Academic literature on the topic 'Receptor for advanced glycation endproduct'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Receptor for advanced glycation endproduct.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Receptor for advanced glycation endproduct"

1

Yamagishi, Sho-ichi. "Role of Advanced Glycation Endproduct (AGE)-Receptor for Advanced Glycation Endproduct (RAGE) Axis in Cardiovascular Disease and Its Therapeutic Intervention." Circulation Journal 83, no. 9 (August 23, 2019): 1822–28. http://dx.doi.org/10.1253/circj.cj-19-0618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaens, Katrien HJ, Coen DA Stehouwer, and Casper G. Schalkwijk. "Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity." Current Opinion in Lipidology 24, no. 1 (February 2013): 4–11. http://dx.doi.org/10.1097/mol.0b013e32835aea13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McFarlane, S. "Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium." British Journal of Ophthalmology 89, no. 1 (January 1, 2005): 107–12. http://dx.doi.org/10.1136/bjo.2004.045914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walker, Douglas, Lih Fen Lue, Gaurav Paul, Amar Patel, and Marwan N. Sabbagh. "Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer’s disease." Expert Opinion on Investigational Drugs 24, no. 3 (January 14, 2015): 393–99. http://dx.doi.org/10.1517/13543784.2015.1001490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haslbeck, Karl-Matthias, Angelika Bierhaus, Schliecher Erwin, Annette Kirchner, Peter Nawroth, Ursula Schlötzer, Bernhard Neundörfer, and Dieter Heuss. "Receptor for advanced glycation endproduct (RAGE)-mediated nuclear factor-κB activation in vasculitic neuropathy." Muscle & Nerve 29, no. 6 (April 12, 2004): 853–60. http://dx.doi.org/10.1002/mus.20039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leclerc, Estelle, Emmanuel Sturchler, and Stefan W. Vetter. "The S100B/RAGE Axis in Alzheimer's Disease." Cardiovascular Psychiatry and Neurology 2010 (June 21, 2010): 1–11. http://dx.doi.org/10.1155/2010/539581.

Full text
Abstract:
Increasing evidence suggests that the small EF-hand calcium-binding protein S100B plays an important role in Alzheimer's disease. Among other evidences are the increased levels of both S100B and its receptor, the Receptor for Advanced Glycation Endproducts (RAGEs) in the AD diseased brain. The regulation of RAGE signaling by S100B is complex and probably involves other ligands including the amyloid beta peptide (A), the Advanced Glycation Endproducts (AGEs), or transtheyretin. In this paper we discuss the current literature regarding the role of S100B/RAGE activation in Alzheimer's disease.
APA, Harvard, Vancouver, ISO, and other styles
7

Frank, Franziska, Veronika Bezold, Kaya Bork, Philip Rosenstock, Jonas Scheffler, and Rüdiger Horstkorte. "Advanced glycation endproducts and polysialylation affect the turnover of the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation endproducts (RAGE)." Biological Chemistry 400, no. 2 (January 28, 2019): 219–26. http://dx.doi.org/10.1515/hsz-2018-0291.

Full text
Abstract:
Abstract The balance between protein synthesis and degradation regulates the amount of expressed proteins. This protein turnover is usually quantified as the protein half-life time. Several studies suggest that protein degradation decreases with age and leads to increased deposits of damaged and non-functional proteins. Glycation is an age-dependent, non-enzymatic process leading to posttranslational modifications, so-called advanced glycation endproducts (AGE), which usually damage proteins and lead to protein aggregation. AGE are formed by the Maillard reaction, where carbonyls of carbohydrates or metabolites react with amino groups of proteins. In this study, we quantified the half-life time of two important receptors of the immunoglobulin superfamily, the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation end products (RAGE) before and after glycation. We found, that in two rat PC12 cell lines glycation leads to increased turnover, meaning that glycated, AGE-modified proteins are degraded faster than non-glycated proteins. NCAM is the most prominent carrier of a unique enzymatic posttranslational modification, the polysialylation. Using two PC12 cell lines (a non-polysialylated and a polysialylated one), we could additionally demonstrate, that polysialylation of NCAM has an impact on its turnover and that it significantly increases its half-life time.
APA, Harvard, Vancouver, ISO, and other styles
8

Fukami, Kei, Kensei Taguchi, Sho-ichi Yamagishi, and Seiya Okuda. "Receptor for advanced glycation endproducts and progressive kidney disease." Current Opinion in Nephrology and Hypertension 24, no. 1 (January 2015): 54–60. http://dx.doi.org/10.1097/mnh.0000000000000091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Got'e, S. V. "TYPE 1 DIABETES MELLITUS, DIABETIC NEPHROPATHY: TRANSPLANTOLOGY POTENTIAL." Annals of the Russian academy of medical sciences 67, no. 1 (January 22, 2012): 54–60. http://dx.doi.org/10.15690/vramn.v67i1.111.

Full text
Abstract:
The review covers the role of transplantology in treatment of patients with type 1 diabetes and the state of its development in the world and in Russia. The results of major multicenter studies, devoted to the influence of simultaneous kidney and pancreas transplantation and kidney transplantation alone on life expectancy and quality of life of diabetic patients are summarized here. Experience in pancreas-kidney transplantation, gained in Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, is described, including surgical technical and postoperative treatment. Also we perform the results of research work, devoted to the influence of pancreas transplantation on different homeostasis parameters, such as: oxidative stress parameters, homocysteine, receptor for advanced glycation endproduct (RAGE), and markers of endocrine function of pancreas transplant.
APA, Harvard, Vancouver, ISO, and other styles
10

Yue, S., H. M. Zhou, J. J. Zhu, J. H. Rao, R. W. Busuttil, J. W. Kupiec-Weglinski, L. Lu, and Y. Zhai. "Hyperglycemia and Liver Ischemia Reperfusion Injury: A Role for the Advanced Glycation Endproduct and Its Receptor Pathway." American Journal of Transplantation 15, no. 11 (June 25, 2015): 2877–87. http://dx.doi.org/10.1111/ajt.13360.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Receptor for advanced glycation endproduct"

1

Metz, Verena Vanessa [Verfasser]. "Untersuchungen zum Ectodomain shedding des Receptor for advanced glycation endproducts / Verena Vanessa Metz." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1024307662/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, George A. "The characterisation of the receptor for advanced glycation endproducts (AGEs)in the retinal microvasculature." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MOL, MARCO HENDRIKUS ADRIANUS. "Analytical Strategies for the Identification and Characterization of RAGE Binders of Proinflammatory mediators. AGEs and ALES." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/675044.

Full text
Abstract:
INTRODUCTION AGEs and ALEs (Advanced Glycoxidation/Lipoxidation End products) are covalently modified proteins that can act as pathogenic factors in several chronic diseases, like diabetes and cardiovascular diseases. These covalent adducts are formed by different mechanisms. AGEs are proteins covalently modified by reducing sugars or their oxidative degradation products, involving the Maillard reaction. ALEs are proteins modified by reactive carbonyl species (RCS) generated by lipid peroxidation. AGEs/ALEs can be the basis of many different pathologies, underlining the importance for good analytical methods for identification and characterization for the use of biomarkers, but also as a drug target. However, the identification, characterization and quantification of AGEs/ALEs remains to be very challenging due to heterogeneous precursors (sugars, lipids) leading to heterogeneous AGEs/ALEs, present in low concentrations and being very complex analytes. Various techniques to identify and characterize AGEs/ALEs have been described, making use of an isolation/enrichment step based on reactive groups, like carbonyls. However, not all AGEs/ALEs retain reactive groups and therefore can not be isolated and identified using these techniques, indicating the need for a new strategy. The strategy that has been employed in our laboratory is to use the soluble domain of the RAGE receptor, VC1, to affinity enrich AGEs. Using this approach, AGEs/ALEs will be enriched independently of the protein and type of modification. Moreover, a ligand of RAGE can be identified, which could be a potential biomarker of a disease caused by oxidative stress. RAGE is a type I cell surface receptor that is expressed in several cells, such as endothelial cells, smooth muscle cells, but also dendritic cells and T-lymphocytes and is predominantly located in the lungs. The receptor has been implicated in many different pathologies with a marked oxidative base, such as diabetes, atherosclerosis and neurodegenerative diseases. One of the pathways that can be activated is the Nf-κB pathway. The Nf-κB pathway is the ideal signaling pathway to investigate the binding and activation of RAGE by AGEs or ALEs. For this purpose, a cell line was obtained with and without overexpression of RAGE. Furthermore, the cell lines were transfected with a Nf-κB reporter gene, providing us with a fast and high-throughput assay for the evaluation of a pro-inflammatory response upon stimulation with AGEs/ALEs. AIM OF THE PROJECT The identification and characterization of AGEs/ALEs has proven to be crucial in the onset and development of many pathologies. Therefore, good analytical strategies need to be developed/optimized for better understanding of the exact nature of modification, to understand the role they play in disease progression. Identified AGEs/ALEs can serve as biomarker, as well as drug targets. The VC1 technique was proven to be a promising technique to accommodate the need for enrichment of AGEs for better characterization. The first aim of the project was therefore to investigate whether also ALEs are binder of RAGE, since they share the same structural properties than AGEs, and also have been shown to activate the Nf-κB pathway, implicating a role for receptors, like RAGE. Furthermore, to gain a deeper insight into the molecular mechanisms involved in the protein-protein engagement. Since a successful enrichment strategy was developed, the second aim of this project was focused on identifying AGEs/ALEs in biological samples. The first part was focused on oxidizing healthy human plasma in-vitro using AAPH as a radical initiator, and the incubation of plasma directly with RCS, anticipating the production of AGEs/ALEs. The VC1 technique was then used to identify which AGEs/ALEs are produced. Simultaneously, other variables during the sample preparation and analysis were optimized. As explained before, AGEs/ALEs are present in very low concentrations in biological samples, hence the need for very sensitive methods and instrumentation allowing identification. Since human serum albumin (HSA) is the main protein present in plasma, around 50-60%, and has multiple nucleophilic targets, it represents the best model for characterizing AGEs/ALEs. For this reason, the focus was on extracting HSA from plasma, using the newest generation of tribrid MS for the analysis of AGEs/ALEs in plasma samples. AGEs are ligands for RAGE, meaning, they can bind and activate the receptor, inducing a signaling pathway and pro-inflammatory response. ALEs have also been shown to induce a pro-inflammatory response; however, no specific receptor has been linked to this cellular event. Using a cell line with and without RAGE, we aimed to determine whether ALEs can bind and activate the Nf-κB pathway through RAGE. RESULTS AND DISCUSSION ALEs as binder of RAGE In order to investigate the interaction between RAGE and ALEs, different ALEs were produced in-vitro by incubating HSA with different concentrations of well-known lipid derived RCS and in particular: ACR, MDA and HNE. After 24, 48 and 72 h, aliquots of the incubation mixtures were withdrawn, and the reaction was stopped by removing the excess of RCS by ultrafiltration. Intact protein analysis by direct infusion MS was used to evaluate the extent of HSA modifications and demonstrated that by using a wide range of molar ratios and different time-points a quite wide array of ALEs for each tested RCS was generated. In order to characterize ALEs selectively enriched by RAGE, a VC1 pull-down assay was performed as previously described. HSA and HSA treated with MDA, ACR or HNE were assayed for binding to VC1-resins and to control resin. As expected, unmodified HSA was not retained by the VC1-resin. At increasing molar ratios and incubation time, higher amounts of albumin modified with MDA or ACR were eluted from the VC1 resin, with a predominance of the high molecular weight (HMW) species. The modified albumins were retained by the VC1-resin, but not by the control resin. ALEs in the reaction mixtures and those enriched by VC1 were analyzed by bottom-up MS in order to identify the PTMs and to localize the amino acid residues involved in the protein adduct formation. With regard to MDA, only di-hydropyridine adducts on lysines (DHPK), and N-2-pyrimidyl-ornithine adducts on arginines (NPO) were retained by VC1-domain. The n-propenal modifications of lysine (NPK), largely identified before enrichment, were not identified after the enrichment. ACR induced a set of modifications which were identified only after VC1 enrichment and in particular the N-(3-formyl-3,4-dehydro-piperidinyl) lysine (FDPK) modifications, the Michael adduct on cysteines, the double Michael adduct of lysines, the Michael adduct of histidine, the N-2-(4 hydroxy-tetrahydro-pyrimidyl) ornitine (propane-arginine, HTPO) and the Nε-(3-methylpyridinium)-lysine (MP-lysine). Most of the ALEs generated by HNE were found both before or after enrichment, with the exception of a few Michael adducts which were selectively retained by VC1 (not detected before enrichment). With a view to rationalizing the key factors influencing the RAGE binding of the monitored adducts, in silico studies were performed. They were focused on the adducts on arginine and lysine residues as formed by ACR and MDA since they are numerous, with a very broad range of affinity, thus allowing the development of clear structure-affinity relationships. RAGE-ligand interacting regions are characterized by a rich set of positively charged residues which can bind acidic regions of a protein. The mechanism identified using in silico studies, involves a basic amino acid at the center of carboxylic acids like glutamate and aspartate, which forms a set of ionic bridges. Once the basic amino acid is modified by ACR or MDA to an adduct with a neutral charge, the carboxylic acids become available to freely contact the RAGE positive residues. Identification of AGEs/ALEs in biological samples The VC1 technique has proven to be successful in enriching AGEs and ALEs, so the next step was to exploit this technique in biological samples. In order to identify proteins prone to be modified due to oxidative pathways, and possibly serve as biomarker, healthy human plasma was oxidized using the radical initiator AAPH. Different concentrations of AAPH and different timepoints were tested for the presence of protein carbonyl groups, an indicator for protein oxidation and possibly the formation of AGEs/ALEs. A time and concentration dependent formation of carbonyl groups is observed in plasma. Next, samples were analyzed using a bottom-up approach. Results obtained were showing many oxidation products, such as amino side chain oxidation, however no AGEs/ALEs were identified. Thus, a new approach was adopted, including the incubation of plasma directly with RCS, such as HNE, MDA and ACR. This resulted in the formation of AGEs/ALEs in plasma samples, however, they could not be retained by the VC1 domain. Instead of using the VC1 technique to enrich AGEs/ALEs from biological samples, other variables throughout the experimental set-up were optimized. Previously, peptides were analyzed using the Orbitrap LTQ XL, a very powerful instrument. Nonetheless, the newest generation of tribrid MS offers even higher resolution, and it increases protein coverage due to parallel isolation and detection, and faster analyzers. Moreover, we focused on AGEs/ALEs from HSA and using NaBH4 to reduce and stabilize adducts throughout the analysis. This new approach permitted us to identify many AGEs/ALEs in both healthy human plasma samples, but also AGEs/ALEs only present in heart failure samples. Glycation on lysine residues was the main modification identified, present in both healthy and heart failure plasma samples. Important is the HNE Michael adduct, specifically identified in only heart failure samples. Moreover, the importance of stabilizing adducts is underlined by the fact that the acrolein Michael adduct could only be identified after reduction with NaBH4. Development of a cellular assay to determine pro-inflammatory activity of RAGE binders Another part of this project was focused on elucidating whether AGEs/ALEs induce an inflammatory response in cells. For this purpose, a collaboration was started with the Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino. Using a rat epithelial lung cell line overexpressing RAGE, and a control cell line not expressing RAGE, it could be detected if AGEs/ALEs exhibit an effect by binding to RAGE. Moreover, both cell lines were transfected with a Nf-κB reporter gene allowing us a fast and sensitive method for determining if binding of RAGE induces a down-stream signaling pathway. This system implies a firefly luciferase gene downstream from the Nf-κB gene. When the Nf-κB pathway is activated, independently from RAGE, it produces the firefly luciferase enzyme. After adding a luciferin substrate, firefly luciferase is able to convert this substrate into another substrate with light as by-product, which can be measured by a luminometer. IL-1α was used as a positive control, since it induces a strong inflammatory response through Nf-κB. Moreover, known ligands of RAGE able to activate the Nf-κB pathway, were used to validate the cellular experiment, including HSA modified with fructose (AGE), and HMGB1. Results show that Nf-κB is already increased in untreated cells with RAGE and that AGEs induce the Nf-κB pathway independently from RAGE. Moreover, the difference between control and RAGE cells is not significantly increased in the presence of HMGB1 compared to untreated. However, the positive control seemed to induce a much stronger activity in cells with RAGE. Overall, this cellular assay is good for assessing pro-inflammatory activity, however, it is not optimized yet for distinguishing a RAGE-dependent mechanism. CONCLUSION In summary, by using an integrated MS (intact protein and bottom-up approach) and computational approach we have found that some ALEs generated from lipid peroxidation RCS are RAGE binders. We have also found the basic features that ALEs from HNE, MDA and ACR must have to be a RAGE binder: 1) the covalent adducts should greatly reduce or abolish the basicity of the target amino acid, 2) the basic amino acid should be at the center of a set of carboxylic acids which, once the residue is modified, become available to freely contact the RAGE positive residues. Next step was to use the VC1 technique to enrich AGEs/ALEs in biological samples. First, oxidized human plasma was used, however, using the Orbitrap LTQ XL, it was not sufficient to identify AGEs/ALEs. Therefore, analysis was moved to a higher resolution mass spectrometer, which allowed us to identify AGEs/ALEs in plasma samples of heart failure patients, showing the powerfulness of this new generation MS. Important was to understand whether ALEs could induce pro-inflammatory activity through RAGE, since we showed that ALEs are RAGE binders. Unfortunately, the cellular assay that was set up is efficiently in determining Nf-κB dependent pro-inflammatory activity, but not if it is RAGE dependent.
APA, Harvard, Vancouver, ISO, and other styles
4

Uhle, Florian [Verfasser]. "Der Receptor for Advanced Glycation Endproducts (RAGE) und seine Liganden in der systemischen Entzündungsreaktion nach Polytrauma / Florian Uhle." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1068874724/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cecil, Denise L. "The receptor for advanced glycation endproducts and S100A11 modulate pathologic chondrocyte differentiation and dysregulated cartilage matrix catabolism in osteoarthritis." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3315413.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed September 3, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 104-126).
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Annelie [Verfasser]. "Peroxisome proliferator activated receptor gamma-aktivierende Glitazone vermindern die Ansprechbarkeit humaner Endothelzellen auf proinflammatorische Advanced glycation endproducts-Effekte / Annelie Jung." Ulm : Universität Ulm. Medizinische Fakultät, 2004. http://d-nb.info/1015899420/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoppmann, Susan. "18F-markierte S100-Proteine als potentielle Radioliganden für die funktionelle Charakterisierung des Rezeptors für advanced glycation endproducts (RAGE) in vitro und in vivo." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24725.

Full text
Abstract:
Die Interaktion von S100-Proteinen mit dem Rezeptor für advanced glycation endproducts (RAGE) wird als hoch relevant bei der Entstehung, Manifestation und Progression verschiedener entzündlicher Erkrankungen sowie bei der Tumorigenese gewertet. Das tiefergehende Verständnis der Interaktion von S100-Proteinen mit RAGE in vivo stellt eine wissenschaftliche Herausforderung dar und ist ein Ansatz für therapeutische Interventionen. Darüber hinaus stellen Untersuchungen zum Metabolismus von extrazellulär zirkulierenden S100-Proteinen in vivo einen vielversprechenden Forschungsansatz zur Analyse von S100-Protein-assoziierten Erkrankungen dar. Die einzigartigen Eigenschaften der Positronen-Emissions-Tomographie (PET) als nicht-invasives bildgebendes Verfahren erlauben die Darstellung und quantitative Erfassung biochemischer Prozesse mit der Möglichkeit zelluläre und molekulare Reaktionswege aufzuzeigen sowie in vivo-Mechanismen von Krankheiten im Kontext eines physiologischen Umfeldes darzulegen. Ziel der vorliegenden Arbeit war es, Fluor-18-markierte S100-Proteine (18F-S100) herzustellen, diese biochemisch, radiochemisch und radiopharmakologisch zu charakterisieren und deren Metabolismus und Interaktion mit RAGE in vivo mittels Kleintier-PET am Tiermodell zu untersuchen. Es wurden die mit RAGE interagierenden S100-Proteine S100A1, S100A12 und S100B in biologisch funktioneller Form hergestellt. Dazu wurden die entsprechenden S100-Gene in den prokaryotischen Expressionsvektor pGEX-6P-1 kloniert. Mit diesen Konstrukten wurden E. coli-Zellen transformiert, aus denen nachfolgend die S100-Proteine isoliert und gereinigt werden konnten. Es konnte eine Reinigung unter nativen, milden Bedingungen etabliert werden, die es ermöglichte, S100A1, S100A12 und S100B in biologisch aktiver Form und in hohen Reinheitsgraden (> 95%) für die nachfolgenden Experimente bereitzustellen. Diese S100-Proteine wurden über den 18F-tragenden Aktivester N-Succinimidyl-4-[18F]fluorbenzoesäure ([18F]SFB) radioaktiv markiert und charakterisiert. Dabei konnte sichergestellt werden, dass die 18F-S100-Proteine in vitro und in vivo stabil sind. Weiterhin konnte nachgewiesen werden, dass die radioaktive Markierung keine Beeinträchtigung auf die biologische Funktionalität der S100-Proteine hat. Dies wurde anhand von sRAGE-Bindungsuntersuchungen sowie Zell-Interaktionsuntersuchungen an konfluenten Endothelzellen (HAEC) und an zu Makrophagen differenzierten THP-1-Zellen (THP-1-Makrophagen) verifiziert. Für die Untersuchung der RAGE-Bindung war die Produktion des löslichen sRAGE bzw. die Generation von flRAGE-berexprimierenden Zellen erforderlich. Beide Konstrukte wurden in geeigneten Zellsystemen exprimiert und das sRAGE-Protein wurde in biologisch aktiver Form synthetisiert und gereinigt (Reinheitsgrad > 97%). Die 18F-S100-Bindung an THP-1-Makrophagen und HAEC wurde in Gegenwart von glykierten LDL (glykLDL) sowie sRAGE signifikant inhibiert, was auf eine RAGE-Interaktion hinweist. Weiterhin konnten durch den Einsatz von Scavenger-Rezeptor-Liganden, wie z. B. Maleinanhydrid-modifiziertes BSA (malBSA) bzw. von Lektinen inhibierende Effekte erzielt werden. Dies ist ein Indiz für die 18F-S100-Interaktion mit Scavenger-Rezeptoren und Glykokonjugaten an der Zelloberfläche. Durch die Untersuchungen mittels konfokaler Laserscanning-Mikroskopie an THP-1-Makrophagen wurde eine Zellaufnahme des Fluoreszein-markierten S100A12 festgestellt. Weiterhin konnten Kolokalisationen mit Lektinen detektiert werden. Das metabolische Schicksal extrazellulär zirkulierender 18F-S100-Proteine in vivo wurde mit Hilfe dynamischer PET-Untersuchungen bzw. anhand von Bioverteilungs-Untersuchungen in männlichen Wistar-Ratten analysiert. Die Hauptakkumulation der Radioaktivität wurde in der Leber und in den Nieren detektiert. In diesen Organen findet der Metabolismus bzw. die glomeruläre Filtration der 18F-S100-Proteine statt. In den Untersuchungen zur Genexpression mittels Echtzeit-PCR sowie im immunchemischen Proteinnachweis am Western Blot wurde eine hohe Expression und Proteinbiosynthese des RAGE in der Lunge ermittelt. Die Lunge eignet sich daher als „Referenz“-Organ für eine funktionelle in vivo-Charakterisierung von RAGE mit 18FS100-Proteinen. Bei den durchgeführten PET-Untersuchungen konnte eine temporäre 18F-S100-Interaktion mit dem Lungengewebe festgestellt werden. Die Retention des 18FS100A12 in der Lunge wurde in Gegenwart von sRAGE inhibiert. Dies ist ein Hinweis dafür, dass 18F-S100-Proteine auch in vivo an RAGE binden können. Die Radioaktivitäts-Akkumulation in den Organen Leber und Milz, die eine Vielzahl von sessilen Makrophagen aufweisen, wurde durch die Applikation von malBSA inhibiert. Dies ist ein Indiz dafür, dass 18F-S100-Proteine in vivo mit Scavenger-Rezeptoren interagieren können. Die vorliegende Arbeit liefert deutliche Hinweise darauf, dass RAGE nicht der alleinige Rezeptor für 18F-S100-Proteine ist. Der Einsatz von 18F-S100-Proteinen als experimentelles Werkzeug in dynamischen PET-Untersuchungen birgt das Potential einer Charakterisierung von S100-Protein-assoziierten, pathophysiologischen Prozessen
Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 > S100A1 > S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments
APA, Harvard, Vancouver, ISO, and other styles
8

Muth, Ingrid Elisabeth Verfasser], and Mathias [Akademischer Betreuer] [Bähr. "Die Expression von High Mobility Group Box 1 (HMGB1) und dessen Receptor for Advanced Glycation Endproducts (RAGE) als Pathomechanismus der sporadischen Einschlusskörpermyositis / Ingrid Elisabeth Muth. Gutachter: Mathias Bähr. Betreuer: Mathias Bähr." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2009. http://d-nb.info/1043027270/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ivanova, Nina Mihaylova. "Activation of receptors for advanced glycation endproducts (RAGEs) in human monocytes." [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-55812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wolf, Susann. "Die Bedeutung von S100A4 und dessen Interaktion mit RAGE bei der Metastasierung des malignen Melanoms." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-136753.

Full text
Abstract:
Das S100A4-Protein ist für die Manifestierung eines metastatischen Phänotyps bei vielen Tumorarten von enormer Bedeutung. Die Aufklärung der zugrunde liegenden Mechanismen und der Interaktionspartner von S100A4 stellt daher einen vielsprechenden Forschungsansatz dar, um neue Erkenntnisse über das Verhalten von Tumorzellen während des Metastasierungsprozesses zu erhalten. Darauf aufbauend können neue Ansatzpunkte für die Therapie metastasierender Krebserkrankungen gewonnen werden. In dieser Hinsicht ist das bisher einer Behandlung kaum zugängliche maligne Melanom als besonders aggressiver und frühzeitig metastasierender Tumor ein ideales Modell zur Aufklärung der zellulären und molekularen Prozesse, über die S100A4 seine Metastasen-fördernden Wirkungen ausübt. Das Ziel der vorliegenden Arbeit war die biochemische und radiopharmakologische Charakterisierung der S100A4-RAGE-Interaktion sowie die Untersuchung der Beteiligung von S100A4 an Prozessen der Metastasierungskaskade in vitro und in vivo. Dies erforderte die Herstellung von rekombinantem S100A4-Protein und die Generierung von stabil mit S100A4-transfizierten Melanomzellen, die damit eine heraufregulierte S100A4-Proteinbiosynthese aufweisen. Die Gewinnung von rekombinantem S100A4 in biologisch funktioneller Form unter Verwendung eines prokaryotischen Expressionssystems erfolgte mit einem Reinheitsgrad von ca. 92%. Das rekombinante S100A4-Protein wurde mit dem Aktivester N-Succinimidyl-4-[18F]fluorbenzoat radioaktiv markiert und charakterisiert. Es wurde die Interaktion zwischen S100A4 bzw. 18F-markiertem S100A4 und der löslichen RAGE-Isoform sRAGE mit einer moderaten Bindungsaffinität im µM-Bereich nachgewiesen. Des Weiteren erfolgte erstmals die Analyse der radiopharmakologischen Eigenschaften von 18F-S100A4 mittels Untersuchungen zur zellulären Assoziation sowie zur metabolischen Stabilität, Bioverteilung und zu In-vivo-Interaktionen mittels Kleintier-Positronen-Emissions-Tomographie in der Ratte. Die In-vitro-Experimente wurden an Endothelzellen (HAEC) und an stabil mit RAGE-transfizierten A375-, A375-mock bzw. nicht transfizierten A375-Melanomzellen durchgeführt. Die A375-hRAGE-Zellen zeigten eine deutlich heraufregulierte RAGE-Proteinbiosynthese während die Endothelzellen eine vergleichsweise geringe intrazelluläre RAGE-Proteinkonzentration aufwiesen. Bei den Melanomzellen kann aufgrund der höheren Assoziation von 18F-S100A4 an A375-hRAGE-Zellen auf eine selektive Bindung von 18F S100A4 an RAGE-Rezeptoren auf der Zelloberfläche geschlossen werden. Die Assoziation von 18F S100A4 an Endothelzellen war bei 37°C in Gegenwart von nicht markiertem rekombinantem S100A4 signifikant vermindert, dementsprechend findet eine spezifische Interaktion von 18F-S100A4 mit Zelloberflächenrezeptoren der Endothelzellen statt. Dieses Ergebnis und die insgesamt höhere Bindung von 18F S100A4 an Endothelzellen im Vergleich zur Assoziation an Melanomzellen lassen neben RAGE noch andere Rezeptoren wie z. B. internalisierende Scavenger-Rezeptoren vermuten. Die In-vivo-Stabilitätsuntersuchungen verdeutlichen einen proteolytischen Abbau von 18F S100A4, allerdings belegen das Vorhandensein von 67% intaktem 18F-S100A4-Protein nach einer Stunde, die Stabilität von 18F-S100A4 in vivo. Die Bioverteilungs- bzw. PET-Untersuchungen zeigen eine schnelle, innerhalb weniger Minuten stattfindende hohe Akkumulation in den Nieren und verdeutlichen somit die renale Ausscheidung von 18F S100A4. Die maßgeblichen Anreicherungen in Milz, Leber, Blut, Lunge und Nebennieren lassen Interaktionen mit Oberflächenrezeptoren dieser Gewebe erkennen. Die temporäre Retention von 18F-S100A4 in der Lunge, dem Hauptsyntheseorgan von RAGE, und die verminderte 18F-S100A4-Akkumulation in Gegenwart des spezifischen RAGE-Liganden glykLDL ist ein Hinweis dafür, dass S100A4 in vivo in der Lunge an RAGE bindet. Die Aktivitätsanreicherungen in Milz, Leber und Nebenniere deuten aufgrund der geringeren RAGE-Synthese in diesen Organen auf die Interaktion von 18F-S100A4 mit anderen Zelloberflächenrezeptoren z. B. aus der Familie der Scavenger-Rezeptoren hin. Die Beteiligung von S100A4 an Metastasierungsprozessen des malignen Melanoms wurde an stabil mit S100A4-transfizierten A375-Melanomzellen, die eine Heraufregulierung der humanen bzw. murinen S100A4-Proteinbiosynthese im Vergleich zu A375-mock- (Vektor-Kontrolle) und nicht-transfizierten A375-Zellen zeigen, untersucht. Die A375-hS100A4-Zellen sezernierten zudem eine signifikant höhere S100A4-Proteinkonzentration in das umgebende Zellkulturmedium im Vergleich zu den Kontrollen. In dieser Hinsicht konnte bei den A375-hS100A4-Zellen, vermutlich aufgrund der höheren extrazellulären S100A4-Konzentration, eine gesteigerte Proliferations-, Motilitäts-, Migrations- und Invasionsrate gegenüber den A375-mock- und A375-Zellen nachgewiesen werden. In diesem Zusammenhang stehen ebenso die gesteigerte RAGE-Proteinbiosynthese und die signifikant höhere Aktivität des Transkriptionsfaktors NF-κB bei A375-Zellen nach 24-stündiger Inkubation mit Kulturmedium der A375-hS100A4-Zellen. Demnach wirkt vermutlich das extrazelluläre S100A4-Protein als autokriner bzw. parakriner Regulator von RAGE und NF κB. Die subkutane Injektion der A375- und stabil transfizierten A375-Melanomzellen in Nacktmäuse führte zur Entwicklung subkutaner Tumore an der Injektionsstelle. Bereits zwei Wochen nach der Injektion etablierten die A375-hS100A4-Zellen die signifikant größeren Tumore im Vergleich zu den A375-mS100A4-, A375-mock und A375-Zellen. Nach Injektion der Zellen in die Schwanzvene der Nacktmäuse konnte keine Entwicklung von Metastasen im Tierkörper festgestellt werden. IN DER VORLIEGENDEN ARBEIT WURDE NACHGEWIESEN: • RAGE ist ein Rezeptor für das S100A4-Protein. Allerdings gibt es eindeutige Hinweise für weitere S100A4-Zielproteine an der Zelloberfläche. • Die bedeutende Rolle von extrazellulärem S100A4 bei wichtigen zellulären Metastasierungsprozessen sowie bei der Aktivierung von Signalproteinen wie NF-κB und RAGE beim malignen Melanom. Die weitere Aufklärung der S100A4-spezifischen Signalkaskaden und Rezeptoren bei metastasierenden Tumorerkrankungen sowie die Charakterisierung von S100A4 als klinischen Parameter bei Patienten mit malignem Melanom stellen hoch interessante Aspekte in der Krebsforschung dar.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Receptor for advanced glycation endproduct"

1

Hinder, Lucy M., Kelli A. Sullivan, Stacey A. Sakowski, and Eva L. Feldman. Mechanisms Contributing to the Development and Progression of Diabetic Polyneuropathy. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0114.

Full text
Abstract:
Advances in our understanding of diabetes in human patients and experimental models indicate that a number of mechanisms may contribute to sensory nerve damage in diabetic polyneuropathy (DPN). In addition to oxidative stress, hyperglycemia and hyperlipidemia, recent research in pain, advanced glycation endproduct (AGE), and proteomics specify a contributory role for altered neuronal calcium homeostasis in DPN. Technology advances indicate neuronal energy balance and mitochondrial biogenesis, fission, and fusion are additional potential mechanisms. The effects of dysregulation or loss of insulin signaling and the effects of glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are also implicated.
APA, Harvard, Vancouver, ISO, and other styles
2

Kamal, Tarek. Significance of Advanced Glycation End-Products (AGE) and the Receptor for AGE (RAGE) in Diabetic Nephropathy. INTECH Open Access Publisher, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The Receptor RAGE in Vascular and Cerebral Dysfunctions. [S.l.]: CAMBRIDGE SCHOLARS PUBLISHING, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Receptor for advanced glycation endproduct"

1

van Zoelen, M. A. D., A. Achouiti, and T. van der Poll. "The Role of Receptor for Advanced Glycation Endproducts (RAGE) in Infection." In Annual Update in Intensive Care and Emergency Medicine 2011, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18081-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holdenrieder, S. "Receptor of advanced glycation end-products." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_2634-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holdenrieder, S. "Receptor of advanced glycation end-products." In Springer Reference Medizin, 2037. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Koyama, Hidenori, and Yoshiki Nishizawa. "Cardiovascular Complications in Renal Failure: Implications of Advanced Glycation End Products and Their Receptor RAGE." In Studies on Renal Disorders, 257–92. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-857-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"RAGE (receptor for advanced glycation endproduct)." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1631. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_14075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, A. M., and D. M. Stern. "Cellular Receptors for Advanced Glycation Endproducts." In Maillard Reactions in Chemistry, Food and Health, 262–66. Elsevier, 2005. http://dx.doi.org/10.1533/9781845698393.4.262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Buckle, Irina, and Josephine M. Forbes. "The Role of the Receptor for Advanced Glycation Endproducts (RAGE) in Type 1 Diabetes: An Immune Cell Perspective." In Type 1 Diabetes Mellitus [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108528.

Full text
Abstract:
Type 1 diabetes (T1DM) is an autoimmune disorder resulting in destruction of the insulin producing pancreatic β-cells that reside in the Islets of Langerhans. Despite significant progress in the understanding of T1DM pathogenesis, some fundamental contributing mechanisms remain to be fully elucidated. The receptor for advanced glycation end products (RAGE) and its ligands are increasingly believed to play a role in the development of T1DM, but this is not well understood. The location of RAGE gene is shared with major T1DM genetic susceptibility loci on chromosome 6 and polymorphism of this region confers risk for T1DM. Furthermore, changes in RAGE expression on and ligand binding by immune cells, in particular T cells, are associated with pro-inflammatory and autoimmune profiles key for T1DM development. Indeed, in murine models for T1DM, targeting of RAGE or its ligands decreased onset and severity of disease including favorable immune cell profiles and infiltration and improved beta cell insulin secretory function. Further understanding of RAGE expression and signaling in immune cells in T1DM will provide valuable insights into disease pathogenesis and therapy development. This chapter will discuss what is currently known about RAGE in the immune cells integral for the pathogenesis of T1DM.
APA, Harvard, Vancouver, ISO, and other styles
8

Mori, Yasukiyo, Yayoi Shiotsu, Eiko Matsuoka, Hiroshi Kado, Ryo Ishida, and Hiroaki Matsubar. "Chronic Inflammation and S100A12/ Receptor for Advanced Glycation Endproducts Axis: A Novel Risk Factor for Cardiovascular Disease in Patients with Chronic Kidney Disease?" In Hemodialysis - Different Aspects. InTech, 2011. http://dx.doi.org/10.5772/24020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osawa, Toshihiko, Tomoko Oya, Harue Kumon, Yasujiro Morimitsu, Hiroyuki Kobayashi, Mitsuo Akiba, and Norihiro Kakimoto. "A Novel Type of Advanced Glycation Endproduct Found in Diabetic Rats." In The Maillard Reaction in Foods and Medicine, 434. Elsevier, 2005. http://dx.doi.org/10.1533/9781845698447.8.434a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Jenny J. "Adverse Effect of Advanced Glycation Endproduct-Modified Laminin on Neurite Outgrowth and its Implications for Brain Aging." In The Maillard Reaction in Foods and Medicine, 423. Elsevier, 2005. http://dx.doi.org/10.1533/9781845698447.8.423.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Receptor for advanced glycation endproduct"

1

Maskiny, Charbel, Irshad Ali, Stephanie Gruenloh, Ying Gao, Meetha Medhora, and Elizabeth R. Jacobs. "The Role Of Receptor For Advanced Glycation Endproducts (RAGE) In Ischemia Reperfusion-Mediated Lung Injury." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perkins, T. N., K. N. Killian, J. L. Kosanovich, M. A. Lipp, K. M. Empey, and T. D. Oury. "The Receptor for Advanced Glycation Endproducts Promotes Severe Neutrophilic Airway Disease via NLRP3 Inflammasome Activation." In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meloche, Jolyane, Marjorie Barrier, Audrey Courboulin, Malik Bisserier, Steeve Provencher, and Sebastien Bonnet. "Critical Role Of The Receptor Of Advanced Glycation Endproducts/Peroxisome Proliferator-Activated Receptor Gamma Axis In Pulmonary Arterial Hypertension." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duvoix, Annelyse, Bruce Miller, Lisa Edwards, Julie Yates, Edwin K. Silverman, Bartolome R. Celli, Peter Caverley, et al. "Soluble Receptor For Advanced Glycation Endproducts (sRAGE) Is A Biomarker Of Emphysema In The ECLIPSE Cohort." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gowland, Catherine J., Ian P. Hall, and I. Sayers. "The Role Of Receptor For Advanced Glycation Endproducts (RAGE) And 5-Hydroxytryptamine Receptor Subtype 4 (5HTR4) In Bronchial Epithelial Function." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mangalmurti, Nilam S., Jessica Friedman, Liang Chuan Wang, Don L. Siegel, Jing Sun, Janet S. Lee, and Steven M. Albelda. "Banked RBCs Induce The Expression Of The Receptor For Advanced Glycation Endproducts (RAGE) On Lung Endothelial Cells." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Rui, Daolin Tang, Michael T. Lotze, and Herbert J. Zeh. "Abstract 4674: Receptor for advanced glycation endproducts (RAGE) regulates ß-catenin function and chemosensitivity in pancreatic cancer cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mauri, Tommaso, Serge Masson, Giacomo Bellani, Andrea Coppadoro, Andrea Pradella, Marco Giani, Michela Bombino, Nicolo' Patroniti, Roberto Latini, and Antonio Pesenti. "Plasma And Alveolar Fluid Levels Of Receptor For Advanced Glycation Endproducts (RAGE) Are Associated With Severity Of ARDS." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perkins, T. N., E. Oczypok, R. Dutz, M. Myerburg, and T. D. Oury. "The Receptor for Advanced Glycation Endproducts Is a Critical Mediator of Type 2 Cytokine Signal Transduction in the Lungs." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a3798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bediwy, Adel, Samir Maher Hassan, and Marwa Rushdy El-Najjar. "Receptor of advanced glycation end products in childhood asthma exacerbation." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa4803.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Receptor for advanced glycation endproduct"

1

Syed, Aleem. Spatial and temporal dynamics of receptor for advanced glycation endproducts, integrins, and actin cytoskeleton as probed with fluorescence-based imaging techniques. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1342583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ganju, Ramesh K. Receptor for Advanced Glycation End Products (RAGE) as a Novel Target for Inhibiting Breast Cancer Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada592353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography