Academic literature on the topic 'Real-Time Kinematic (RTK)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Real-Time Kinematic (RTK).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Real-Time Kinematic (RTK)"

1

Safrel, Ispen, Eko Nugroho Julianto, and Nur Qudus Usman. "Accuracy Comparison between GPS Real Time Kinematic (RTK) Method and Total Station to Determine The Coordinate of An Area." Jurnal Teknik Sipil dan Perencanaan 20, no. 2 (November 30, 2018): 123–30. http://dx.doi.org/10.15294/jtsp.v20i2.16284.

Full text
Abstract:
Abstract. Survey with GPS Real Time Kinematic (RTK) has the advantage of being faster and easier than the total station, but on the other hand the accuracy of GPS Real Time Kinematic (RTK) is considered lacking. This study was to determine the comparison of accuracy and efficiency of measuring land parcels using a total station and GPS Real Time Kinematic (RTK) method. The research location is at the Universitas Negeri Semarang campus by selecting areas that are open or unobstructed to satellites and congested areas or which have many obstacles to satellites. The results of this study indicate that for open areas, measurement with GPS Real Time Kinematic (RTK) method reaches a horizontal accuracy of 0.040 m with a time of 16 minutes 16 seconds. While the measurement using a horizontal accuracy of 0.00 Total Station with a length of time of 26 minutes 47 seconds. For areas that are densely measured, GPS Real Time Kinematic (RTK) achieves horizontal accuracy of 10.053 m with a length of time of 39 minutes 27 seconds. While the measurement using a precision horizontal Total Station 0.00 with the length of time 25 minutes 41 seconds.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Shichao, Fugang Lu, Ming Liu, Jingbiao Wei, and Mengdao Xing. "Achieving Millimetre Wave Seeker Performance Evaluation Based on the Real-Time Kinematic." Journal of Sensors 2020 (December 23, 2020): 1–13. http://dx.doi.org/10.1155/2020/8815622.

Full text
Abstract:
The millimetre wave (MMW) seeker can realize target detection under all weather conditions, the performance of which directly determines the design of the control algorithms. To guarantee the hitting accuracy and damaging effect of the expensive MMW guidance missile, assessing the performance of the seeker is indispensable before the launching of the missile. Real tactical environment of the seeker cannot be simulated comprehensively by indoor laboratories, and high-precision evaluation method outdoor is desperately needed. Focusing on the problem, a method for outdoor MMW seeker performance evaluation is proposed via the real-time kinematic (RTK) technology in this paper, which has the advantages of high-precision orientation and working ability under all climates. Firstly, the geometry of the seeker performance evaluation system is constructed, guaranteeing the effective working of the RTK. And then, the key parameters associated with the guidance control are calculated on the basis of the global position system (GPS) measurements. Finally, comparisons are made between the parameters obtained based on the RTK and the seeker outputs. Besides, for the performance assessment of the MMW seeker towards moving targets, a time synchronization method for different GPS carrier platforms is presented. The effectiveness of the proposed method is validated by the mooring test-fly experiments. Experimental results demonstrate that the performance of the MMW seeker can be evaluated effectively by using the proposed RTK-based method.
APA, Harvard, Vancouver, ISO, and other styles
3

Niu, Zun, Fugui Guo, Qiangqiang Shuai, Guangchen Li, and Bocheng Zhu. "The Integration of GPS/BDS Real-Time Kinematic Positioning and Visual–Inertial Odometry Based on Smartphones." ISPRS International Journal of Geo-Information 10, no. 10 (October 14, 2021): 699. http://dx.doi.org/10.3390/ijgi10100699.

Full text
Abstract:
The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO) are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of positioning. In recent years, smartphones equipped with multiple sensors have become commodities and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate RTK and VIO with better performance. We began by developing an Android smartphone application for data collection and then wrote a Python program to convert the data to a robot operating system (ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and VIO based on smartphones. The results demonstrate that the integration improves the accuracy and robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can aid navigation and positioning research, which is the reason why we open source the majority of the codes at our GitHub.
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Ba Dat, Hoang Long Nguyen, Quoc Hung Nguyen, Quoc Tuan Le, Ha Tran, Van Dua Nguyen, and Si Hong Hoang. "Designing an outdoor machinery monitoring device with integrated real-time kinematic positioning." Ministry of Science and Technology, Vietnam 64 (October 12, 2022): 28–32. http://dx.doi.org/10.31276/vjst.64(10db).28-32.

Full text
Abstract:
Accurate positioning ofoutdoor vehicles and machinery is of the top importance inmanagement, tracking, analysis, and control applications. However, most of the current vehicle tracking devices have an error of a few meters to several tens of meters,which is not enough for applications requiring high accuracy. This paper presents the design of an outdoor machinery monitoring device that integrates precise positioning technology of real-time kinematic (RTK). The device uses U-Blox’s Zed F9P module as the core to perform the high accuracy positioning function. Thanks to the integration of RTK positioning technology, the device can monitor the location of machinery outdoors with centimeter-level accuracy.
APA, Harvard, Vancouver, ISO, and other styles
5

No, Sun-Joon, Joong-Hee Han, and Jay Hyoun Kwon. "Accuracy Analysis of Network-RTK(VRS) for Real Time Kinematic Positioning." Korean Journal of Geomatics 30, no. 4 (August 31, 2012): 389–96. http://dx.doi.org/10.7848/ksgpc.2012.30.4.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Eun Soo, Sung Ho Cho, and Dae Yong Um. "Analysis on the Accuracy of a Network Real Time Kinematic GPS Using the Steel Tape and Triangulation." Applied Mechanics and Materials 446-447 (November 2013): 1601–5. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.1601.

Full text
Abstract:
The purpose of this Study is to analyze the accuracy of a network RTK GPS, by performing taping, triangulation & Network RTK (Real Time Kinematic) GPS observation on certain measuring points and comparing all locational data based on the calculational & geometric solution method. The deviation in the measured length & coordinate between the steel tape and the Network RTK GPS was within 2cm while the deviation in the measured coordinate between the triangulation and the Network RTK GPS was within 3cm. With the fact that the performance of the taping or the triangulation is less sensitive to its surroundings taken into consideration, it could be concluded that an average locational accuracy of most Network RTK GPS processes in Korea was within 3cm.
APA, Harvard, Vancouver, ISO, and other styles
7

Tomaszewski, Dariusz, Paweł Wielgosz, Jacek Rapiński, Anna Krypiak-Gregorczyk, Rafał Kaźmierczak, Manuel Hernández-Pajares, Heng Yang, and Raul OrúsPérez. "Assessment of Centre National d’Études Spatiales Real-Time Ionosphere Maps in Instantaneous Precise Real-Time Kinematic Positioning over Medium and Long Baselines." Sensors 20, no. 8 (April 17, 2020): 2293. http://dx.doi.org/10.3390/s20082293.

Full text
Abstract:
Precise real-time kinematic (RTK) Global Navigation Satellite System (GNSS) positioning requires fixing integer ambiguities after a short initialization time. Originally, it was assumed that it was only possible at a relatively short distance from a reference station (<10 km), because otherwise the atmospheric effects prevent effective ambiguity fixing. Nowadays, through the use of VRS, MAC, or FKP corrections, the distances to the closest reference station have been increased to around 35 km. However, the baselines resolved in real time are not as far as in the case of static positioning. Further extension of the baseline requires the use of an ionosphere-weighted model with ionospheric delay corrections available in real time. This solution is now possible thanks to the Radio Technical Commission for Maritime (RTCM) stream of SSR corrections from, for example, Centre National d’Études Spatiales (CNES), the first analysis center to provide it in the context of the International GNSS Service. Then, ionospheric delays are treated as pseudo-observations that have a priori values from the CLK RTCM stream. Additionally, satellite orbit and clock errors are properly considered using space-state representation (SSR) real-time radial, along-track, and cross-track corrections. The following paper presents the initial results of such RTK positioning. Measurements were performed in various field conditions reflecting realistic scenarios that could have been experienced by actual RTK users. We have shown that the assumed methodology was suitable for single-epoch RTK positioning with up to 82 km baseline in solar minimum (30 March 2019) mid and high latitude (Olsztyn, Poland) conditions. We also confirmed that it is possible to obtain a rover position at the level of a few centimeters of precision. Finally, the possibility of using other newer experimental IGS RT Global Ionospheric Maps (GIMs), from Chinese Academy of Sciences (CAS) and Universitat Politècnica de Catalunya (UPC) among CNES, is discussed in terms of their recent performance in the ionospheric delay domain.
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Euiho, and Sae-kyeol Kim. "Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles." Sensors 22, no. 20 (October 18, 2022): 7939. http://dx.doi.org/10.3390/s22207939.

Full text
Abstract:
The global navigation satellite system (GNSS) real-time kinematic (RTK) technique is used to achieve relative positioning centimeter levels among multiple agents on the move. A typical GNSS RTK estimates the relative positions of multiple rover receivers with respect to a single-base receiver. In a fleet of rover GNSS receivers, this approach is inefficient because each rover receiver only uses GNSS measurements of its own and those sent from a single-base receiver. In this study, we propose a novel GNSS RTK framework that facilitates the precise positioning of a swarm of moving vehicles through the GNSS measurements of multiple receivers and broadcasts fixed-integer ambiguities of GNSS carrier phases. The proposed framework not only provides efficient RTK positioning but also reliable performance with a limited number of GNSS satellites in view. Our experimental flight tests with six GNSS receivers showed that the systematic procedure of the proposed framework could maintain lower than 6 cm of 3D RMS positioning errors, whereas the conventional RTK failed to resolve the correct integer ambiguities of double difference carrier phase measurements more than 13% in five out of nine total baselines.
APA, Harvard, Vancouver, ISO, and other styles
9

Abdullah, Mardina, Norbahiah Misran, and Nor Nadira Mohammad Ariff. "Multipath Error Determinant for Pseudo Ranges Observation Data at RTK (Real Time Kinematic) Reference Stations in Malaysia." Jurnal Kejuruteraan 22, no. 1 (December 30, 2010): 31–42. http://dx.doi.org/10.17576/jkukm-2010-22-04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zeng, Shulin, Cuilin Kuang, and Wenkun Yu. "Evaluation of Real-Time Kinematic Positioning and Deformation Monitoring Using Xiaomi Mi 8 Smartphone." Applied Sciences 12, no. 1 (January 3, 2022): 435. http://dx.doi.org/10.3390/app12010435.

Full text
Abstract:
Modern low-cost electronic devices can achieve high precision for global navigation satellite systems (GNSSs) and related applications. Recently, the pseudo-range and carrier phase have been directly obtained from a smartphone to establish a professional-level surveying device. Although promising results have been obtained by linking to an external GNSS antenna, the real-time kinematic (RTK) positioning performance requires further improvement when using the embedded smartphone antenna. We first investigate the observation quality characteristics of the Xiaomi Mi 8 smartphone. The carrier-to-noise-density ratio of L5/E5a signals is below that of L1/E1 signals, and the cycle slip and loss of lock are severe, especially for L5/E5a signals. Therefore, we use an improved stochastic model and ambiguity-resolution strategies to improve the short-baseline RTK positioning accuracy. Experimental results show that the ambiguity fixing rate can reach approximately 90% in 3 h of observations when using the embedded antenna, while the GPS/Galileo/BDS single-frequency combination is more suitable for smartphones. On the other hand, convergence takes 10–30 min, and the RTK positioning accuracy can reach 1 and 2 cm along the horizontal and vertical directions, respectively, if ambiguity is resolved correctly. Moreover, we verify the feasibility of using a mass-produced smartphone for deformation monitoring. Results from a simulated dynamic deformation experiment indicate that a smartphone can recognise deformations as small as 2 cm.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Real-Time Kinematic (RTK)"

1

Mårelius, Nicklas. "RTK-teknikens användningsområden." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-39221.

Full text
Abstract:
Syftet med denna uppsats var att undersöka om RTK – tekniken (Real Time Kinematik) i framtiden kan komma att användas vid lotsning i Sverige, ombord på fartyg med begränsat vattendjup under kölen.  Squateffekten påverkar fartyg vid passage över grunda partier i farleder och i kanaler. För att minska ner på squateffekten så kan man minska ned på farten eller ändra fartygets trim. Studien har utformats utefter en kvalitativ metod, som handlar om att man väljer att bearbeta och analysera sin information genom att verbala analysmetoder används. Detta har genomförts genom att intervjua ett antal utvalda lotsar som både är insatta samt mindre insatta i tekniken. På så sätt belystes olika aspekter på tekniken och ifall det finns andra områden som lotsarna kan ha nytta utav denna utrustning i sitt dagliga arbete. Vid genomförandet av uppsatsen valdes en systematisk litteraturstudie. Sökningar genomfördes globalt för att få fram information om var det skett olyckor pga. squateffektens inverkan samt vilka länder som genomfört tester ombord med RTK-tekniken. Resultatet av ett användande av RTK-tekniken är att lotsar och sjöbefäl har möjlighet att få reda på hur fartyget rör sig och när det då utsätts för squateffekten. Detta för RTK-tekniken har möjlighet att ge information om hur fartyget rör sig med en noggrannhet på 3-4 centimeter i alla led samt få en exaktare hastighet även i sidled. Det finns även möjlighet att få fram en tredimensionell bild över fartyget. Resultat visar också att det finns ett behov och intresse för fler tester med RTK-tekniken. Med stöd av RTK-tekniken finns det möjlighet att få fram en bättre positionering och att ha en bättre översikt på hur fartyget rör sig samt i vilken hastighet. Resultatet visade också att tekniken är användbar för lotsarna och på vilket sätt den kan underlätta i deras dagliga arbete.
The purpose of this study was to investigate whether RTK - technology (Real Time Kinematic) in the future may be used for piloting in Sweden, on board vessels with limited depth of water under the keel. The squat effect cured vessels when they passing over an area of shallow waters in a fairway or a channel. To reduce the squat effect it can be done to increase the speed or change the trim of the vessel. The study has been designed along a qualitative method, which is about one chooses to process and analyze their information by verbal analysis methods. This has been carried out by interviewing a number of selected pilots that are both familiar and less familiar with the technology. In this way, highlighted various aspects of the technology and whether there are other areas that pilots can use this equipment in their daily work. In the implementation of the essay was elected a systematic literature. It was conducted a global search to obtain information about where the accident occurred of the squat effect and which countries that have been tested this technology onboard. The result of the RTK-technology is that pilots and ship's officers have the opportunity to find out how the vessel is moving and when it is exposed of the squat effect. The RTK-technology are able to provide information how the vessel move with an accuracy of 3-4 centimeters at every stage and get a more exact speed even in sideways. It is also possible to obtain a three-dimensional image of the vessel. The results confirm that there is a need and an interest for further testing with the RTK-technology. The results also showed that the technology is useful for the pilots and how it can useful for them in their daily work.
APA, Harvard, Vancouver, ISO, and other styles
2

Bjarneskär, Anneli, and Eva Eriksson. "GPS : Nätverks-RTK eller RTK med Fast referensstation i Vänersborgs kommun." Thesis, University West, Department of Technology, Mathematics and Computer Science, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allenby, Patrick. "Enkelstations-RTK eller Nätverks-RTK : I Naturvårdsuppdrag." Thesis, Karlstads universitet, Institutionen för geografi, medier och kommunikation, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33997.

Full text
Abstract:
Sammanfattning   Förutsättning   I examensarbetet har det ingått ett verkligt ärende som handläggs av mig som MBK-ingenjör inom Lantmäteriet. Det är ett naturvårdsuppdrag från Länsstyrelsen och innefattar bl a inmätning och utstakning av gräns på ett blivande naturreservat.   Naturvårdsuppdraget Huskeberget ligger ca 5 km norr om Södra Finnskoga och sydväst om Höljes i norra Värmland. Omkrets 2,38 km. Områdets höjd är ca 550 m över havet och ligger på sydöstra sluttningen av Huskeberget.   Fix   Lantmäteriet använder idag Leica Viva CS15/GS15 mätutrustning vid inmätning av brytpunkter och gränser. I detta fall det blivande naturreservatet. Under vissa omständigheter kan det ta tid att få fix-lösning eller helt utebli. Dessa omständigheter kan bero på ett flertal faktorer bl a kraftiga jonosfärsstörningar och/eller GPRS-nätets täckningsområde för mottagning av SWEPOS nätverks-RTK tjänst.   Inriktning   Fokus har lagts på att utvärdera ett alternativ till nätverks-RTK, en sk enkelstations-RTK med uppkoppling till en tillfällig referensstation.   Närmare undersökning har gjorts på tiden för initialisering vid varje enskild inmätning som sedan jämförts i de två mätmetoderna. Tiden för själva arbetet sätts sedan i relation till resultatet från undersökningen för att ge en helhetsbild av tidsåtgång i arbetet med vardera mätmetoden.   Resultat   Efter alla brytpunkter mätts in visade det sig att i just det här området inte fanns några anmärkningsvärda problem att få fix-lösning med någon av de valda mätmetoderna. Resultatet visar därmed små skillnader i tidsjämförelser.   En oplanerad testmätning med nätverks-RTK gjordes i tät skog alldeles intill en inmätt brytpunkt utan framgång att få fix-lösning. Detta för att belysa problematiken med att få fix-lösning vid mätning i tät skog.   Rapporten innehåller en kortfattad beskrivning av delar av arbetet i Lantmäteriets handläggning av naturvårdsuppdrag.
APA, Harvard, Vancouver, ISO, and other styles
4

Barnes, Joel B. "Real time kinematic GPS and multipath : characterisation and improved least squares modelling." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wiik, Linus, and Jennie Bäcklin. "Collaborative Exploration of Unknown Terrain Utilizing Real-Time Kinematic Positioning." Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167103.

Full text
Abstract:
Unmanned autonomous vehicles, airborne or terrestrial, can be used to solve many varying tasks in vastly different environments. This thesis describes a proposed collaboration between two types of such vehicles, namely unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). The vehicles' objective is to traverse unknown terrain in order to access a target area. The exploration of the unknown terrain is in this thesis divided into three parts. These parts are terrain mapping, informative path planning (IPP) for the UAVs and path planning for the UGV. A Gaussian Process (GP) is used to model the terrain. The use of a GP map makes it possible to model spatial dependence and to interpolate data between measurements. Furthermore, sequential update of the map is achieved with a Kalman filter when new measurements are collected. In the second part, IPP is used to decide the best locations for the terrain height measurements. The IPP algorithm will prioritize measurements in locations with uncertain terrain height estimates in order to lower the overall map uncertainty. Finally, when the map is complete, the UGV plans an optimal path through the mapped terrain using A* graph search, while minimizing the total altitude difference for the path and respecting the map uncertainty. Collaborative behavior of autonomous vehicles requires highly accurate position estimates. In this thesis RTK is investigated and its accuracy and precision evaluated for the positioning of autonomous UAVs and UGVs through a series of experiments. The experiments range from stationary and dynamic accuracy to investigation of the consistency of the positioning estimates. The results are promising, RTK outperforms standard GNSS and can be used for centimeter-level accuracy when positioning a UAV in-flight. The proposed exploration algorithms are evaluated in simulations. The results show that the algorithms successfully solves the task of mapping and traversing unknown terrain. IPP makes the mapping of the unknown terrain efficient, which enables the possibility to use the resulting map to plan safe paths for the UGV. Traversing unknown terrain is hard for a single UGV but with the help from one or more UAVs the process is much more efficient. The use of multiple cooperating autonomous vehicles makes it possible to solve tasks complicated for the individual vehicle in an efficient manner.
APA, Harvard, Vancouver, ISO, and other styles
6

Rydalch, Matthew Kent. "Precision Maritime Landing of Autonomous Multirotor Aircraft with Real-Time Kinematic GNSS." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9170.

Full text
Abstract:
In this thesis two methods were developed for precise maritime landing of an autonomous multirotor aircraft based on real-time kinematic (RTK) Global Navigation Satellite System (GNSS). The first method called RTK-localized method (RLM) uses RTK GNSS measurements to localize a sea vessel and execute the landing. RLM was demonstrated outdoors in hardware and landed on a physically simulated boat called a mock-boat with an average landing error of 9.7 cm. The mock-boat was actuated to have boat-like motion and a forward velocity of ~2 m/s. This method showed that accurate landing is possible with RTK GNSS as the primary means of localizing a sea vessel. The localization was unaided by non-GNSS sensors or an estimator, but lacked full attitude estimation and measurement smoothing. The second method was called RTK-Estimation Method (REM) and provides a more complete and robust solution, particularly at sea. It includes a base (landing pad) estimator to fuse RTK GNSS measurements with a dynamic model of a sea vessel. In contrast to RLM, the estimator provides full attitude estimation and measurement smoothing. The base estimator consists of an EKF in conjunction with a complimentary filter and estimates the relative position, attitude, and velocity of a moving target using RTK GNSS and inertial measurements alone. REM was demonstrated outdoors in hardware for 18 flight tests. The same mock-boat from RLM was used as a substitute for a sea vessel, and the boat motion varied between tests. These dynamics were recorded and performances were compared. The rate of success was high given moderate mock-boat motion and degraded with more aggressive motion. Tests were conducted with forward velocities from 0 to 3 m/s and moderate to high wave like motion. Over all tests for REM, the multirotor landed with an average accuracy of 12.7 cm. The methods described depart from common methods given that the only sensors involved for tracking the sea vessel were RTK GNSS receivers and inertial measurement units. Most current methods rely on computer vision, and can fail in poor lighting conditions, in the presence of ocean spray, and other scenarios. The given solutions do not fail under such conditions. The multirotor was equipped with a standard off-the-shelf autopilot, PX4, and the methods function with common control and estimation schemes. The two methods are capable of landing on relatively small landing pads, on the order of 1 m by 1 m, at sea using measurements from satellites thousands of kilometers away.
APA, Harvard, Vancouver, ISO, and other styles
7

Kvarnström, Victor, and Jessica Wallerström. "Realtidsmätning inom fastighetsbildning med "Precise Point Positioning" (PPP)." Thesis, Högskolan Väst, Avdelningen för data-, elektro- och lantmäteriteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-9503.

Full text
Abstract:
Vid GNSS-positionering i samband med fastighetsbildningsåtgärder används vanligtvis den traditionella RTK-mätningen (Real-Time Kinematic) via SWEPOS nätverks-RTK-tjänst. Denna tjänst kräver mobiltelefontäckning eller motsvarande tvåvägskommunikation, vilket kan vara problematiskt inom områden med bristfällig mobiltelefontäckning. Under dessa förhållanden kan istället PPP-mätning (Precise Point Positioning) vara användbart vid fastighetsbildningsåtgärder då dessa tjänster tar emot korrektionsdata i realtid från satelliter. PPP kräver inte någon mobiltelefontäckning, däremot krävs en kommunikationslänk, en RTX-tjänst för att erhålla korrektioner externt från en RTX-satellit. Syftet med studien är att undersöka möjligheten till att nyttja PPP i realtid vid fastighetsbildningsåtgärder som ett alternativ till traditionell GNSS-mätning med nätverks-RTK. För att PPP ska vara ett alternativ till traditionell GNSS-mätning i realtid krävs det att mätosäkerhetskraven inom fastighetsbildning uppfylls. Mätosäkerheten undersöktes genom att utgå ifrån redan kända koordinater (RIX 95-punkter). Mätningarna har genomförts på fem olika platser i Sverige, Göteborg, Vänersborg, Karlstad, Torsby och Malung-Sälen. Mätdata som erhölls från undersökningsplatserna har analyserats samt jämförts med fastighetsbildningskraven. Resultatet av studien erhölls i form av analyserad mätdata med jämförelser mot redan kända (RIX 95) punkter. Avikelsen från känd RIX 95-punkt redovisas i resultatet utifrån tidsaspekten, den systematiska avvikelsen av translativ art, förändringar i avvikelsen från söder till norr samt utifrån två beräkningsmodeller, varav en translation och en transformation. För att få den erhållna mätdatan från RTX-tjänsten att överensstämma bättre med referenspunkten (RIX 95-punkten) togs beräkningsmodellerna fram för att möjliggöra modellering av systematiska avvikelser som uppkommit och därmed uppfylla kraven inom fasighetsbildningsåtgärder. Genom att ha analyserat och granskat olika samband har det framkommit att efter ca 20 minuters mätning, börjar precisionen för mätningarna att bli stabila. Utifrån resultatet är slutsatsen att PPP inte fungerar vid fastighetsbildningsåtgärder för områden inom stomnät, däremot fungerar metoden för skogs- och jordbruksfastigheter utanför stomnät. Förutsatt att en modellering genom translation alternativt transformation som är framtagen i denna studie används för att justera koordinaterna så fungerar PPP-mätning inom samtliga fastighetsbildningsåtgärder. Detta kräver då att mätdata erhålls efter 20 minuters mätning eller mer.
GNSS positioning in conjunction with the real property is usually used the traditional RTK measuring (Real-Time Kinematic) by SWEPOS network RTK service. This service requires mobile phone coverage or equivalent two-way communication, which can be problematic in areas with poor mobile phone coverage. Under these circumstances, PPP (Point Positioning Precise) could be more useful in real property measures when such services receives the correction data in real time from the satellites. PPP does not require any cell phone coverage, however it requires a communication link, a RTX service to obtain corrections externally from a RTX satellite. The purpose of the study is to examine the possibility of using PPP in real time at the real property as an alternative to traditional GNSS measurements with network RTK. The measurement uncertainty was investigated by starting out from already known coordinates (RIX 95 points). The measurements were performed out at five different locations in Sweden, Gothenburg, Vanersborg, Karlstad, Torsby and Malung-Salen. Measurement data obtained from the observations have been analyzed and compared with real property requirements. The results of the study were obtained in the form of data analyzed by comparison of the known (RIX 95) points. The deviation is known from RIX 95 point recognized in income based on the time factor, the bias of the translative case species, changes in deviation from south to north and from two calculation models, a translation and a transformation. To correct the measured values from the RTX service for a better match to the RIX 95 points calculation models were developed to facilitate the modeling of systematic deviations incurred and meet the demands of real property. Analyzing and examining various relationships have shown that after about 20 minutes of measuring, the precision of the measurements starts to become more stable. Based on the results, the conclusion is that the PPP does not work in real property areas within the core network, however, the method works for forestry and agricultural properties outside the core network. Assuming a modelling through translational alternative transformation, developed in this study is used to adjust the coordinates, the PPP measurement is working in all real property registration measures. This requires that the measurement data is obtained after 20 minutes of measurement or more.
APA, Harvard, Vancouver, ISO, and other styles
8

Ansari, Keyvan. "Development of an inter-vehicle communications & positioning platform for transport safety applications." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/72657/1/Keyvan_Ansari_Thesis.pdf.

Full text
Abstract:
This project is a breakthrough in developing new scientific approaches for the design, development and evaluation of inter-vehicle communications, networking and positioning systems as part of Cooperative Intelligent Transportation Systems ensuring the safety of both roads and rail networks. This research focused on the elicitation, specification, analysis and validation of requirements for Vehicle-to-Vehicle communications and networking, and Vehicle-to-Vehicle positioning, which are accomplished with the research platform developed for this study. A number of mathematical models for communications, networking and positioning were developed from which simulations and field experiments were conducted to evaluate the overall performance of the platform. The outcomes of this research significantly contribute to improving the performance of the communications and positioning components of Cooperative Intelligent Transportation Systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Sonklin, Kachane. "Studies of communication and positioning performance of connected vehicles for safety applications." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/207089/1/Kachane_Sonklin_Thesis.pdf.

Full text
Abstract:
Connected vehicles for safety applications play a significant role on reduction of the risks of road accidents. However, the performance of communication and positioning approaches is a major concern. This thesis establishes a connectivity framework based on publish-subscribe architecture for high-timeliness vehicle-to-vehicle data exchanges and determines the performance requirements for precise vehicle positioning for various safety use cases. Extensive experimental results demonstrated the performance benefits of the communication and positioning solutions for vehicle safety applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Pagan, Jesus Manuel. "Cable-Suspended Robot System with Real Time Kinematics GPS Position Correction for Algae Harvesting." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1539256829665799.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Real-Time Kinematic (RTK)"

1

Huntley, David, Drew Rotheram-Clarke, Roger MacLeod, Robert Cocking, Philip LeSueur, Bill Lakeland, and Alec Wilson. "Scalable Platform for UAV Flight Operations, Data Capture, Cloud Processing and Image Rendering of Landslide Hazards and Surface Change Detection for Disaster-Risk Reduction." In Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022, 49–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18471-0_4.

Full text
Abstract:
AbstractThis International Programme on Landslide (IPL) Project 202 paper presents a scalable remote piloted aircraft system (RPAS) platform that streamlines unoccupied aerial vehicle (UAV) flight operations for data capture, cloud processing and image rendering to inventory and monitor slow-moving landslides along the national railway transportation corridor in southwestern British Columbia, Canada. Merging UAV photogrammetry, ground-based real-time kinematic global navigation satellite system (RTK-GNSS) measurements, and satellite synthetic aperture radar interferometry (InSAR) datasets best characterizes the distribution, morphology and activity of landslides over time. Our study shows that epochal UAV photogrammetry, benchmarked with periodic ground-based RTK-GNSS measurements and satellite InSAR platforms with repeat visit times of weeks (e.g., RADARSAT-2 and SENTINEL-1) to days (e.g. RADARSAT Constellation Mission) provides rapid landslide monitoring capability with cm-scale precision and accuracy.
APA, Harvard, Vancouver, ISO, and other styles
2

Taddia, Yuri, Luca Ercolin, and Alberto Pellegrinelli. "A Low-Cost GNSS Prototype for Tracking Runners in RTK Mode: Comparison with Running Watch Performance." In Communications in Computer and Information Science, 233–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94426-1_17.

Full text
Abstract:
AbstractGNSS positioning is widely use in every kind of application. Nowadays, low-cost GNSS modules are becoming available to apply the Real-Time Kinematic mode in those applications in which a centimeter-level accuracy would be appreciated for a precise positioning. In this work, we developed a prototype for collecting data in RTK mode with a single-frequency multi-constellation device during some physical tests performed by a professional runner. Prior to do this, we assessed the accuracy in estimating the distance actually covered during a walking on a signalized line. Also, we verified the capability to detect short sprints of about 12–15 s. Finally, we compared the results of our prototype with a Polar M430 running watch during three Cooper tests and a Kosmin test. The comparison highlighted that the running watch overestimated the total distance systematically and did not describe the performance of the athlete accurately in time. The distance overestimation was +4.7% on average using the running watch, whereas our prototype system exhibited an error level of about 0.1%.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Real-Time Kinematic (RTK)"

1

Salerno, Alessio, Tom Lamarche, and Erick Dupuis. "Performance Evaluation of Real-Time Kinematic GPS at Arctic Latitudes." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87136.

Full text
Abstract:
A real-time kinematic (RTK) global positioning system (GPS) has been identified for potentially being used as a ground-truth sensor for testing robotic rovers for planetary exploration. A series of environmental tests needs to be performed in order to validate the performance of the sensor at hand before being used as a ground-truth system. This paper focuses on the performance evaluation of the RTK GPS at Axel Heiberg Island Canadian Space Agency’s Analogue Research Network (CARN) site. This is one of the officially recognized terrestrial analogues, that is places on Earth that approximate the geological, environmental and putative biological conditions on Mars and other planetary bodies (Hipkin et al.). The challenge lies in the use of the equipment at Arctic latitudes. The results show that the system performed according to specifications even in this challenging environment.
APA, Harvard, Vancouver, ISO, and other styles
2

Sulaiman, Saiful Aman Hj, Mohamad Asrul Mustafar, Tengku Afrizal Tengku Ali, Mohd Azwan Abbas, and Helmi Zulhaidi Mohd Shafri. "Practical accuracy of VRS RTK outside the Malaysian Real Time Kinematic Network (MyRTKnet)." In Its Applications (CSPA). IEEE, 2009. http://dx.doi.org/10.1109/cspa.2009.5069258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sahmoudi, M., R. Jr Landry, and F. Gagnon. "Robust mitigation of multipath and ionospheric delays in multi-GNSS real-time kinematic (RTK) receivers." In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing (SSP). IEEE, 2009. http://dx.doi.org/10.1109/ssp.2009.5278618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sahmoudi, M., A. Kouki, and R. Landry. "A new approach for mitigating carrier phase multipath errors in multi-gnss real-time kinematic (RTK) receivers." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siejka, Zbigniew. "Research on Accuracy of a Boat Position Determination Using GNSS Techniques in Kinematic Mode." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.239.

Full text
Abstract:
The main aim of this work is research on the use of satellite positioning GNSS – RTK / RTN techniques to estimate the trajectory of a hydrographic boat. Modern hydrographic boat is the carrier of advanced bathymetry system, integral with GNSS positioning techniques. The key elements of the correct execution of the hydroacoustic survey are two elements: the height of the water surface and precise determination of the position in the moment of performing depth measurement. Integrated Bathymetric System (ZSB) is installed on a floating platform which is in constant motion. To obtain correct results of the hydroacoustic survey, it is necessary to know the precise (3D) position of the platform. In this paper the author presented his own research on the precise determination of accurate and reliable trajectory of a boat. The proposed method uses Real Time Kinematic (RTK) techniques of satellite positioning GNSS (Global Navigation Satellite Systems). The article presents examples of the results obtained during the research work at the largest Polish river.
APA, Harvard, Vancouver, ISO, and other styles
6

Baniulis, Rimvydas, Karolis Galinauskas, Leonardas Marozas, Eimuntas Paršeliunas, and Marius Petniunas. "An Analysis of RTK Network LitPOS Performance." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.161.

Full text
Abstract:
RTK (Real Time Kinematic) method for positioning is used in daily life by different consumers for many purposes. When there are so many measurements, it is essential to know where RTK measurements are concentrated and which stations are obligatory for LitPOS performance. In this paper, using RTK software generated reports and SQL database records, we introduced the geographic information systems show to graphically LitPOS users activity and density of measurements. Using this data we analyze how LitPOS users are divided among Lithuanian municipalities, how much users are working each month and how this affects LitPOS performance. This study is performed in Lithuania, where state wide permanent GNSS reference station network has been maintained since year 2007.
APA, Harvard, Vancouver, ISO, and other styles
7

Ismail, Hesham, Thani Althani, Mohammed Minhas Anzil, and Prashanth Subramaniam. "Comparison of UGV Position Estimation Equipped With GNSS-RTK and GPS Using EKF." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23727.

Full text
Abstract:
Abstract Site assessments for bifacial Photovoltaic (PV) installation are quite challenging to conduct manually due to the area size and the extreme temperature conditions at desert sites. We designed and built an autonomous Unmanned Ground Vehicle (UGV) fitted with a Global Navigation Satellite Network-System Real-Time Kinematic (GNSS-RTK) positioning device, an Inertial Measurement Unit (IMU), encoder to improve and aid site assessments in desert condition. Sandy terrains deserts are challenging for UGV’s because they increase the likelihood of wheel slippage due to reduced traction. Sensor details such as IMU, GNSS-RTK, and encoder should be taken into consideration to account for the errors that the desert terrains pose. This study compared the Extended Kalman Filter (EKF) for standard GPS & GNSS-RTK to verify which performs better for the UGV’s position estimation. The estimated UGV’s position from the kinematics model and EKF are validated using a drone camera system that uses an image processing technique to verify the UGV’s position with the help of the visible reference cones. Throughout the experiments, the GNSS-RTK performed better than GPS. Also, the EKF performed as well as the GNSS-RTK by trusting it more than the encoder/gyroscope reading.
APA, Harvard, Vancouver, ISO, and other styles
8

T. Santos, Judá, Marcus D. N. Forte, Nadson R. T. de Sousa, Italo C. Branco, Fabricio G. Nogueira, and Bismark C. Torrico. "Sistema VANT para Reconstrução Tridimensional na Indústria." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.980.

Full text
Abstract:
Este artigo apresenta o desenvolvimento de um sistema aéereo de mapeamento tridimensional de alta precisão. A finalidade do sistema desenvolvido e a reconstrução de grandes áreas e objetos através de nuvem de pontos, com aplicabilidade no setor industrial. O sistema utiliza de um eficiente sistema de posicionamento RTK (Real-Time Kinematic), um sensor LiDAR (Light Detection And Ranging) para leitura da área e um microcomputador capaz de processar esses dados e construir a nuvem de pontos. Todos esses equipamentos são embarcados em um quadricóptero com capacidade de levar cargas de ate 10 Kg. Ao final do trabalho é apresentado um resultado experimental com o mapeamento e identicação de objetos.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Wei, Houxiang Zhang, and Ottar L. Osen. "A UAV SAR Prototype for Marine and Arctic Application." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61264.

Full text
Abstract:
SAR (Synthetic Aperture Radar ) systems are special types of radar that produce high resolution images (comparable to optical sensors) in all weather conditions, night and day. SAR sensors have many applications in marine and arctic applications. In this paper a compact SAR prototype system is developed for UAV (Unmanned Aerial Vehicle) platform. The radar is based on FMCW (Frequency-Modulated Continuous-Wave) radar mode. The system integrates a high performance RTK (Real Time Kinematic) GPS and IMU (inertial measurement unit) based motion compensation module, FPGA (Field Programmable Gate Array) based controller and signal processing module. It has a resolution of 0.3 meter with the weight below 2 kg. It has been test and verified on the guide rail, car and integrated on a rotary UAV. The system will extend the capability of UAV in the marine and arctic remote sensing area.
APA, Harvard, Vancouver, ISO, and other styles
10

Shih, H. H., R. Brennan, and M. Cisternelli. "GPS-Tracked Buoy for Water Level Measurements." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92212.

Full text
Abstract:
With the advancement of differential, kinematic GPS techniques, water level measurements with the accuracy of centimeter- or decimeter-level is possible when buoys are placed close to a coastal base station or at distances of thousands of kilometers from shore, respectively. Applications of these techniques to observe tides and waves and to detect tsunamis have been demonstrated. This paper will first briefly review existing water level measurement methods, the needs for coastal and open ocean water level measurements, previous GPS buoy experiments, and GPS measurement uncertainties and precision positioning techniques. These will then be followed by a brief description of the application of GPS buoys in hydrographic surveying and the development of a real-time water level reporting GPS buoy to support US National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) nautical charting mission. The present measurement system consists of a portable spherical buoy and a shore base station. Utilizing Real-Time Kinematic (RTK) differential GPS technique, accurate water level data were collected and reported in real-time at six- minute intervals in complying with NOS water level measurement standards. The buoy’s motion sensors provide automated corrections for wave-induced buoy motions. Several field tests conducted near NOAA water level stations have shown that the root-mean-square (rms) of differences between the two measurement systems is on the order of 2 cm. The buoy also provides surface wave information. The portability and the accuracy of the system offer possibilities for other applications in coastal waters. Future enhancements include satellite data telemetry and monitoring, option for post processing, and solar power supplementation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography