions proposed.
Books on the topic "Recombinant protein"
Tuan, Rocky S. Recombinant Protein Protocols. New Jersey: Humana Press, 1997. http://dx.doi.org/10.1385/089603481x.
Full textBuckel, Peter, ed. Recombinant Protein Drugs. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7.
Full textBill, Roslyn M., ed. Recombinant Protein Production in Yeast. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-770-5.
Full textGasser, Brigitte, and Diethard Mattanovich, eds. Recombinant Protein Production in Yeast. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9024-5.
Full textJean, Garnier, ed. Introduction to proteins and protein engineering. Amsterdam: Elsevier, 1988.
Find full textJean, Garnier, ed. Introduction to proteins and protein engineering. Amsterdam: Elsevier, 1986.
Find full textHacker, David L., ed. Recombinant Protein Expression in Mammalian Cells. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8730-6.
Full textHoward, John A., and Elizabeth E. Hood, eds. Commercial Plant-Produced Recombinant Protein Products. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43836-7.
Full textS, Tuan Rocky, ed. Recombinant protein protocols: Detection and isolation. Totowa, N.J: Humana Press, 1997.
Find full textRobson, Barry. Introductionto proteins and protein engineering. Amsterdam: Elsevier, 1988.
Find full textBook chapters on the topic "Recombinant protein"
Fothergill-Gilmore, Linda A. "Recombinant Protein Technology." In Protein Biotechnology, 467–87. Totowa, NJ: Humana Press, 1993. http://dx.doi.org/10.1007/978-1-59259-438-2_13.
Full textWeissmann, Charles. "Recombinant interferon - the 20th anniversary." In Recombinant Protein Drugs, 3–41. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_1.
Full textHofschneider, Peter Hans, and Kenneth Murray. "Combining science and business: from recombinant DNA to vaccines against hepatitis B virus." In Recombinant Protein Drugs, 43–64. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_2.
Full textBrownlee, George G., and Paul L. F. Giangrande. "Clotting factors VIII and IX." In Recombinant Protein Drugs, 67–88. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_3.
Full textWelte, Karl, and Erich Platzer. "Colony-stimulating factors: altering the practice of oncology." In Recombinant Protein Drugs, 89–106. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_4.
Full textCollen, Désiré, and H. Roger Lijnen. "Tissue-type plasminogen activator: helping patients with acute myocardial infarction." In Recombinant Protein Drugs, 107–26. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_5.
Full textGillies, Stephen D. "Designing immunocytokines: genetically engineered fusion proteins for targeted immune therapy." In Recombinant Protein Drugs, 129–47. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_6.
Full textBurke, Paul A., and Scott D. Putney. "Improving protein therapeutics: the evolution of the modern pharmacopoeia." In Recombinant Protein Drugs, 151–68. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_7.
Full textFriedmann, Theodore. "Principles of gene transfer and foreign protein expression for human gene therapy." In Recombinant Protein Drugs, 169–80. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8346-7_8.
Full textRosenberg, Ian M. "Recombinant Protein Techniques." In Protein Analysis and Purification, 385–430. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-2056-5_11.
Full textConference papers on the topic "Recombinant protein"
Qiu, Weiguo, Arjun Stokes, Joseph Cappello, and Xiaoyi Wu. "Electrospinning of Recombinant Protein Polymer Nanofibers." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206352.
Full textBerkner, K. L., S. J. Busby, J. Gambee, and A. Kumar. "EXPRESSION IN MAMMALIAN CELLS OF FUSION PROTEINS BETWEEN HUMAN FACTORS IX AND VII." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643568.
Full textTyumentsev, A. I., M. A. Tyumentseva, and V. G. Akimkin. "DEVELOPMENT OF APPROACHES FOR ENDOTOXIN REMOVAL FROM PROTEIN PREPARATIONS ON THE EXAMPLE OF NUCLEASES OF THE CRISPR/CAS SYSTEM." In Molecular Diagnostics and Biosafety. Federal Budget Institute of Science 'Central Research Institute for Epidemiology', 2020. http://dx.doi.org/10.36233/978-5-9900432-9-9-113.
Full textQiu, Weiguo, Yiding Huang, Joseph Cappello, and Xiaoyi Wu. "Electrospun Recombinant Protein Polymer Nanofibers as a Biomaterial." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13131.
Full textTeng, Weibing, Yiding Huang, Joseph Cappello, and Xiaoyi Wu. "Mechanical and In-Vitro Cell Compatibility Properties of Silk-Elastinlike Protein-Based Biomaterial." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13141.
Full textShetty, R. S., Lyndon L. Salins, S. Ramanathan, and Sylvia Daunert. "Recombinant methods in protein and whole-cell biosensing." In Photonics East '99, edited by Mahmoud Fallahi and Basil I. Swanson. SPIE, 1999. http://dx.doi.org/10.1117/12.372904.
Full textVehar, G. A. "THE PRESENT STATE OF GENE TECHNOLOGY IN THE MANUFACTURE OF HUMAN COAGULATION PROTEINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644755.
Full textAshok Kumar, A., Margaret Insley, Jay Gambee, Sharon J. Busby, and Kathleen L. Berkner. "SITE SPECIFIC MUTAGENESIS WITHIN THE GLA-DOMAIN OF HUMAN FACTOR IX." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644079.
Full textJohnson, Daniel, Keat Teoh, Cody Ashby, Elizabeth Hood, and Xiuzhen Huang. "Analyzing genetic factors involved in recombinant protein expression enhancement." In 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2010. http://dx.doi.org/10.1109/bibmw.2010.5703806.
Full textPancham, N., M. Dumas, J. Brown, T. C. Michaud, and W. J. Knowles. "SYNTHETIC PEPTIDE ANTIBODIES RECOGNIZE PLASMA AND RECOMBINANT FVIII." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644027.
Full textReports on the topic "Recombinant protein"
Veen, Ryan Vander, Mark Mogler, Matthew M. Erdman, and D. L. Hank Harris. Preparation of GP5-M Heterodimer Glycantype Specific Recombinant Protein and Replicon Particles. Ames (Iowa): Iowa State University, January 2009. http://dx.doi.org/10.31274/ans_air-180814-698.
Full textWalls, Lichun H. Isolation and Preliminary Characterization of a Recombinant TAT Protein From Human Immunodeficiency Virus. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada298304.
Full textGalili, Gad, and Alan Bennett. Role of Molecular Chaperone in Wheat Storage Protein Assembly. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7604926.bard.
Full textChan, Eva. Expression and Purification of Recombinant Protein to Generate a Monoclonal Antibody to the PX domain of Tks5 ? Isoform in Cancer Cells. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.323.
Full textAngov, Evelina. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada391249.
Full textBanai, Menachem, and Gary Splitter. Molecular Characterization and Function of Brucella Immunodominant Proteins. United States Department of Agriculture, July 1993. http://dx.doi.org/10.32747/1993.7568100.bard.
Full textPalmer, Guy H., Eugene Pipano, Terry F. McElwain, Varda Shkap, and Donald P. Knowles, Jr. Development of a Multivalent ISCOM Vaccine against Anaplasmosis. United States Department of Agriculture, July 1993. http://dx.doi.org/10.32747/1993.7568763.bard.
Full textDolja, Valerian V., Amit Gal-On, and Victor Gaba. Suppression of Potyvirus Infection by a Closterovirus Protein. United States Department of Agriculture, March 2002. http://dx.doi.org/10.32747/2002.7580682.bard.
Full textBercovier, Herve, Raul Barletta, and Shlomo Sela. Characterization and Immunogenicity of Mycobacterium paratuberculosis Secreted and Cellular Proteins. United States Department of Agriculture, January 1996. http://dx.doi.org/10.32747/1996.7573078.bard.
Full textGafny, Ron, A. L. N. Rao, and Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Full text