Journal articles on the topic 'Reactive ion etching'

To see the other types of publications on this topic, follow the link: Reactive ion etching.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reactive ion etching.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Oehrlein, Gottlieb S. "Reactive‐Ion Etching." Physics Today 39, no. 10 (October 1986): 26–33. http://dx.doi.org/10.1063/1.881066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmid, H. "Microwave etching device for reactive ion etching." Materials Science and Engineering: A 139 (July 1991): 408–16. http://dx.doi.org/10.1016/0921-5093(91)90650-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SHAO, TIAN-QI, TIAN-LING REN, LI-TIAN LIU, JUN ZHU, and ZHI-JIAN LI. "Reactive Ion Etching and Ion Beam Etching for Ferroelectric Memories." Integrated Ferroelectrics 61, no. 1 (August 2004): 213–20. http://dx.doi.org/10.1080/10584580490459288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lim, Nomin, Yeon Sik Choi, Alexander Efremov, and Kwang-Ho Kwon. "Dry Etching Performance and Gas-Phase Parameters of C6F12O + Ar Plasma in Comparison with CF4 + Ar." Materials 14, no. 7 (March 24, 2021): 1595. http://dx.doi.org/10.3390/ma14071595.

Full text
Abstract:
This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.
APA, Harvard, Vancouver, ISO, and other styles
5

Sandhu, G. S., and W. K. Chu. "Reactive ion etching of diamond." Applied Physics Letters 55, no. 5 (July 31, 1989): 437–38. http://dx.doi.org/10.1063/1.101890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verdonck, P., G. Brasseur, and J. Swart. "Reactive ion etching and plasma etching of tungsten." Microelectronic Engineering 21, no. 1-4 (April 1993): 329–32. http://dx.doi.org/10.1016/0167-9317(93)90084-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chinn, J. D. "Ion beam enhanced magnetron reactive ion etching." Applied Physics Letters 51, no. 24 (December 14, 1987): 2007–9. http://dx.doi.org/10.1063/1.98275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matocha, Kevin, Chris S. Cowen, Richard Beaupre, and Jesse B. Tucker. "Effect of Reactive-Ion Etching on Thermal Oxide Properties on 4H-SiC." Materials Science Forum 527-529 (October 2006): 983–86. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.983.

Full text
Abstract:
4H-SiC MOS capacitors were used to characterize the effect of reactive-ion etching of the SiC surface on the electrical properties of N2O-grown thermal oxides. The oxide breakdown field reduces from 9.5 MV/cm with wet etching to saturate at 9.0 MV/cm with 30% reactive-ion over-etching. Additionally, the conduction-band offset barrier height, φB, progressively decreases from 2.51 eV with wet etching to 2.46 eV with 45% reactive-ion over-etching.
APA, Harvard, Vancouver, ISO, and other styles
9

Jeng, S. J., and G. S. Oehrlein. "Silicon near-surface damage induced by reactive ion etching." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 244–45. http://dx.doi.org/10.1017/s0424820100126123.

Full text
Abstract:
Reactive ion etching (RIE) is an anisotropic etching process which has been used to etch silicon oxide, silicon nitride and polysilicon films. Due to the nonuniformities of etch rate and film thickness, overetching is often required to ensure the complete removal of these films. Previous X-ray photoemission spectroscopy (XPS), He ion channeling, nuclear reaction profiling, Raman scattering and ellipsometry studies have indicated the presence of a fluorocarbon film (30-40 Å) on Si, a heavily disordered layer (∼30 Å) and the etching gas related impurity implantation region (∼250 Å) underneath the Si surface caused by CF4/x% H2 (0≤x≤40) reactive ion etching. In the present investigation, high resolution electron microscopy (HREM) is used to study the structures and distribution of lattice defects in the heavily disordered region. Particular attention is paid to the effects of overetch time and hydrogen addition to CF4 etching gas on Si near-surface damage structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, Ron. "Ion-Beam Milling Materials with Applications to TEM Specimen Preparation." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 266–67. http://dx.doi.org/10.1017/s0424820100163794.

Full text
Abstract:
For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.
APA, Harvard, Vancouver, ISO, and other styles
11

PEARTON, S. J. "REACTIVE ION ETCHING OF III–V SEMICONDUCTORS." International Journal of Modern Physics B 08, no. 14 (June 30, 1994): 1781–876. http://dx.doi.org/10.1142/s0217979294000762.

Full text
Abstract:
Anisotropic dry etching by a number of different techniques is widely employed in III–V compound semiconductor technology for pattern transfer, device isolation, mesa formation, grating fabrication and via hole etching. In this paper we review the different dry etching techniques, the plasma chemistries employed for III–V materials and electrical and optical changes to the near-surface of the etched sample. We give examples of the use of dry etching in fabrication of heterojunction bipolar transistors, field effect transistors and various types of semiconductor lasers. Particular attention is paid to the characteristics of Electron Cyclotron Resonance discharges operating at high ion densities (≥5×1011 cm −3) and low pressure (~1 mTorr) with low ion energies (≤15 eV ) which are ideally suited for dry etching of III–V semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
12

Kusumi, Yoshihiro, Nobuo Fujiwara, Junko Matsumoto, and Masahiro Yoneda. "Effect ofN2Addition on Aluminum Alloy Etching by Electron Cyclotron Resonance Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching." Japanese Journal of Applied Physics 34, Part 1, No. 4B (April 30, 1995): 2147–51. http://dx.doi.org/10.1143/jjap.34.2147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gu, Tieer. "Damage to Si substrates during SiO2 etching: A comparison of reactive ion etching and magnetron-enhanced reactive ion etching." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 2 (March 1994): 567. http://dx.doi.org/10.1116/1.587391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Popova, K. "Reactive ion etching of ion-plated carbon films." Vacuum 48, no. 7-9 (September 1997): 681–84. http://dx.doi.org/10.1016/s0042-207x(97)00068-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dems, B. C., F. Rodriguez, C. M. Solbrig, Y. M. N. Namaste, and S. K. Obendorf. "Reactive Ion Etching of Polymer Films." International Polymer Processing 4, no. 3 (September 1989): 183–87. http://dx.doi.org/10.3139/217.890183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kondo, Shingo, Hiroki Kondo, Yudai Miyawaki, Hajime Sasaki, Hiroyuki Kano, Mineo Hiramatsu, and Masaru Hori. "Reactive Ion Etching of Carbon Nanowalls." Japanese Journal of Applied Physics 50, no. 7R (July 1, 2011): 075101. http://dx.doi.org/10.7567/jjap.50.075101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nagy, A. G. "Sidewall Tapering in Reactive Ion Etching." Journal of The Electrochemical Society 132, no. 3 (March 1, 1985): 689–93. http://dx.doi.org/10.1149/1.2113932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schaible, P. M., and G. C. Schwartz. "Selective Reactive Ion Etching of TiW." Journal of The Electrochemical Society 132, no. 3 (March 1, 1985): 730–31. http://dx.doi.org/10.1149/1.2113941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Blumenstock, K. "Anisotropic reactive ion etching of titanium." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, no. 4 (July 1989): 627. http://dx.doi.org/10.1116/1.584806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hedlund, C., H. ‐O Blom, and S. Berg. "Microloading effect in reactive ion etching." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, no. 4 (July 1994): 1962–65. http://dx.doi.org/10.1116/1.578990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kondo, Shingo, Hiroki Kondo, Yudai Miyawaki, Hajime Sasaki, Hiroyuki Kano, Mineo Hiramatsu, and Masaru Hori. "Reactive Ion Etching of Carbon Nanowalls." Japanese Journal of Applied Physics 50, no. 7 (July 20, 2011): 075101. http://dx.doi.org/10.1143/jjap.50.075101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Congchun, Chunsheng Yang, and Duifu Ding. "Deep reactive ion etching of PMMA." Applied Surface Science 227, no. 1-4 (April 2004): 139–43. http://dx.doi.org/10.1016/j.apsusc.2003.11.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dominguez, C., J. Muñoz, R. Gonzalez, and M. Tudanca. "CHF3-reactive ion etching for waveguides." Sensors and Actuators A: Physical 37-38 (June 1993): 779–83. http://dx.doi.org/10.1016/0924-4247(93)80131-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Avtiushkov, A. P., V. A. Labunov, and A. F. Stekolnikov. "Reactive ion etching of gallium arsenide." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 39, no. 1-4 (March 1989): 496–99. http://dx.doi.org/10.1016/0168-583x(89)90834-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Powell, Heather M., and John J. Lannutti. "Nanofibrillar Surfaces via Reactive Ion Etching." Langmuir 19, no. 21 (October 2003): 9071–78. http://dx.doi.org/10.1021/la0349368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Banks, P. M. "Plasma temperatures during reactive ion etching." Microelectronic Engineering 11, no. 1-4 (April 1990): 603–6. http://dx.doi.org/10.1016/0167-9317(90)90180-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

M.S. Mikhailenko, A.E. Pestov, A.K. Chernyshev, A.A. Perekalov, M.V. Zorina, and N.I. Chkhalo. "Prospects for the use of reactive ion-beam etching of fused quartz with a mixture of tetrafluoromethane and argon for aspherizing the surface of optical elements." Technical Physics 92, no. 8 (2022): 1062. http://dx.doi.org/10.21883/tp.2022.08.54574.111-22.

Full text
Abstract:
The paper proposes to use the discharge energy for the synthesis of chemically active particles in order to correct the shape and aspherize the surface of optical elements by reactive ion-beam etching. A stand was assembled on the basis of a radio frequency source of accelerated ions KLAN-105M, the design of which allows working with reactive gases. The possibility of increasing the etching rate of fused quartz by more than 5 times compared to ion etching with inert gases by creating a mixture of tetrafluoromethane (CF4) and argon (Ar) in a ratio of 1:1 is shown, while maintaining the initially smooth surface roughness ((sigmaeff~0.3 nm) in the range of spatial frequencies ν[5.0·10-2-6.4·101 μm-1]. Keywords: ion etching, reactive ion etching, roughness, surface, X-ray optics.
APA, Harvard, Vancouver, ISO, and other styles
28

Ильинская, Н. Д., Н. М. Лебедева, Ю. М. Задиранов, П. А. Иванов, Т. П. Самсонова, О. И. Коньков, and А. С. Потапов. "Микропрофилирование 4H-SiC сухим травлением в технологии формирования структуры полевого транзистора с затвором Шоттки." Физика и техника полупроводников 54, no. 1 (2020): 97. http://dx.doi.org/10.21883/ftp.2020.01.48783.9223.

Full text
Abstract:
Abstract Methods of micro-profiling of 4 H -SiC are described: formation of mesa structures with inclined walls (off-vertical wall inclination angle exceeding 45°) by reactive ion etching; etching of mesa structures with a flat bottom and inclined walls (off-vertical wall inclination angle being smaller than 45°) by ion-beam and reactive ion plasma etching. The application of etching methods in the fabrication technology of 4 H -SiC-based mesa-epitaxial field-effect transistors with a Schottky gate is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
29

Sato, Masaaki. "Dopant-dependent Ion Assisted Etching Kinetics in Highly Doped Polysilicon Reactive Ion Etching." Japanese Journal of Applied Physics 37, Part 1, No. 9A (September 15, 1998): 5039–46. http://dx.doi.org/10.1143/jjap.37.5039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Davis, Robert J. "Steady-state damage profiles due to reactive ion etching and ion-assisted etching." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 2 (March 1995): 242. http://dx.doi.org/10.1116/1.588358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hirano, Makoto, and Kazuyoshi Asai. "GaAs Taper Etching by Mixture Gas Reactive Ion Etching System." Japanese Journal of Applied Physics 30, Part 2, No. 12B (December 15, 1991): L2136—L2138. http://dx.doi.org/10.1143/jjap.30.l2136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sato, Tetsuo, Nobuo Fujiwara, and Masahiro Yoneda. "Mechanism of Reactive Ion Etching Lag for Aluminum Alloy Etching." Japanese Journal of Applied Physics 34, Part 1, No. 4B (April 30, 1995): 2142–46. http://dx.doi.org/10.1143/jjap.34.2142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Grigoras, Kestutis, and Sami Franssila. "“Etching under the corner” - inclined macropores by reactive ion etching." physica status solidi (a) 206, no. 6 (June 2009): 1245–49. http://dx.doi.org/10.1002/pssa.200881066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lussier, P., M. Bélanger, M. Meunier, and J. F. Currie. "CF4–Ar reactive ion etching of gallium arsenide." Canadian Journal of Physics 67, no. 4 (April 1, 1989): 259–61. http://dx.doi.org/10.1139/p89-045.

Full text
Abstract:
A systematic study of the etch rate of GaAs and of positive photoresist for different mixtures of argon and carbon tetrafluoride was conducted over radio frequency powers (from 0.06 W/cm2 to 0.55 W/cm2), pressures (from 6 to 35 mTorr (1 Torr = 133.3 Pa)), and concentrations of CF4 in Ar (0–60% with a constant mass flow of 10 sccm). Capacitance–voltage and I–V measurements on GaAs diodes made after reactive ion etching were carried out to estimate possible etching damage through thin dielectric film and surface state creation. Etch rates up to 200 Å/min were obtained on GaAs with low damage in a 40% CF4, 20 mTorr, and 0.55 W/cm2 plasma while the etch rate of the patterning photoresist was 600 Å/min. These results are in good agreement with those reported in literature. The ideality factors and Schottky barrier heights of reactive ion etching of GaAs are comparable to those obtained by sulphuric and peroxide acid etching. However, reactive ion etched samples seem to suffer from higher surface state densities as measured by C–V techniques.
APA, Harvard, Vancouver, ISO, and other styles
35

Steinbruchel, C. "Ion–surface interactions: from sputtering to reactive ion etching." Materials Science and Technology 8, no. 7 (July 1992): 565–73. http://dx.doi.org/10.1179/mst.1992.8.7.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Peng, Dong Sheng, Zhi Gang Chen, and Cong Cong Tan. "Study of Silicon Substrate Microspheres Reactive Ion Etching Technique." Advanced Materials Research 542-543 (June 2012): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.945.

Full text
Abstract:
The paper studies the microspheres etching technique, the silicon pillar arrays are fabricated using polystyrene particles as etching mask by Reactive Ion Etching. Obtained the substrate can be Lateral epitaxial. The influence of different parameters in etch process are investigated on silicon pillar arrays in detail. A large-area Si pillar can be obtained on Si substrate by controlling the suitable etch parameters. The approach reported here offers a possibility to product large-area pillar.
APA, Harvard, Vancouver, ISO, and other styles
37

AKINAGA, Hiro, Fumiyoshi TAKANO, Shigeno MATSUMOTO, and Wilson A. T. DIÑO. "Reactive Ion Etching of Transition-Metal Alloys." SHINKU 49, no. 12 (2006): 716–21. http://dx.doi.org/10.3131/jvsj.49.716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shaqfeh, Eric S. G., and Charles W. Jurgensen. "Simulation of reactive ion etching pattern transfer." Journal of Applied Physics 66, no. 10 (November 15, 1989): 4664–75. http://dx.doi.org/10.1063/1.343823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lin, M. E., Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoç. "Reactive ion etching of GaN using BCl3." Applied Physics Letters 64, no. 7 (February 14, 1994): 887–88. http://dx.doi.org/10.1063/1.110985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Singh, B., J. H. Thomas III, and V. Patel. "Magnetic multipole‐based reactive ion etching reactor." Applied Physics Letters 60, no. 19 (May 11, 1992): 2335–37. http://dx.doi.org/10.1063/1.107018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tacito, Robert D., and Christoph Steinbrüchel. "Patterning of Benzocyclobutene by Reactive Ion Etching." Journal of The Electrochemical Society 143, no. 8 (August 1, 1996): 2695–97. http://dx.doi.org/10.1149/1.1837074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Walter, Lee. "Photoresist Damage in Reactive Ion Etching Processes." Journal of The Electrochemical Society 144, no. 6 (June 1, 1997): 2150–54. http://dx.doi.org/10.1149/1.1837755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhao, Qiang, and Paul A. Kohl. "Reactive Ion Etching of Silicon Containing Polynorbornenes." Journal of The Electrochemical Society 145, no. 4 (April 1, 1998): 1257–62. http://dx.doi.org/10.1149/1.1838448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Choi, Dae-Geun, Hyung Kyun Yu, Se Gyu Jang, and Seung-Man Yang. "Colloidal Lithographic Nanopatterning via Reactive Ion Etching." Journal of the American Chemical Society 126, no. 22 (June 2004): 7019–25. http://dx.doi.org/10.1021/ja0319083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chinoy, P. B. "Reactive ion etching of benzocyclobutene polymer films." IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, no. 3 (July 1997): 199–206. http://dx.doi.org/10.1109/3476.649441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Watanabe, F. "Oxygen reactive ion etching of organosilicon polymers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4, no. 1 (January 1986): 422. http://dx.doi.org/10.1116/1.583347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pearton, S. J., R. J. Shul, G. F. Mclane, and C. Constantine. "Reactive ion etching of III–V nitrides." Solid-State Electronics 41, no. 2 (February 1997): 159–63. http://dx.doi.org/10.1016/s0038-1101(96)00158-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Woo, Bryan W. K., Shannon C. Gott, Ryan A. Peck, Dong Yan, Mathias W. Rommelfanger, and Masaru P. Rao. "Ultrahigh Resolution Titanium Deep Reactive Ion Etching." ACS Applied Materials & Interfaces 9, no. 23 (June 2017): 20161–68. http://dx.doi.org/10.1021/acsami.6b16518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Coburn, J. W. "Role of ions in reactive ion etching." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, no. 4 (July 1994): 1417–24. http://dx.doi.org/10.1116/1.579330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Congxin, Ren, Yang Jie, Zheng Yanfang, Chen Lizhi, Chen Guoliang, and Tsou Shichang. "Reactive ion beam etching characteristics of LiNbO3." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 19-20 (January 1987): 1018–21. http://dx.doi.org/10.1016/s0168-583x(87)80202-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography