Academic literature on the topic 'Real-time biosensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Real-time biosensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Real-time biosensors"
Kunzelmann, Simone, and Martin R. Webb. "Fluorescence detection of GDP in real time with the reagentless biosensor rhodamine–ParM." Biochemical Journal 440, no. 1 (October 27, 2011): 43–49. http://dx.doi.org/10.1042/bj20110349.
Full textShalannanda, Wervyan, Ardianto Satriawan, Muhammad Fairuziko Nurrajab, Anchelmia Chyntia Hanna Ayulestari, Diah Ayu Safitri, Finna Alivia Nabila, Casi Setianingsih, and Isa Anshori. "Biosensors for therapeutic drug monitoring: a review." F1000Research 12 (February 13, 2023): 171. http://dx.doi.org/10.12688/f1000research.130863.1.
Full textRasooly, Avraham, and Keith E. Herold. "Biosensors for the Analysis of Food- and Waterborne Pathogens and Their Toxins." Journal of AOAC INTERNATIONAL 89, no. 3 (May 1, 2006): 873–83. http://dx.doi.org/10.1093/jaoac/89.3.873.
Full textSaha, Soumyadeep, Manoj Sachdev, and Sushanta K. Mitra. "Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers." Biomicrofluidics 17, no. 1 (January 2023): 011502. http://dx.doi.org/10.1063/5.0135525.
Full textChristini, David J., Jeff Walden, and Jay M. Edelberg. "Direct biologically based biosensing of dynamic physiological function." American Journal of Physiology-Heart and Circulatory Physiology 280, no. 5 (May 1, 2001): H2006—H2010. http://dx.doi.org/10.1152/ajpheart.2001.280.5.h2006.
Full textRaykova, Magdalena R., Damion K. Corrigan, Morag Holdsworth, Fiona L. Henriquez, and Andrew C. Ward. "Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk." Biosensors 11, no. 7 (July 9, 2021): 232. http://dx.doi.org/10.3390/bios11070232.
Full textJang, Chorom, Hee-Jo Lee, and Jong-Gwan Yook. "Radio-Frequency Biosensors for Real-Time and Continuous Glucose Detection." Sensors 21, no. 5 (March 6, 2021): 1843. http://dx.doi.org/10.3390/s21051843.
Full textWilson, George S., and Raeann Gifford. "Biosensors for real-time in vivo measurements." Biosensors and Bioelectronics 20, no. 12 (June 2005): 2388–403. http://dx.doi.org/10.1016/j.bios.2004.12.003.
Full textEiferman, Daniel S., Long Nguyen, and R. Anthony Perez-Tamayo. "Real-Time Myocardial Glucose Measurement Using Biosensors." ASAIO Journal 54, no. 1 (January 2008): 120–23. http://dx.doi.org/10.1097/mat.0b013e318160f809.
Full textEiferman, D., L. Nguyen, K. Abe, J. Bohannen, E. Okum, and R. A. Perez-Tamayo. "REAL-TIME MYOCARDIAL GLUCOSE MEASUREMENT USING BIOSENSORS." ASAIO Journal 52, no. 2 (March 2006): 25A. http://dx.doi.org/10.1097/00002480-200603000-00117.
Full textDissertations / Theses on the topic "Real-time biosensors"
Ng, Shu Rui. "Electrochemical biosensors for real-time detection of angiogenesis." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/25625.
Full textPhairatana, Tonghathai. "Bioengineering of novel carbon-based biosensors for real-time biomedical use." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/58345.
Full textLiu, Chang. "Localized Surface Plasmon Resonance Biosensors for Real-Time Biomolecular Binding Study." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/837.
Full textStengel, Gudrun. "Real time monitoring of DNA hybridization and replication using optical and acoustic biosensors." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971304572.
Full textHong, Soonjin Barbee Kenneth A. "Quantitative analysis of cell-surface interactions and cell adhesion process in real-time /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2840.
Full textCanelle, Quentin. "Real Time Surface Plasmon Resonance Biosensors, a Powerful Technology to Assess Polyclonal Antibody Avidity." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216754.
Full textDoctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Zelada, Guillén Gustavo Adolfo. "Ultrasensitive detection of pathogens in real-time. Potentiometric biosensors based on single-walled carbon nanotubes and aptamers." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/51768.
Full textUn gran número de plataformas de detección biológica han incorporado materiales nanoestructurados como una estrategia para mejorar varios parámetros operacionales y de calidad tales como reducir los tiempos de análisis y los límites de detección. Las técnicas electroquímicas de detección se prefieren sobre otras técnicas debido a que presentan una serie de ventajas tales como rapidez, facilidad de manejo, coste reducido y el reducido tamaño de los detectores comerciales. Entre las técnicas electroquímicas, las metodologías más simples, comunes y más fáciles de transportar son aquellas basadas en la potenciometría. La nueva tendencia seguida con los electrodos potenciométricos de estado sólido representa una herramienta atractiva para el análisis de muestras líquidas en tiempo real. Sin embargo, hasta hoy ha sido difícil llevar a cabo la detección electroquímica directa de bacterias y proteínas sin ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL‐TIME POTENTIOMETRIC BIOSENSORS BASED ON SINGLE‐WALLED CARBON NANOTUBES AND APTAMERS utilizar marcadores químicos, dado que las interacciones receptor‐bacteria y receptor‐proteína no producen una señal eléctrica medible. En esta tesis, se demuestra por primera vez la detección potenciométrica en tiempo real de bacterias y proteínas relacionadas con varias enfermedades. Esta tarea fue llevada a cabo mediante el diseño de una plataforma universal de detección utilizando nanotubos de carbono como transductores potenciométricos y aptámeros como elementos de reconocimiento molecular. Las excelentes propiedades transductoras de los nanotubos de carbono combinadas con la casi ilimitada posibilidad de los aptámeros de ser diseñados in vitro para reconocer iones, proteínas, virus y bacterias convierte esta plataforma en una herramienta con posibilidades inagotables de detección biológica en tiempo real.
Numerous biosensing platforms have incorporated nanostructured materials as a strategy for improving several performance and operational parameters such as reducing the limits of detection or the assay times in both pathogen and protein detection. Electrochemical sensing techniques are preferred over other detection methods because they present a series of advantages such as rapid response, ease of use, low‐cost and small sized commercial detectors. Among the electrochemical techniques, the simplest, most widespread and fieldportable methodologies are based on potentiometry. The new wave of potentiometric solidstate electrodes represents an attractive tool for real‐time bioanalysis in liquid samples. However, to date, it has been difficult to carry out the specific and direct electrochemical detection of whole living bacterial cells or disease‐related proteins without chemical labelling because the interaction receptor‐bacteria/receptor‐protein does not provide a measurable electrochemical signal. In this Thesis, the real‐time potentiometric detection of bacteria and disease‐related proteins is demonstrated for the first time. To accomplish such a challenging task, a novel and universal biosensing platform is designed using single‐walled carbon nanotubes as potentiometric transducers, and aptamers as biorecognition elements. The excellent potentiometric transduction properties of carbon nanotubes combined with the quasi‐unlimited capability of aptamers (RNA and DNA synthetic oligonucleotide segments) to be tailored in vitro against ions, proteins, viruses and bacteria converts such a platform into a
Teerapanich, Pattamon. "Fluorescence-based nanofluidic biosensor platform for real-time measurement of protein binding kinetics." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30239/document.
Full textKinetic monitoring of protein-protein interactions offers fundamental insights of their cellular functions and is a vital key for the improvement of diagnostic tests as well as the discovery of novel therapeutic drugs. Surface plasmon resonance (SPR) is an established biosensor technology routinely used for kinetic studies of biomolecular interactions. While SPR offers the benefits of real-time and label-free detection, it requires expensive and sophisticated optical apparatus and highly trained personnel, thus limiting the accessibility of standard laboratories. In this PhD project, we have developed an alternative and cost-effective biosensor platform exploiting biofunctionalized nanofluidic slits, or nanoslits, combined with a bench-top fluorescence microscope. Our approach enables the visualization of protein interactions in real-time with the possibility to determine associated kinetic parameters along with optimized response times and enhanced binding efficiency. We have demonstrated the effectiveness of our devices through kinetic studies of two representative protein-receptor pairs with different binding affinities: streptavidin-biotin and mouse IgG/anti-mouse IgG interactions. Good agreement of extracted kinetic parameters between our device, SPR measurements and literature values indicated that this approach could be readily applicable to study kinetics of protein interactions with sensitivity down to 1 pM on a large scale of dissociation constants. In addition, we have incorporated a microfluidic gradient generator to our validated nanoslit device, which has allowed one-shot parallel kinetic measurements to be realized in a single-experiment. This integrated system provides advantages of diminished material consumption and analysis time over the conventional kinetic assays. We believe that this innovative technology will drive future advancements not only in the discipline of biomedical and personalized medicine, but also in basic chemical/biological research
Brawner, Keith. "Modeling Learner Mood in Realtime through Biosensors for Intelligent Tutoring Improvements." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5774.
Full textPh.D.
Doctorate
Electrical Engineering and Computing
Engineering and Computer Science
Computer Engineering
Shah, Niksha Chimanlal Meghji. "Construction and development of bioluminescent Pseudomonas aeruginosa strains : application in biosensors for preservative efficacy testing." Thesis, University of Hertfordshire, 2014. http://hdl.handle.net/2299/15592.
Full textBooks on the topic "Real-time biosensors"
Elsom, Jacqueline. Development of a quartz crystal based biosensor for real-time monitoring of particulate cell interactions. 2004.
Find full textBook chapters on the topic "Real-time biosensors"
Haring, Alexander P., Ellen Cesewski, and Blake N. Johnson. "Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA." In Biosensors and Biodetection, 247–62. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6911-1_17.
Full textBinkowski, Brock F., Frank Fan, and Keith V. Wood. "Luminescent Biosensors for Real-Time Monitoring of Intracellular cAMP." In Methods in Molecular Biology, 263–71. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-160-4_14.
Full textPalecek, Sean P. "High-Throughput Screening, Microfluidics, Biosensors, and Real-Time Phenotyping." In Stem Cell Engineering, 45–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05074-4_3.
Full textZheng, Gengfeng, and Charles M. Lieber. "Nanowire Biosensors for Label-Free, Real-Time, Ultrasensitive Protein Detection." In Methods in Molecular Biology, 223–37. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-319-6_18.
Full textDivyasorubini, Seerpatham, Shyami Menaka Kandage, Senal Liyanage, Charitha Rajapakse, and Gayathri N. Silva. "Microbial Biosensors for Real-Time Monitoring of the Bioremediation Processes." In Bioremediation of Environmental Pollutants, 111–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86169-8_5.
Full textvan Wuijckhuijse, Arjan L., and Ben L. M. van Baar. "Recent Advances in Real-time Mass Spectrometry Detection of Bacteria." In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, 929–54. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-75113-9_36.
Full textLiu, Xiaobo, Eduard Dumitrescu, and Silvana Andreescu. "Electrochemical Biosensors for Real-Time Monitoring of Reactive Oxygen and Nitrogen Species." In ACS Symposium Series, 301–27. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1200.ch013.
Full textGesellchen, Frank, Alessandra Stangherlin, Nicoletta Surdo, Anna Terrin, Anna Zoccarato, and Manuela Zaccolo. "Measuring Spatiotemporal Dynamics of Cyclic AMP Signaling in Real-Time Using FRET-Based Biosensors." In Methods in Molecular Biology, 297–316. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-126-0_16.
Full textRossi, Michele, and Marco Tartagni. "Portable, Integrated Lock-in-Amplifier-Based System for Real-Time Impedimetric Measurements on Nanowires Biosensors." In Beyond-CMOS Nanodevices 1, 73–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.ch5.
Full textNelson, Carl P., and R. A. John Challiss. "The Use of Translocating Fluorescent Biosensors for Real-Time Monitoring of GPCR-Mediated Signaling Events." In Methods in Molecular Biology, 329–43. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-126-0_18.
Full textConference papers on the topic "Real-time biosensors"
Vikalo, H., and A. Hassibi. "Estimation in real-time affinity-based biosensors." In 2008 42nd Asilomar Conference on Signals, Systems and Computers. IEEE, 2008. http://dx.doi.org/10.1109/acssc.2008.5074763.
Full textChai, Peter R., Rochelle K. Rosen, and Edward W. Boyer. "Ingestible Biosensors for Real-Time Medical Adherence Monitoring: MyTMed." In 2016 49th Hawaii International Conference on System Sciences (HICSS). IEEE, 2016. http://dx.doi.org/10.1109/hicss.2016.426.
Full textLue, Jiann-Hwa, Ting-Jou Ding, Tsung-Hsun Yang, Jenq-Yang Chang, and Wen-Yih Chen. "Real-time monitoring on peptide synthesis by GMR biosensors." In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011. http://dx.doi.org/10.1109/bmei.2011.6098754.
Full textKrishnamurthy, Vikram, Kai Yiu Luk, Bruce Cornell, and Don Martin. "Real-Time Molecular Detectors using Gramicidin Ion Channel Nano-Biosensors." In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.366701.
Full textShamaiah, Manohar, Xiaohu Shen, and Haris Vikalo. "On parameter estimation for diffusion processes in real-time biosensors." In 2010 44th Asilomar Conference on Signals, Systems and Computers. IEEE, 2010. http://dx.doi.org/10.1109/acssc.2010.5757571.
Full textde Silva, Buddhika, Anirudh Natarajan, Mehul Motani, and Kee-Chaing Chua. "A real-time exercise feedback utility with body sensor networks." In 2008 5th International Summer School and Symposium on Medical Devices and Biosensors. IEEE, 2008. http://dx.doi.org/10.1109/issmdbs.2008.4575013.
Full textDe, A., J. van Nieuwkasteele, E. T. Carlen, and A. van den Berg. "Real-time measurements of PNA:DNA hybridization kinetics with silicon nanowire biosensors." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627386.
Full textChang, An-Cheng, and Mary B. Tabacco. "Real-time detection of bacterial aerosols by fiber optic-based biosensors." In Environmental and Industrial Sensing, edited by Yud-Ren Chen and Shu-I. Tu. SPIE, 2001. http://dx.doi.org/10.1117/12.418738.
Full textGarcía-Rupérez, J., J. G. Castelló, V. Toccafondo, and P. Pérez-Millán. "Real-time and low-cost biosensors based on photonic bandgap structures." In SPIE Photonics Europe. SPIE, 2012. http://dx.doi.org/10.1117/12.921934.
Full textSoh, Hyongsok T. "Real-time biosensors for continuous measurements of specific biomolecules in vivo." In Integrated Sensors for Biological and Neural Sensing, edited by Hooman Mohseni. SPIE, 2021. http://dx.doi.org/10.1117/12.2580234.
Full textReports on the topic "Real-time biosensors"
Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz, and Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Full text