Academic literature on the topic 'Real-time correction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Real-time correction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Real-time correction"

1

Engelke, Robert M. "Real-time transcription correction system." Journal of the Acoustical Society of America 114, no. 5 (2003): 2544. http://dx.doi.org/10.1121/1.1634110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, L. H., E. Bozoki, J. Galayda, S. Krinsky, and G. Vignola. "Real time harmonic closed orbit correction." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 284, no. 2-3 (December 1989): 268–85. http://dx.doi.org/10.1016/0168-9002(89)90292-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Kai. "Gctf: Real-time CTF determination and correction." Journal of Structural Biology 193, no. 1 (January 2016): 1–12. http://dx.doi.org/10.1016/j.jsb.2015.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van der Kouwe, André, and Anders Dale. "Real-time motion correction using octant navigators." NeuroImage 13, no. 6 (June 2001): 48. http://dx.doi.org/10.1016/s1053-8119(01)91391-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rand, J., A. Hoover, S. Fishel, J. Moss, J. Pappas, and E. Muth. "Real-Time Correction of Heart Interbeat Intervals." IEEE Transactions on Biomedical Engineering 54, no. 5 (May 2007): 946–50. http://dx.doi.org/10.1109/tbme.2007.893491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Downie, John D. "Real-time holographic image correction using bacteriorhodopsin." Applied Optics 33, no. 20 (July 10, 1994): 4353. http://dx.doi.org/10.1364/ao.33.004353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schops, Thomas, Martin R. Oswald, Pablo Speciale, Shuoran Yang, and Marc Pollefeys. "Real-Time View Correction for Mobile Devices." IEEE Transactions on Visualization and Computer Graphics 23, no. 11 (November 2017): 2455–62. http://dx.doi.org/10.1109/tvcg.2017.2734578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, C.-Y., P. Elliott, S. Sharma, and J. K. Dewhurst. "Real time scissor correction in TD-DFT." Journal of Physics: Condensed Matter 31, no. 21 (March 19, 2019): 214002. http://dx.doi.org/10.1088/1361-648x/ab048a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Glagolev, Vladislav, and Alexander Ladonkin. "Real-time perspective correction in video stream." MATEC Web of Conferences 158 (2018): 01010. http://dx.doi.org/10.1051/matecconf/201815801010.

Full text
Abstract:
The paper describes an algorithm used for software perspective correction. The algorithm uses the camera’s orientation angles and transforms the coordinates of pixels on a source image to coordinates on a virtual image form the camera whose focal plane is perpendicular to the gravity vector. This algorithm can be used as a low-cost replacement of a gyrostabilazer in specific applications that restrict using movable parts or heavy and pricey equipment.
APA, Harvard, Vancouver, ISO, and other styles
10

Asensio Ramos, A., J. de la Cruz Rodríguez, and A. Pastor Yabar. "Real-time, multiframe, blind deconvolution of solar images." Astronomy & Astrophysics 620 (December 2018): A73. http://dx.doi.org/10.1051/0004-6361/201833648.

Full text
Abstract:
The quality of images of the Sun obtained from the ground are severely limited by the perturbing effect of the Earth’s turbulent atmosphere. The post-facto correction of the images to compensate for the presence of the atmosphere require the combination of high-order adaptive optics techniques, fast measurements to freeze the turbulent atmosphere, and very time-consuming blind deconvolution algorithms. Under mild seeing conditions, blind deconvolution algorithms can produce images of astonishing quality. They can be very competitive with those obtained from space, with the huge advantage of the flexibility of the instrumentation thanks to the direct access to the telescope. In this contribution we make use of deep learning techniques to significantly accelerate the blind deconvolution process and produce corrected images at a peak rate of ∼100 images per second. We present two different architectures that produce excellent image corrections with noise suppression while maintaining the photometric properties of the images. As a consequence, polarimetric signals can be obtained with standard polarimetric modulation without any significant artifact. With the expected improvements in computer hardware and algorithms, we anticipate that on-site real-time correction of solar images will be possible in the near future.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Real-time correction"

1

Sancho, Sánchez Irene. "On Adaptive Forward Error Correction for Real Time Traffic." Thesis, KTH, Reglerteknik, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-109478.

Full text
Abstract:
Most of the real-time applications use user data protocol (UDP) as their transport protocol. The reason is that UDP does not provide flow control or error recovery and does not require connection management. Consequently it is a fast protocol suitable for applications that only need to transmit little data or for delay sensitive applications. Nevertheless, UDP has a major drawback, if some packets are dropped then there is no way to recover them. Some applications as video or audio could accept lower quality and most of the times the lost of some packets is less critic than the delay introduced by error recovery methods. Since more applications with real-time constraints such as video image and audio are introduced both over the wired Internet and over wireless some improvements should be made in order to obtain better performance. The main contribution of this thesis is to study an intermediate solution providing more reliability to the communication between applications running on top of UDP and at the same time support its fast connection quality using already existing protocols. In order to obtain it, real-time transport protocol (RTP) has been chosen as upper level protocol (to provide ”flowcontrol”) and an adaptive forward error correction (AFEC) technique has been studied (to provide error management). The idea of AFEC is to inject an adaptive amount of redundancy packets in every sent block (or datagram) in order to achieve a desired recovery rate at the receiver without using any retransmission mechanism. The sender dynamically uses feedback information from the receiver to decide the optimal amount of redundancy to introduce in every sent block. This decision task is managed by a control system at the sender side. Using the network simulator, ns-2, the performance of three different controllers using AFEC is evaluated. The results show in various scenarios that the amount of discarded blocks due to the corruption of some of its packets (block loss probability after decoding) decrease considerably when the AFEC mechanism is introduced.
APA, Harvard, Vancouver, ISO, and other styles
2

Westerlund, Johan. "Forward Error Correction in Real-time Video Streaming Applications." Thesis, Umeå universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-99644.

Full text
Abstract:
The Internet is rapidly becoming the dominant platform for video contribution and distribution, but today’s Internet provides a best-effort service without any guarantee of quality. Internet video streaming has to cope with this lack of guarantees. Due to congestion and the heterogeneous infrastructure of the Internet a video transmission will be plagued by packet loss, variability in throughput, and latency. To mitigate some of these these problems f.o.r.w.a.r.d e.r.r.o.r c.o.r.r.e.c.t.i.o.n (F.E.C) can be employed. The aim of this thesis is to present a theoretical introduction to error correcting codes, implement and integrate f.o.r.w.a.r.d e.r.r.o.r c.o.r.r.e.c.t.i.o.n into an existing video streaming application, and test the implementation in both simulated and real-world conditions. Parameters of the F.E.C algorithm will be tweaked and guidelines for parameter selection will be developed
APA, Harvard, Vancouver, ISO, and other styles
3

Dufau, Michael. "Bias errors in IRLV data and their real time correction." Thesis, Liverpool John Moores University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Granholm, George Richard 1976. "Near-real time atmospheric density model correction using space catalog data." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/44899.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.
Includes bibliographical references (p. 179-184).
Several theories have been presented in regard to creating a neutral density model that is corrected or calibrated in near-real time using data from space catalogs. These theories are usually limited to a small number of frequently tracked "calibration satellites" about which information such as mass and crosssectional area is known very accurately. This work, however, attempts to validate a methodology by which drag information from all available low-altitude space objects is used to update any given density model on a comprehensive basis. The basic update and prediction algorithms and a technique to estimate true ballistic factors are derived in detail. A full simulation capability is independently verified. The process is initially demonstrated using simulated range, azimuth, and elevation observations so that issues such as required number and types of calibration satellites, density of observations, and susceptibility to atmospheric conditions can be examined. Methods of forecasting the density correction models are also validated under different atmospheric conditions.
by George Richard Granholm.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
5

Alhamud, Alkathafi Ali. "Implementation of anatomical navigators for real time motion correction in diffusion tensor imaging." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10052.

Full text
Abstract:
Includes bibliographical references.
Prospective motion correction methods using an optical system, diffusion-weighted prospective acquisition correction, or a free induction decay navigator have recently been applied to correct for motion in diffusion tensor imaging. These methods have some limitations and drawbacks. This article describes a novel technique using a three-dimensional-echo planar imaging navigator, of which the contrast is independent of the b-value, to perform prospective motion correction in diffusion weighted images, without having to reacquire volumes during which motion occurred, unless motion exceeded some preset thresholds. Water phantom and human brain data were acquired using the standard and navigated diffusion sequences, and the mean and whole brain histogram of the fractional anisotropy and mean diffusivity were analyzed.
APA, Harvard, Vancouver, ISO, and other styles
6

Brion, Véronique. "Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112058/document.

Full text
Abstract:
La plupart des constructeurs de systèmes d'imagerie par résonance magnétique (IRM) proposent un large choix d'applications de post-traitement sur les données IRM reconstruites a posteriori, mais très peu de ces applications peuvent être exécutées en temps réel pendant l'examen. Mises à part certaines solutions dédiées à l'IRM fonctionnelle permettant des expériences relativement simples ainsi que d'autres solutions pour l'IRM interventionnelle produisant des scans anatomiques pendant un acte de chirurgie, aucun outil n'a été développé pour l'IRM pondérée en diffusion (IRMd). Cependant, comme les examens d'IRMd sont extrêmement sensibles à des perturbations du système hardware ou à des perturbations provoquées par le sujet et qui induisent des données corrompues, il peut être intéressant d'investiguer la possibilité de reconstruire les données d'IRMd directement lors de l'examen. Cette thèse est dédiée à ce projet innovant. La contribution majeure de cette thèse a consisté en des solutions de débruitage des données d'IRMd en temps réel. En effet, le signal pondéré en diffusion peut être corrompu par un niveau élevé de bruit qui n'est plus gaussien, mais ricien ou chi non centré. Après avoir réalisé un état de l'art détaillé de la littérature sur le bruit en IRM, nous avons étendu l'estimateur linéaire qui minimise l'erreur quadratique moyenne (LMMSE) et nous l'avons adapté à notre cadre de temps réel réalisé avec un filtre de Kalman. Nous avons comparé les performances de cette solution à celles d'un filtrage gaussien standard, difficile à implémenter car il nécessite une modification de la chaîne de reconstruction pour y être inséré immédiatement après la démodulation du signal acquis dans l'espace de Fourier. Nous avons aussi développé un filtre de Kalman parallèle qui permet d'appréhender toute distribution de bruit et nous avons montré que ses performances étaient comparables à celles de notre méthode précédente utilisant un filtre de Kalman non parallèle. Enfin, nous avons investigué la faisabilité de réaliser une tractographie en temps-réel pour déterminer la connectivité structurelle en direct, pendant l'examen. Nous espérons que ce panel de développements méthodologiques permettra d'améliorer et d'accélérer le diagnostic en cas d'urgence pour vérifier l'état des faisceaux de fibres de la substance blanche
Most magnetic resonance imaging (MRI) system manufacturers propose a huge set of software applications to post-process the reconstructed MRI data a posteriori, but few of them can run in real-time during the ongoing scan. To our knowledge, apart from solutions dedicated to functional MRI allowing relatively simple experiments or for interventional MRI to perform anatomical scans during surgery, no tool has been developed in the field of diffusion-weighted MRI (dMRI). However, because dMRI scans are extremely sensitive to lots of hardware or subject-based perturbations inducing corrupted data, it can be interesting to investigate the possibility of processing dMRI data directly during the ongoing scan and this thesis is dedicated to this challenging topic. The major contribution of this thesis aimed at providing solutions to denoise dMRI data in real-time. Indeed, the diffusion-weighted signal may be corrupted by a significant level of noise which is not Gaussian anymore, but Rician or noncentral chi. After making a detailed review of the literature, we extended the linear minimum mean square error (LMMSE) estimator and adapted it to our real-time framework with a Kalman filter. We compared its efficiency to the standard Gaussian filtering, difficult to implement, as it requires a modification of the reconstruction pipeline to insert the filter immediately after the demodulation of the acquired signal in the Fourier space. We also developed a parallel Kalman filter to deal with any noise distribution and we showed that its efficiency was quite comparable to the non parallel Kalman filter approach. Last, we addressed the feasibility of performing tractography in real-time in order to infer the structural connectivity online. We hope that this set of methodological developments will help improving and accelerating a diagnosis in case of emergency to check the integrity of white matter fiber bundles
APA, Harvard, Vancouver, ISO, and other styles
7

Pagan, Jesus Manuel. "Cable-Suspended Robot System with Real Time Kinematics GPS Position Correction for Algae Harvesting." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1539256829665799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Patel, Darshan Shyam. "A Real-Time Technique for the Correction of Invasive Blood Pressure Measurements using Counter Pressure." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1205764260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hess, Aaron T. "Real-time motion and main magnetic field correction in MR spectroscopy using an EPI volumetric navigator." Doctoral thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11359.

Full text
Abstract:
In population groups where subjects do not lie still during Magnetic Resonance Spectroscopy (MRS) scans, real-time volume of interest (VOI), frequency, and main magnetic field (B0) shim correction may be necessary. This work demonstrates firstly that head movement causes significant B0 disruption in both single voxel spectroscopy and spectroscopic imaging.
APA, Harvard, Vancouver, ISO, and other styles
10

Roujol, Sébastien. "MR-guided thermotherapies of mobile organs : advances in real time correction of motion and MR-thermometry." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14263/document.

Full text
Abstract:
L'ablation des tissus par hyperthermie locale guidée par IRM est une technique prometteuse pour le traitement du cancer et des arythmies cardiaques. L'IRM permet d'extraire en temps réel des informations anatomiques et thermiques des tissus. Cette thèse a pour objectif d'améliorer et d'étendre la méthodologie existante pour des interventions sur des organes mobiles comme le rein, le foie et le coeur. La première partie a été consacrée à l'introduction de l'imagerie rapide (jusqu'à 10-15 Hz) pour le guidage de l'intervention par IRM en temps réel. L'utilisation de cartes graphiques (GPGPU) a permis une accélération des calculs afin de satisfaire la contrainte de temps réel. Une précision, de l'ordre de 1°C dans les organes abdominaux et de 2-3°C dans le coeur, a été obtenue. Basé sur ces avancées, de nouveaux développements méthodologiques ont été proposés dans une seconde partie de cette thèse. L'estimation du mouvement basée sur une approche variationnelle a été améliorée pour gérer la présence de structures non persistantes et de fortes variations d'intensité dans les images. Un critère pour évaluer la qualité du mouvement estimé a été proposé et utilisé pour auto-calibrer notre algorithme d'estimation du mouvement. La méthode de correction des artefacts de thermométrie liés au mouvement, jusqu'ici restreinte aux mouvements périodiques, a été étendue à la gestion de mouvements spontanés. Enfin, un nouveau filtre temporel a été développé pour la réduction du bruit sur les cartographies de température. La procédure interventionnelle apparaît maintenant suffisamment mature pour le traitement des organes abdominaux et pour le transfert vers la clinique. Concernant le traitement des arythmies cardiaques, les méthodes ont été évaluées sur des sujets sains et dans le ventricule gauche. Par conséquent, la faisabilité de l'intervention dans les oreillettes mais aussi en présence d'arythmie devra être abordée
MR-guided thermal ablation is a promising technique for the treatment of cancer and atrial fibrillation. MRI provides both anatomical and temperature information. The objective of this thesis is to extend and improve existing techniques for such interventions in mobile organs such as the kidney, the liver and the heart. A first part of this work focuses on the use of fast MRI (up to 10-15 Hz) for guiding the intervention in real time. This study demonstrated the potential of GPGPU programming as a solution to guarantee the real time condition for both MR-reconstruction and MR-thermometry. A precision in the range of 1°C and 2-3°C was obtained in abdominal organs and in the heart, respectively. Based on these advances, new methodological developments have been carried out in a second part of this thesis. New variational approaches have proposed to address the problem of motion estimation in presence of structures appearing transient and high intensity variations in images. A novel quality criterion to assess the motion estimation is proposed and used to autocalibrate our motion estimation algorithm. The correction of motion related magnetic susceptibility variation was extended to treat the special case of spontaneous motion. Finally, a novel temporal filter is proposed to reduce the noise of MR-thermometry measurements while controlling the bias introduced by the filtering process. As a conclusion, all main obstacles for MR-guided HIFU-ablation of abdominal organs have been addressed in in-vivo and ex-vivo studies, therefore clinical studies will now be realized. However, although promising results have been obtained for MR-guided RF-ablation in the heart, its feasibility in the atrium and in presence of arrhythmia still remains to be investigated
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Real-time correction"

1

Ulbrich, Norbert. The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulbrich, Norbert. The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ulbrich, Norbert. The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ulbrich, Norbert. The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulbrich, Norbert. The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crow, Judy. Model-based reconfiguration: Diagnosis and recovery. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hillard, Bruce F. Base-line calibrations of the Mini-Ranger III and the role of signal strength in correcting real-time hydrographic position data. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

John, Rushby, and Langley Research Center, eds. Model-based reconfiguration: Diagnosis and recovery. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Model-based reconfiguration: Diagnosis and recovery. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilson, Mark. Two Cheers For Anti-Atomism. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803478.003.0004.

Full text
Abstract:
Pierre Duhem’s celebrated writings on methodology have been profoundly misunderstood through a failure to consider the thermomechanical framework in which he worked. In particular, little attention has been paid to the carefully layered manner in which Duhem outfits “temperature” and “entropy” with a reliable range of real-world applications. These architectural underpinnings derive from the fundamental utilities that thermal vocabularies offer: codifying the energetic degradations that inevitably arise within a physical system as time wears on. Duhem’s cogent analysis of thermal usage supplies detailed insight into the gradualist manners in which other forms of descriptive vocabulary adapt themselves successfully to the requirements of the physical world. These studies should serve as a valuable corrective to popular semantic views in which traits like “temperature” are assigned simplistic “natural kinds” referents.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Real-time correction"

1

Vonikakis, Vassilios, Chryssanthi Iakovidou, and Ioannis Andreadis. "Real-Time Biologically-Inspired Image Exposure Correction." In IFIP Advances in Information and Communication Technology, 133–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12267-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Hyunchul, Dongwuk Kyoung, and Keechul Jung. "Real-Time Image Correction for Interactive Environment." In Lecture Notes in Computer Science, 345–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73279-2_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daglish, George R., and Iurii P. Sizov. "Real-Time Earthquake Localisation and the Elliptic Correction." In Advances in Intelligent Systems and Computing, 880–908. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilm, Jakob, Oline V. Olesen, Rasmus R. Paulsen, and Rasmus Larsen. "Correction of Motion Artifacts for Real-Time Structured Light." In Image Analysis, 142–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19665-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Yang, Wentao Zhang, and Yihe Li. "A New Method for Real-Time PPP Correction Updates." In International Symposium on Earth and Environmental Sciences for Future Generations, 223–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/1345_2016_255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Dongil. "Real-Time Digital Image Warping for Display Distortion Correction." In Lecture Notes in Computer Science, 1258–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11559573_152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Razak, Noorfadzli Abdul, Nor Hashim Mohd Arshad, Ramli bin Adnan, Norashikin M. Thamrin, and Ng Kok Mun. "Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot." In Lecture Notes in Electrical Engineering, 269–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2622-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seo, Ji-Yun, Yun-Hong Noh, and Do-Un Jeong. "Real-Time Posture Correction Monitoring System for Unconstrained Distraction Measurement." In IT Convergence and Security 2017, 29–32. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6454-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spierer, Arthur, and Andres Upegui. "Real-Time Audio Group Delay Correction with FFT Convolution on FPGA." In Lecture Notes in Computer Science, 233–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30481-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Chunmei, Yuanrong Guo, Feiran Zhang, Fang Dong, Yuting Hu, and Shuli Dong. "The Dark-Signal Real-Time Correction Method of CCD Digital Image." In 4th International Symposium of Space Optical Instruments and Applications, 180–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96707-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Real-time correction"

1

Damodaran, Meledath. "Real-time aberration correction using phase diversity on the IBM SP2 parallel computer." In Real-Time Imaging. SPIE, 1996. http://dx.doi.org/10.1117/12.628710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Floros, G., P. Durante, and N. Neufeld. "Forward Error Correction for data acquisition networks." In 2014 IEEE-NPSS Real Time Conference (RT). IEEE, 2014. http://dx.doi.org/10.1109/rtc.2014.7097555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Špakov, Oleg, and Yulia Gizatdinova. "Real-time hidden gaze point correction." In ETRA '14: Eye Tracking Research and Applications. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2578153.2578200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cardinal, P., G. Boulianne, M. Comeau, and M. Boisvert. "Real-time correction of closed-captions." In the 45th Annual Meeting of the ACL. Morristown, NJ, USA: Association for Computational Linguistics, 2007. http://dx.doi.org/10.3115/1557769.1557803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gordon, Donald P. "Real-time draping and perspective correction." In International Symposium on Optical Science and Technology, edited by Wallace G. Fishell. SPIE, 2000. http://dx.doi.org/10.1117/12.408694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oldekop, Erik, and Azad Siahmakoun. "Real-time one-pass distortion correction." In Midwest - DL tentative, edited by Rudolph P. Guzik, Hans E. Eppinger, Richard E. Gillespie, Mary K. Dubiel, and James E. Pearson. SPIE, 1991. http://dx.doi.org/10.1117/12.47756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Waltz, Frederick M. "Implementation Of Real-Time Perspective Correction." In Robotics and IECON '87 Conferences, edited by Rolf-Juergen Ahlers and Michael J. W. Chen. SPIE, 1988. http://dx.doi.org/10.1117/12.942840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jedrasik, Piotr. "Proximity effects correction in real time." In Microlithography '99, edited by Yuli Vladimirsky. SPIE, 1999. http://dx.doi.org/10.1117/12.351123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elshehaly, Mai, Denis Gracanin, Mohamed Gad, Junpeng Wang, and Hicham G. Elmongui. "Real-time interactive time correction on the GPU." In 2015 IEEE Scientific Visualization Conference (SciVis). IEEE, 2015. http://dx.doi.org/10.1109/scivis.2015.7429505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gong, Guanghua, Hongming Li, Weibin Pan, and Jianmin Li. "Temperature effect and correction method for LHAASO KM2A timing synchronization node." In 2014 IEEE-NPSS Real Time Conference (RT). IEEE, 2014. http://dx.doi.org/10.1109/rtc.2014.7097462.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Real-time correction"

1

Shtyrkova, Katia, Michael D. Oliker, Kevin P. Vitayaudom, Denis W. Oesch, Darryl J. Sanchez, Patrick R. Kelly, Carolyn M. Tewksbury-Christle, and Julie C. Smith. Experimental Demonstration of Real Time Gradient Gain Correction for Sodium Beacon Laser Guide Star: Postprint. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada531341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robert, J., and Michael Forte. Field evaluation of GNSS/GPS based RTK, RTN, and RTX correction systems. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41864.

Full text
Abstract:
This Coastal and Hydraulic Engineering Technical Note (CHETN) details an evaluation of three Global Navigation Satellite System (GNSS)/Global Positioning System (GPS) real-time correction methods capable of providing centimeter-level positioning. Internet and satellite-delivered correction systems, Real Time Network (RTN) and Real Time eXtended (RTX), respectively, are compared to a traditional ground-based two-way radio transmission correction system, generally referred to as Local RTK, or simply RTK. Results from this study will provide prospective users background information on each of these positioning systems and comparisons of their respective accuracies during in field operations.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography