Academic literature on the topic 'Recombinant monoclonal antibody'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Recombinant monoclonal antibody.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Recombinant monoclonal antibody"
Siegel, D. L. "Recombinant monoclonal antibody technology." Transfusion Clinique et Biologique 9, no. 1 (January 2002): 15–22. http://dx.doi.org/10.1016/s1246-7820(01)00210-5.
Full textLiu, Hongcheng, Georgeen Gaza-Bulseco, and Chris Chumsae. "Glutamine deamidation of a recombinant monoclonal antibody." Rapid Communications in Mass Spectrometry 22, no. 24 (December 30, 2008): 4081–88. http://dx.doi.org/10.1002/rcm.3831.
Full textEltarhoni, Khadiga, Faddy Kamel, Katrina Ihebunezie, Pasha Nisar, and Mikhail Soloviev. "Therapeutic Antibodies in Cancer Treatment in the UK." International Journal of Molecular Sciences 23, no. 23 (November 23, 2022): 14589. http://dx.doi.org/10.3390/ijms232314589.
Full textBrichta, J., M. Hnilova, and T. Viskovic. "generation of hapten-specific recombinant antibodies: antibody phage display technology: a review." Veterinární Medicína 50, No. 6 (March 28, 2012): 231–52. http://dx.doi.org/10.17221/5620-vetmed.
Full textLubkin, Margaret, Matthew Shallice, Julie Nyhus, Louis Leong, and Birte Aggeler. "Recombinant Rabbit Monoclonal Antibodies to Study Apoptosis and Apoptotic Pathways (132.4)." Journal of Immunology 184, no. 1_Supplement (April 1, 2010): 132.4. http://dx.doi.org/10.4049/jimmunol.184.supp.132.4.
Full textBoonham, N., and I. Barker. "Virus Strain Discrimination Using Recombinant Antibodies." Disease Markers 16, no. 1-2 (2000): 95–97. http://dx.doi.org/10.1155/2000/815852.
Full textAmbrogelly, Alexandre, Stephen Gozo, Amit Katiyar, Shara Dellatore, Yune Kune, Ram Bhat, Joanne Sun, et al. "Analytical comparability study of recombinant monoclonal antibody therapeutics." mAbs 10, no. 4 (March 20, 2018): 513–38. http://dx.doi.org/10.1080/19420862.2018.1438797.
Full textSchrader, John W., and Gary R. McLean. "Multispecificity of a recombinant anti-ras monoclonal antibody." Journal of Molecular Recognition 31, no. 2 (November 8, 2017): e2683. http://dx.doi.org/10.1002/jmr.2683.
Full textGreunke, Kerstin, Edzard Spillner, Ingke Braren, Henning Seismann, Sabine Kainz, Ulrich Hahn, Thomas Grunwald, and Reinhard Bredehorst. "Bivalent monoclonal IgY antibody formats by conversion of recombinant antibody fragments." Journal of Biotechnology 124, no. 2 (July 2006): 446–56. http://dx.doi.org/10.1016/j.jbiotec.2005.12.032.
Full textEwers, Helge. "Open-source recombinant monoclonal secondary nanobodies." Journal of Cell Biology 217, no. 3 (February 14, 2018): 809–11. http://dx.doi.org/10.1083/jcb.201802025.
Full textDissertations / Theses on the topic "Recombinant monoclonal antibody"
Johansson, Daniel X. "Expression and interaction studies of recombinant human monoclonal antibodies /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-137-1/.
Full textSheikholvaezin, Ali. "Recombinant antibodies and tumor targeting." Doctoral thesis, Umeå : Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-875.
Full textLópez, Cerro Maria Teresa. "Strategies to improve Chlamydomonas reinhardtii as a recombinant protein host: from a small growth factor to a complex monoclonal antibody production." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/586310.
Full textLas proteínas recombinantes ofrecen un gran potencial para diversas aplicaciones impactando procesos industriales, investigación, el mercado cosmético y el mercado terapéutico. Chlamydomonas reinhardtii es un huésped prometedor para expresión de proteínas recombinantes. A pesar de ofrecer características ventajosas y bajos costes de producción, su uso se ve limitado por bajos niveles de expresión de transgenes nucleares. En la presente tesis se testan diversas estrategias con el objetivo de superar esta limitación. Como resultado, en base a la secreción de una proteína de fusión formada por un factor de crecimiento y un reportero, el uso de regiones reguladoras y estabilizadoras ha resultado en niveles de expresión entre 1 y 100 µg /L de cultivo. Además, en la presente tesis se recoge la expresión nuclear de un anticuerpo monoclonal en Chlamydomonas, así como su secreción y acumulación en el medio. Este anticuerpo está correctamente plegado y reconoce su antígeno. Esto representa un punto clave para Chlamydomonas ya que significa su validación como huésped para la expresión de proteínas complejas. Los vectores y cribados desarrollados emergen como recursos innovadores que expanden la batería de herramientas disponible para la modificación genética del núcleo de Chlamydomonas. Además, se ha desarrollado y validado un método de purificación de proteína recombinante des de medio. La simplicidad de este método de purificación indica la potencia de Chlamydomonas como huésped industrial para la expresión de proteínas recombinantes. Finalmente, en la presente tesis se reporta la proliferación de fibroblastos murinos inducida por componentes secretados por Chlamydomonas y su efecto sinérgico cuando se aplican con el factor de crecimiento humano, revelando así el potencial de los componentes extracelulares de Chlamydomonas.
Fiddes, Jane L. Sutton Biotechnology & Biomolecular Sciences Faculty of Science UNSW. "Development of recombinant human monoclonal antibodies suitable for blood grouping using antibody engineering techniques." Awarded by:University of New South Wales. Biotechnology & Biomolecular Sciences, 2007. http://handle.unsw.edu.au/1959.4/40503.
Full textCromwell, Mary Ellen Miley. "Self-association, crystallization, and phase separation : understanding intermolecular interactions for a monoclonal antibody /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008.
Find full textTypescript. Includes bibliographical references (leaves 209-236). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Bailey, Laura. "Investigating the influence of long-term culture and feed additions on recombinant antibody production in Chinese hamster ovary cells." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-influence-of-longterm-culture-and-feed-additions-on-recombinant-antibody-production-in-chinese-hamster-ovary-cells(1ccfdb8f-c0a6-49c8-a7a7-5e79b84e2862).html.
Full textThirumangalathu, Renuka. "Understanding physical and chemical stability of proteins in solution : relevance to therapeutic protein and monoclonal antibody formulations /." Connect to abstract via ProQuest. Full text is not available online, 2007.
Find full textTypescript. Includes bibliographical references (leaves 133-143). Online version available via ProQuest Digital Dissertations.
Maiocchi, Rebecca. "Recovery of rare cells and single cells analysis: different opportunities and challenging applications." Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1128669.
Full textCaucheteur, Déborah. "Nouveau format de banques d’anticorps recombinants humains pour un criblage fonctionnel à grande échelle." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT012.
Full textSince 2000, monoclonal antibodies (mAb) have become essential and routine drugs in therapy and particularly in oncology. The field continues to grow very quickly and given the abundance of molecules available, it is increasingly important to bring innovative molecules with a high added value for therapy.Two main approaches are used to select these mAbs: hybridoma technology using normal or humanized mice; display systems such as phage-display. The major interests of phage display are the speed of mAb development, the facilities offered by E. coli and the easy access to protein engineering techniques. Typically, antibodies are first selected on their ability to bind to the antigen, and then tested for their functional efficiency in cellular models. However, only a part of the activity of antibodies is explained by their binding to the antigen, and the therapeutic activity also depends strongly on their ability to recruit the immune system (ADCC) and activate the complement cascade (CDC).This thesis project consists in the development of a new recombinant antibody library format combining the power of phage display selection with functional screening in a whole IgG format produced in eukaryotic cells. This new system is based on hybrid promoter and signal peptide regions allowing expression both in prokaryotic and eukaryotic cells, and a site-specific recombination event that exchanges the Fab between the display vector and the chromosome of an especially developed mammalian cell line resulting in the secretion of a monoclonal human antibody by the cell. The usual approach of recloning one by one from E.Coli vector to an IgG format is no more needed since it is done directly by transfection. This new system makes possible to couple selection by phage display with a direct functional screening of a large population of human monoclonal clones
Lien, Ting-Ya, and 連亭雅. "Selection of Monoclonal Antibody Against Recombinant Grb2-SH2 Domain." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/bzuekd.
Full text國立中興大學
生命科學院碩士在職專班
102
Cancer was the leading cause of death in Taiwan. Breast cancer was the most prevalent cancer in female. Clinical breast cancer therapies include surgery, chemical and radial therapy. Several drugs were used for chemical therapy, however, these drug treatments have many side effects, even leading to some other cancers development. The drug with low side effect is needed to avoid these side effects. Antibody, from the immune system?has high specificity to a candidate specific cell or a molecul and becomes a potential drug for targeted therapy. Cancer development comes from abnormal growth mechanism from normal cells. According to previous study, Grb2 protein (Growth factor receptor-bound protein 2) with SH2 domain (Src-homology 2 domain) was connected to cancer cell proliferation. In this study, we tried to acquire a SH2 domin specific antibody to prevent cancer cell abnormal growth. MCF-7 cell was used and its genome was served as template to amplified Grb2 gene SH2 domain fragment to further insert this DNA fragment into expression plasmid. SH2 domain fragment of Grb2 was expressed in E.coli expression system. Expressed protein was gathered as antigen to immune the mouse. After elevated immune response, mice were screened and sacrifice to obtain antibody in sera. The B Cells were fused with NS1 myeloma cells to produce hybridoma. We got 2 limes of SH2 antibody producing hybridoma after the monoclonal selection. The 6H3 antibody was highly specific to SH2 protein and will be use to enginerring for scFv drug development in the future.
Books on the topic "Recombinant monoclonal antibody"
Oehlrich, Marcus. Recombinant monoclonal antibody trastuzumab for the treatment of metastatic breast cancer with tumors overexpressing the HER2-neu proto-oncogene: A systematic review. Berlin: dissertation.de, 2003.
Find full textBook chapters on the topic "Recombinant monoclonal antibody"
Davies, Sarah L., and David C. James. "Engineering Mammalian Cells for Recombinant Monoclonal Antibody Production." In Cell Engineering, 153–73. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2245-5_8.
Full textUbah, Obinna, and Soumya Palliyil. "Monoclonal Antibodies and Antibody Like Fragments Derived from Immunised Phage Display Libraries." In Recombinant Antibodies for Infectious Diseases, 99–117. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72077-7_6.
Full textKolb, Andreas F., Monika Lechermaier, Angehen Heister, Atiye Toksoy, and Stuart G. Siddell. "Isolation and Recombinant Expression of an MHV-JHM Neutralising Monoclonal Antibody." In Advances in Experimental Medicine and Biology, 657–64. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5331-1_85.
Full textDorn-Beineke, Alexandra, Stefanie Nittka, and Michael Neumaier. "Technology and Production of Murine Monoclonal and Recombinant Antibodies and Antibody Fragments." In Animal Cell Biotechnology, 93–121. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-399-8_3.
Full textBoggiano, T., A. Fernandez, C. Hermida, J. Villán, E. Ojito, Y. Hidalgo, M. Arias, and J. Gomez. "Study for the Production of a Recombinant Monoclonal Antibody in Stirred Tank." In Animal Cell Technology, 435–40. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_69.
Full textPrachasuphap, Apichai, Chaivat Kittigul, Patcharee Sunthoranandh, Panadda Dhepakson, Nongluk Buddhirakkul, and Kruavon Balachandra. "Construction of recombinant monoclonal antibody against hepatitis b surface antigen by phage display." In Animal Cell Technology: Basic & Applied Aspects, 227–32. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4457-7_31.
Full textKelley, Brian, Robert Kiss, and Michael Laird. "A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology?" In New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins, 443–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/10_2018_59.
Full textInoue, Y., S. Kawamoto, S. Shirahata, K. Teruya, H. Tachibana, L. B. López, K. Seki, et al. "Production of Recombinant Human Monoclonal Antibody Using Hyper Producing BHK-21 Cells in Protein-Free Medium." In Animal Cell Technology: Basic & Applied Aspects, 179–83. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5746-9_28.
Full textMakimoto, Yutaka, Eiji Takahashi, and Hiroshi Takasugi. "Relationship Between Cell Cycle Phases and Monoclonal Antibody Production in Microcarrier Perfusion Culture of Recombinant CHO Cells." In Animal Cell Technology: Basic & Applied Aspects, 103–7. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0728-2_19.
Full textKawatsu, K., Y. Ushio, K. Tsukiguma, Y. Ishikawa, and H. Yokote. "An Engineering Method to High Yielding Production of Recombinant Anti-HIV Monoclonal Antibody Using Generic Multi Feed Fermentation." In Animal Cell Technology: Basic & Applied Aspects, 191–95. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0726-8_33.
Full textConference papers on the topic "Recombinant monoclonal antibody"
Muzychenko, B. A., and Ya I. Melnikova. "IMMUNOCHEMICAL CHARACTERISTICS OF FRAGMENTS OF ANTIBODIES TO FERRITIN." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-128-131.
Full textQuertermous, T., J. M. Schnee, M. S. Runge, G. R. Matsueda, N. W. Hudson, J. G. Seidman, and E. Haber. "EXPRESSION OF A RECOMBINANT ANTIBODY-TARGETED THROMBOLYTIC MOLECULE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644616.
Full textSubiantistha, T., S. Pambudi, A. F. Rahmani, S. A. Puteri, and R. Lestari. "Cloning of recombinant fab from monoclonal antibody anti-dengue NS1 induced by recombinant CHO-K1 cells into pGEM-T vector." In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132532.
Full textHaber, Edgar, Marchall T. Runge, Christoph Bode, Betsy Branscomb, and Janet Schnee. "ANTIBODY TARGETED FIBRINOLYSIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643723.
Full textPancham, N., M. Dumas, J. Brown, T. C. Michaud, and W. J. Knowles. "SYNTHETIC PEPTIDE ANTIBODIES RECOGNIZE PLASMA AND RECOMBINANT FVIII." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644027.
Full textNy, T., L. Hansson, and B. Åstedt. "ISOLATION OF cDNA FOR TYPE-2 PLASMINOGEN ACTIVATOR INHIBITOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642855.
Full textPuteri, S. A., S. Pambudi, A. F. Rahmani, T. Subiantistha, and R. Lestari. "Cloning of recombinant fab from monoclonal antibody anti-dengue NS1 induced by Saccharomyces cerevisiae in Escherichia coli TOP10." In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132530.
Full textPedersen, Mikkel W., Helle J. Jacobsen, Thomas T. Poulsen, Per J. Meijer, and Michael Kragh. "Abstract 4562: Superior targeting of the human epidermal growth factor receptor 2 (HER-2) with recombinant monoclonal antibody mixtures." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4562.
Full textUzan, G., A. Lajmanovich, M. H. Prandini, Ph Frachet, A. Duperray, and G. Marguerie. "MOLECULAR CLONING OF PLATELET GPIIb FROM HEL CELLS AND HUMAN MEGAKARYOCYTES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643960.
Full textPiérard, L., P. Jacobs, D. Gheysen, M. Hoylaerts, A. Cravador, A. Herzog, D. Collen, and A. Bollen. "MUTANT AND CHIMAERIC RECOMBINANT PLASMINOGEN ACTIVATORS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643942.
Full textReports on the topic "Recombinant monoclonal antibody"
Chan, Eva. Expression and Purification of Recombinant Protein to Generate a Monoclonal Antibody to the PX domain of Tks5 ? Isoform in Cancer Cells. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.323.
Full textMcElwain, Terry, Eugene Pipano, Guy Palmer, Varda Shkap, Stephen Hines, and Douglas Jasmer. Protection of Cattle Against Babesiosis: Immunization with Recombinant DNA Derived Apical Complex Antigens of Babesia bovis. United States Department of Agriculture, June 1995. http://dx.doi.org/10.32747/1995.7612835.bard.
Full text