Journal articles on the topic 'Rechargeable-Iron Batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rechargeable-Iron Batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ritchie, A. G., P. G. Bowles, and D. P. Scattergood. "Lithium-ion/iron sulphide rechargeable batteries." Journal of Power Sources 136, no. 2 (October 2004): 276–80. http://dx.doi.org/10.1016/j.jpowsour.2004.03.043.
Full textYou, Gongchuan, and Liang He. "High Performance Electrolyte for Iron-Ion batteries." Academic Journal of Science and Technology 5, no. 2 (April 2, 2023): 244–47. http://dx.doi.org/10.54097/ajst.v5i2.6995.
Full textHe, Z., F. Xiong, S. Tan, X. Yao, C. Zhang, and Q. An. "Iron metal anode for aqueous rechargeable batteries." Materials Today Advances 11 (September 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.
Full textKumar, Harish, and A. K. Shukla. "Fabrication Fe/Fe3O4/Graphene Nanocomposite Electrode Material for Rechargeable Ni/Fe Batteries in Hybrid Electric Vehicles." International Letters of Chemistry, Physics and Astronomy 19 (October 2013): 15–25. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.19.15.
Full textKumar, Harish, and A. K. Shukla. "Fabrication Fe/Fe<sub>3</sub>O<sub>4</sub>/Graphene Nanocomposite Electrode Material for Rechargeable Ni/Fe Batteries in Hybrid Electric Vehicles." International Letters of Chemistry, Physics and Astronomy 19 (October 2, 2013): 15–25. http://dx.doi.org/10.56431/p-oqaeru.
Full textHayashi, Kazushi, Yasutaka Maeda, Tsubasa Suzuki, Hisatoshi Sakamoto, Toshihiro Kugimiya, Wai Kian Tan, Go Kawamura, Hiroyuki Muto, and Atsunori Matsuda. "Development of Iron-Based Rechargeable Batteries with Sintered Porous Iron Electrodes." ECS Transactions 75, no. 18 (January 10, 2017): 111–16. http://dx.doi.org/10.1149/07518.0111ecst.
Full textPaulraj, Alagar Raj, Yohannes Kiros, Björn Skårman, and Hilmar Vidarsson. "Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries." Journal of The Electrochemical Society 164, no. 7 (2017): A1665—A1672. http://dx.doi.org/10.1149/2.1431707jes.
Full textMayer, Sergio Federico, Cristina de la Calle, María Teresa Fernández-Díaz, José Manuel Amarilla, and José Antonio Alonso. "Nitridation effect on lithium iron phosphate cathode for rechargeable batteries." RSC Advances 12, no. 6 (2022): 3696–707. http://dx.doi.org/10.1039/d1ra07574h.
Full textAbdalla, Abdallah H., Charles I. Oseghale, Jorge O. Gil Posada, and Peter J. Hall. "Rechargeable nickel–iron batteries for large‐scale energy storage." IET Renewable Power Generation 10, no. 10 (November 2016): 1529–34. http://dx.doi.org/10.1049/iet-rpg.2016.0051.
Full textMorzilli, S., and B. Scrosati. "Iron oxide electrodes in lithium organic electrolyte rechargeable batteries." Electrochimica Acta 30, no. 10 (October 1985): 1271–76. http://dx.doi.org/10.1016/0013-4686(85)85002-7.
Full textTsuneishi, Taku, Takuma Esaki, Hisatoshi Sakamoto, Kazushi Hayashi, G. Kawamura, Hiroyuki Muto, and Atsunori Matsuda. "Iron Composite Anodes for Fabricating All-Solid-State Iron-Air Rechargeable Batteries." Key Engineering Materials 616 (June 2014): 114–19. http://dx.doi.org/10.4028/www.scientific.net/kem.616.114.
Full textParola, Valeria La, Vincenzo Turco Liveri, Lorena Todaro, Domenico Lombardo, Elvira Maria Bauer, Alessandro Dell'Era, Alessandro Longo, et al. "Iron and lithium-iron alkyl phosphates as nanostructured material for rechargeable batteries." Materials Letters 220 (June 2018): 58–61. http://dx.doi.org/10.1016/j.matlet.2018.02.112.
Full textWeinrich, Henning, Yasin Emre Durmus, Hermann Tempel, Hans Kungl, and Rüdiger-A. Eichel. "Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review." Materials 12, no. 13 (July 2, 2019): 2134. http://dx.doi.org/10.3390/ma12132134.
Full textWeinrich, Henning, Jérémy Come, Hermann Tempel, Hans Kungl, Rüdiger-A. Eichel, and Nina Balke. "Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries." Nano Energy 41 (November 2017): 706–16. http://dx.doi.org/10.1016/j.nanoen.2017.10.023.
Full textShakoor, Rana A., Chan Sun Park, Arsalan A. Raja, Jaeho Shin, and Ramazan Kahraman. "A mixed iron–manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries." Physical Chemistry Chemical Physics 18, no. 5 (2016): 3929–35. http://dx.doi.org/10.1039/c5cp06836c.
Full textEllis, B. L., W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar. "A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries." Nature Materials 6, no. 10 (September 9, 2007): 749–53. http://dx.doi.org/10.1038/nmat2007.
Full textBerger, Cornelius M., Abdelfattah Mahmoud, Raphaël P. Hermann, Waldemar Braun, Elena Yazhenskikh, Yoo Jung Sohn, Norbert H. Menzler, Olivier Guillon, and Martin Bram. "Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries." Journal of the American Ceramic Society 99, no. 12 (August 8, 2016): 4083–92. http://dx.doi.org/10.1111/jace.14439.
Full textPIETRZAK, TOMASZ K., IRENA GORZKOWSKA, JAN L. NOWIŃSKI, JERZY E. GARBARCZYK, and MAREK WASIUCIONEK. "PREPARATION OF TRIPHYLITE-LIKE GLASSES AND NANOMATERIALS IN THE LiFePO4-V2O5 SYSTEM AND STUDY ON THEIR ELECTRICAL CONDUCTIVITY." Functional Materials Letters 04, no. 02 (June 2011): 143–45. http://dx.doi.org/10.1142/s1793604711001750.
Full textKhezri, Ramin, Kridsada Jirasattayaporn, Ali Abbasi, Thandavarayan Maiyalagan, Ahmad Azmin Mohamad, and Soorathep Kheawhom. "Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc–Air Batteries." Energies 13, no. 6 (March 19, 2020): 1429. http://dx.doi.org/10.3390/en13061429.
Full textManohar, Aswin K., Chenguang Yang, Souradip Malkhandi, Bo Yang, G. K. Surya Prakash, and S. R. Narayanan. "Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries." Journal of The Electrochemical Society 159, no. 12 (2012): A2148—A2155. http://dx.doi.org/10.1149/2.021301jes.
Full textSun, Ling Na. "Research of LiFePO4 as Positive Electrode Materials." Applied Mechanics and Materials 217-219 (November 2012): 792–95. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.792.
Full textYu, S. H., M. Shokouhimehr, T. Hyeon, and Y. E. Sung. "Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries." ECS Electrochemistry Letters 2, no. 4 (February 6, 2013): A39—A41. http://dx.doi.org/10.1149/2.008304eel.
Full textPeng, Zhuo, Qiulong Wei, Shuangshuang Tan, Pan He, Wen Luo, Qinyou An, and Liqiang Mai. "Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries." Chemical Communications 54, no. 32 (2018): 4041–44. http://dx.doi.org/10.1039/c8cc00987b.
Full textLu, Jiechen, Shin-ichi Nishimura, and Atsuo Yamada. "A Fe-rich sodium iron orthophosphate as cathode material for rechargeable batteries." Electrochemistry Communications 79 (June 2017): 51–54. http://dx.doi.org/10.1016/j.elecom.2017.04.012.
Full textYang, Fan, Jinhao Xie, Xiaoqing Liu, Yinxiang Zeng, Minghua Chen, and Xihong Lu. "Iron-based nanoparticles encapsulated in super-large 3D carbon nanotube networks as a bifunctional catalyst for ultrastable rechargeable zinc–air batteries." Journal of Materials Chemistry A 8, no. 48 (2020): 25913–18. http://dx.doi.org/10.1039/d0ta09115d.
Full textHe, Ting, Bingzhang Lu, Yang Chen, Yong Wang, Yaqiang Zhang, John L. Davenport, Alan P. Chen, et al. "Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery." Research 2019 (December 20, 2019): 1–13. http://dx.doi.org/10.34133/2019/6813585.
Full textLei, Danni, Dong-Chan Lee, Alexandre Magasinski, Enbo Zhao, Daniel Steingart, and Gleb Yushin. "Performance Enhancement and Side Reactions in Rechargeable Nickel–Iron Batteries with Nanostructured Electrodes." ACS Applied Materials & Interfaces 8, no. 3 (January 14, 2016): 2088–96. http://dx.doi.org/10.1021/acsami.5b10547.
Full textMyung, Seung-Taek, Shuhei Sakurada, Hitoshi Yashiro, and Yang-Kook Sun. "Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries." Journal of Power Sources 223 (February 2013): 1–8. http://dx.doi.org/10.1016/j.jpowsour.2012.09.027.
Full textKim, Hyungsub, Gabin Yoon, Inchul Park, Jihyun Hong, Kyu-Young Park, Jongsoon Kim, Kug-Seung Lee, Nark-Eon Sung, Seongsu Lee, and Kisuk Kang. "Highly Stable Iron- and Manganese-Based Cathodes for Long-Lasting Sodium Rechargeable Batteries." Chemistry of Materials 28, no. 20 (October 14, 2016): 7241–49. http://dx.doi.org/10.1021/acs.chemmater.6b01766.
Full textAit Salah, A., P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger, and C. M. Julien. "FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 65, no. 5 (December 2006): 1007–13. http://dx.doi.org/10.1016/j.saa.2006.01.019.
Full textRamzan, M., S. Lebègue, and R. Ahuja. "Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries." Applied Physics Letters 94, no. 15 (April 13, 2009): 151904. http://dx.doi.org/10.1063/1.3119704.
Full textLi, Chilin, Lin Gu, Jianwei Tong, Susumu Tsukimoto, and Joachim Maier. "A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries." Advanced Functional Materials 21, no. 8 (March 4, 2011): 1391–97. http://dx.doi.org/10.1002/adfm.201002213.
Full textWu, Kunze, Lei Zhang, Yifei Yuan, Linxin Zhong, Zhongxin Chen, Xiao Chi, Hao Lu, et al. "An Iron‐Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn–Air Batteries." Advanced Materials 32, no. 32 (July 2020): 2002292. http://dx.doi.org/10.1002/adma.202002292.
Full textZHAO, Ming, Li-Fang JIAO, Hua-Tang YUAN, Jun-Li SUN, and Yan FENG. "High-rate Lithium Iron(II) Phosphate as Cathode Material for Rechargeable Lithium Batteries." Chinese Journal of Chemistry 26, no. 2 (February 2008): 290–94. http://dx.doi.org/10.1002/cjoc.200890057.
Full textSaiful Islam, M., and Peter R. Slater. "Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling." MRS Bulletin 34, no. 12 (December 2009): 935–41. http://dx.doi.org/10.1557/mrs2009.216.
Full textShangguan, Enbo, Fei Li, Jing Li, Zhaorong Chang, Quanmin Li, Xiao-Zi Yuan, and Haijiang Wang. "FeS/C composite as high-performance anode material for alkaline nickel–iron rechargeable batteries." Journal of Power Sources 291 (September 2015): 29–39. http://dx.doi.org/10.1016/j.jpowsour.2015.05.019.
Full textYu, Tingting, Qiang Li, Xiangyu Zhao, Hui Xia, Liqun Ma, Jinlan Wang, Ying Shirley Meng, and Xiaodong Shen. "Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries." ACS Energy Letters 2, no. 10 (September 14, 2017): 2341–48. http://dx.doi.org/10.1021/acsenergylett.7b00699.
Full textLei, Danni, Dong-Chan Lee, Enbo Zhao, Alexandre Magasinski, Hong-Ryun Jung, Gene Berdichevsky, Daniel Steingart, and Gleb Yushin. "Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries." Nano Energy 48 (June 2018): 170–79. http://dx.doi.org/10.1016/j.nanoen.2018.03.035.
Full textMeng, Fanlu, Haixia Zhong, Junmin Yan, and Xinbo Zhang. "Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries." Nano Research 10, no. 12 (January 14, 2017): 4436–47. http://dx.doi.org/10.1007/s12274-016-1343-z.
Full textJadhav, Harsharaj S., Ramchandra S. Kalubarme, Arvind H. Jadhav, and Jeong Gil Seo. "Iron-nickel spinel oxide as an electrocatalyst for non-aqueous rechargeable lithium-oxygen batteries." Journal of Alloys and Compounds 666 (May 2016): 476–81. http://dx.doi.org/10.1016/j.jallcom.2016.01.131.
Full textMAINGOT, S., R. BADDOUR, J. P. PEREIRA-RAMOS, N. BAFFIER, and P. WILLMANN. "ChemInform Abstract: A New Iron V2O5 Bronze as Electrode Material for Rechargeable Lithium Batteries." ChemInform 25, no. 6 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199406015.
Full textIchu. B. C and ONOCHOJA U. F.C. "Lithium ion battery research and development: the Nigerian potential." Pacific International Journal 3, no. 1 (March 31, 2020): 13–18. http://dx.doi.org/10.55014/pij.v3i1.88.
Full textManohar, Aswin K., Chenguang Yang, Souradip Malkhandi, G. K. Surya Prakash, and S. R. Narayanan. "Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives." Journal of The Electrochemical Society 160, no. 11 (2013): A2078—A2084. http://dx.doi.org/10.1149/2.066311jes.
Full textWeinrich, Henning, Markus Gehring, Hermann Tempel, Hans Kungl, and Rüdiger-A. Eichel. "Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron–air batteries." Journal of Applied Electrochemistry 48, no. 4 (February 23, 2018): 451–62. http://dx.doi.org/10.1007/s10800-018-1176-4.
Full textLiu, Ying, Jungwon Heo, Xueying Li, Yuanzheng Sun, Younki Lee, Du-Hyun Lim, Hyo-Jun Ahn, Kwon-Koo Cho, Rong Yang, and Jou-Hyeon Ahn. "Iron Disulfide Cathode Material Incorporated in Highly Ordered Mesoporous Carbon for Rechargeable Lithium Ion Batteries." Science of Advanced Materials 12, no. 9 (September 1, 2020): 1265–70. http://dx.doi.org/10.1166/sam.2020.3815.
Full textZhao, Meiqi, Haoran Liu, Hongwei Zhang, Wen Chen, Hanqin Sun, Zhenhua Wang, Biao Zhang, et al. "A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries." Energy & Environmental Science 14, no. 12 (2021): 6455–63. http://dx.doi.org/10.1039/d1ee01602d.
Full textLi, Jing, Jiaqian Zheng, Chengke Wu, Huijie Zhang, Tingyi Jin, Fuquan Wang, Quanmin Li, and Enbo Shangguan. "Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries." Journal of Alloys and Compounds 874 (September 2021): 159873. http://dx.doi.org/10.1016/j.jallcom.2021.159873.
Full textYabuuchi, Naoaki, and Shinichi Komaba. "Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries." Science and Technology of Advanced Materials 15, no. 4 (August 2014): 043501. http://dx.doi.org/10.1088/1468-6996/15/4/043501.
Full textBraun, Waldemar, Viktoria Erfurt, Florian Thaler, Norbert H. Menzler, Robert Spatschek, and Lorenz Singheiser. "Kinetic Study of Iron Based Storage Materials for the Use in Rechargeable Oxide Batteries (ROB)." ECS Transactions 75, no. 43 (January 5, 2017): 59–73. http://dx.doi.org/10.1149/07543.0059ecst.
Full textMathur, Ankita, and Aditi Halder. "One-step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc–air batteries." Catalysis Science & Technology 9, no. 5 (2019): 1245–54. http://dx.doi.org/10.1039/c8cy02498g.
Full text