To see the other types of publications on this topic, follow the link: Reaction-diffusion processes.

Journal articles on the topic 'Reaction-diffusion processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reaction-diffusion processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Mufa. "Reaction-diffusion processes." Chinese Science Bulletin 43, no. 17 (September 1998): 1409–20. http://dx.doi.org/10.1007/bf02884118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mufa, Chen. "Infinite dimensional reaction-diffusion processes." Acta Mathematica Sinica 1, no. 3 (September 1985): 261–73. http://dx.doi.org/10.1007/bf02564823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Jifeng, Hye-Won Kang, and Hans G. Othmer. "Stochastic Analysis of Reaction–Diffusion Processes." Bulletin of Mathematical Biology 76, no. 4 (May 30, 2013): 854–94. http://dx.doi.org/10.1007/s11538-013-9849-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gorecki, J., K. Gizynski, J. Guzowski, J. N. Gorecka, P. Garstecki, G. Gruenert, and P. Dittrich. "Chemical computing with reaction–diffusion processes." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2046 (July 28, 2015): 20140219. http://dx.doi.org/10.1098/rsta.2014.0219.

Full text
Abstract:
Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction–diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov–Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Richardson, M. J. E., and Y. Kafri. "Boundary effects in reaction-diffusion processes." Physical Review E 59, no. 5 (May 1, 1999): R4725—R4728. http://dx.doi.org/10.1103/physreve.59.r4725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alimohammadi, M., and N. Ahmadi. "Class of integrable diffusion-reaction processes." Physical Review E 62, no. 2 (August 1, 2000): 1674–82. http://dx.doi.org/10.1103/physreve.62.1674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurganov, Alexander, and Philip Rosenau. "On reaction processes with saturating diffusion." Nonlinearity 19, no. 1 (November 8, 2005): 171–93. http://dx.doi.org/10.1088/0951-7715/19/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alimohammadi, Masoud. "Solvable reaction-diffusion processes without exclusion." Journal of Mathematical Physics 47, no. 2 (February 2006): 023304. http://dx.doi.org/10.1063/1.2168398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alimohammadi, M., and N. Ahmadi. "p-species integrable reaction–diffusion processes." Journal of Physics A: Mathematical and General 35, no. 6 (February 4, 2002): 1325–37. http://dx.doi.org/10.1088/0305-4470/35/6/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Mu Fa. "Ergodic theorems for reaction-diffusion processes." Journal of Statistical Physics 58, no. 5-6 (March 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ding, Wan-Ding, Richard Durrett, and Thomas M. Liggett. "Ergodicity of reversible reaction diffusion processes." Probability Theory and Related Fields 85, no. 1 (March 1990): 13–26. http://dx.doi.org/10.1007/bf01377624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ru-Sheng, Li. "Local Equilibrium Assumption and Reaction-diffusion Processes." Acta Physico-Chimica Sinica 10, no. 01 (1994): 38–43. http://dx.doi.org/10.3866/pku.whxb19940110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rosenau, Philip. "On reaction processes with a logarithmic-diffusion." Physics Letters A 381, no. 2 (January 2017): 94–101. http://dx.doi.org/10.1016/j.physleta.2016.10.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

H. Chang, K., K. G. Park, K. D. Ahan, Soo Yong Kim, Deock-Ho Ha, and Kyungsik Kim. "Reaction-Diffusion Processes on Scale-Free Networks." Journal of the Physical Society of Japan 76, no. 3 (March 15, 2007): 035001. http://dx.doi.org/10.1143/jpsj.76.035001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zanette, Damián H. "Multistate cellular automaton for reaction-diffusion processes." Physical Review A 46, no. 12 (December 1, 1992): 7573–77. http://dx.doi.org/10.1103/physreva.46.7573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gajewski, H., and K. Gröger. "Reaction—Diffusion Processes of Electrically Charged Species." Mathematische Nachrichten 177, no. 1 (1996): 109–30. http://dx.doi.org/10.1002/mana.19961770108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stundzia, Audrius B., and Charles J. Lumsden. "Stochastic Simulation of Coupled Reaction–Diffusion Processes." Journal of Computational Physics 127, no. 1 (August 1996): 196–207. http://dx.doi.org/10.1006/jcph.1996.0168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dubljevic, Stevan, Panagiotis D. Christofides, and Ioannis G. Kevrekidis. "Distributed nonlinear control of diffusion–reaction processes." International Journal of Robust and Nonlinear Control 14, no. 2 (December 12, 2003): 133–56. http://dx.doi.org/10.1002/rnc.867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dubljevic, Stevan. "Model predictive control of diffusion-reaction processes." Chemical Industry and Chemical Engineering Quarterly 11, no. 1 (2005): 10–18. http://dx.doi.org/10.2298/ciceq0501010d.

Full text
Abstract:
Parabolic partial differential equations naturally arise as an adequate representation of a large class of spatially distributed systems, such as diffusion-reaction processes, where the interplay between diffusive and reaction forces introduces complexity in the characterization of the system, for the purpose of process parameter identification and subsequent control. In this work we introduce a model predictive control (MPC) framework for the control of input and state constrained parabolic partial differential equation (PDEs) systems. Model predictive control (MPC) is one of the most popular control formulations among chemical engineers, manly due to its ability to account for the actuator (input) constraints that inevitably exist due to finite actuator power and its ability to handle state constraints within an optimal control setting. In controller synthesis, the initially parabolic partial differential equation of the diffusion reaction type is transformed by the Galerkin method into a system of ordinary differential equations (ODEs) that capture the dominant dynamics of the PDE system. Systems obtained in such a way (ODEs) are used as the basis for the synthesis of the MPC controller that explicitly accounts for the input and state constraints. Namely, the modified MPC formulation includes a penalty term that is directly added to the objective function and through the appropriate structure of the controller state constraints accounts for the infinite dimensional nature of the state of the PDE system. The MPC controller design method is successively applied to control of the diffusion-reaction process described by linear parabolic PDE, by demonstrating stabilization of the non-dimensional temperature profile around a spatially uniform unstable steady-state under satisfaction of the input (actuator) constraints and allowable non-dimensional temperature (state) constraints.
APA, Harvard, Vancouver, ISO, and other styles
20

Le Roux, Marie-Noëlle. "Numerical Solution of Nonlinear Reaction Diffusion Processes." SIAM Journal on Numerical Analysis 37, no. 5 (January 2000): 1644–56. http://dx.doi.org/10.1137/s0036142998335996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bayati, Basil, Philippe Chatelain, and Petros Koumoutsakos. "Multiresolution stochastic simulations of reaction–diffusion processes." Physical Chemistry Chemical Physics 10, no. 39 (2008): 5963. http://dx.doi.org/10.1039/b810795e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Grynberg, Marcelo D., and Robin B. Stinchcombe. "Autocorrelation Functions of Driven Reaction-Diffusion Processes." Physical Review Letters 76, no. 5 (January 29, 1996): 851–54. http://dx.doi.org/10.1103/physrevlett.76.851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

H. Chang, K., Kyungsik Kim, M. K. Yum, J. S. Choi, and T. Odagaki. "Reaction–Diffusion Processes on Small-World Networks." Journal of the Physical Society of Japan 74, no. 10 (October 2005): 2860–61. http://dx.doi.org/10.1143/jpsj.74.2860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Canet, L., and H. J. Hilhorst. "Single-Site Approximation for Reaction-Diffusion Processes." Journal of Statistical Physics 125, no. 3 (October 5, 2006): 517–31. http://dx.doi.org/10.1007/s10955-006-9206-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schütz, Gunter M. "Reaction-diffusion processes of hard-core particles." Journal of Statistical Physics 79, no. 1-2 (April 1995): 243–64. http://dx.doi.org/10.1007/bf02179389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Christofides, Panagiotis D., and Prodromos Daoutidis. "Nonlinear control of diffusion-convection-reaction processes." Computers & Chemical Engineering 20 (January 1996): S1071—S1076. http://dx.doi.org/10.1016/0098-1354(96)00186-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Marin, D., L. M. S. Guilherme, M. K. Lenzi, L. R. da Silva, E. K. Lenzi, and T. Sandev. "Diffusion—Reaction processes on a backbone structure." Communications in Nonlinear Science and Numerical Simulation 85 (June 2020): 105218. http://dx.doi.org/10.1016/j.cnsns.2020.105218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wilhelmsson, H., and B. Etlicher. "Effects of stimulated diffusion for simultaneous reaction and diffusion processes." Physica Scripta 39, no. 5 (May 1, 1989): 610–12. http://dx.doi.org/10.1088/0031-8949/39/5/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Safaryan, R. G. "BRANCHING DIFFUSION PROCESSES AND SYSTEMS OF REACTION-DIFFUSION DIFFERENTIAL EQUATIONS." Mathematics of the USSR-Sbornik 62, no. 2 (February 28, 1989): 525–39. http://dx.doi.org/10.1070/sm1989v062n02abeh003252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

DEMONGEOT, JACQUES, JEAN GAUDART, ATHANASIOS LONTOS, JULIE MINTSA, EMMANUEL PROMAYON, and MUSTAPHA RACHDI. "ZERO-DIFFUSION DOMAINS IN REACTION–DIFFUSION MORPHOGENETIC AND EPIDEMIOLOGIC PROCESSES." International Journal of Bifurcation and Chaos 22, no. 02 (February 2012): 1250028. http://dx.doi.org/10.1142/s0218127412500289.

Full text
Abstract:
Classical models of morphogenesis by Murray and Meinhardt and of epidemics by Ross and McKendrick can be revisited in order to consider the colocalizations favoring interaction between morphogens and cells or between pathogens and hosts. The classical epidemic models suppose, for example, that the populations in interaction have a constant size and are spatially fixed during the epidemic waves, but the presently observed pandemics show that the long duration of their spread during months or years imposes to take into account the pathogens, hosts and vectors migration in epidemics, as well as the morphogens and cells diffusion in morphogenesis. That leads naturally to study the occurrence of complex spatio-temporal behaviors in dynamics of population sizes and also to consider preferential zones of interaction, i.e. the zero-diffusion sets, for respectively building anatomic frontiers and confining contagion domains. Three examples of application will be presented, the first proposing a model of Black Death spread in Europe (1348–1350), and the last ones related to two morphogenetic processes, feather morphogenesis in chicken and gastrulation in Drosophila.
APA, Harvard, Vancouver, ISO, and other styles
31

Sinder, M., V. Sokolovsky, and J. Pelleg. "Reaction rate in reversible A↔B reaction-diffusion processes." Applied Physics Letters 96, no. 7 (February 15, 2010): 071905. http://dx.doi.org/10.1063/1.3319840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mufa, Chen, Ding Wanding, and Zhu Dongjin. "Ergodicity of reversible reaction diffusion processes with general reaction rates." Acta Mathematica Sinica 10, no. 1 (March 1994): 99–112. http://dx.doi.org/10.1007/bf02561553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pojman, John A., Alejandro L. Garcia, Dilip K. Kondepudi, and Christian Van den Broeck. "Nonequilibrium processes in polymers undergoing interchange reactions. 2. Reaction-diffusion processes." Journal of Physical Chemistry 95, no. 14 (July 1991): 5655–60. http://dx.doi.org/10.1021/j100167a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

O' Riordan, Eugene, Maria L. Pickett, and Georgii I. Shishkin. "Singularly Perturbed Problems Modeling Reaction-convection-diffusion Processes." Computational Methods in Applied Mathematics 3, no. 3 (2003): 424–42. http://dx.doi.org/10.2478/cmam-2003-0028.

Full text
Abstract:
AbstractIn this paper, parameter - uniform numerical methods for singularly perturbed ordinary differential equations containing two small parameters are studied.Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. A numerical algorithm based on an upwind finite difference operator and an appropriate piecewise uniform mesh is constructed. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are given to illustrate the parameter-uniform convergence of numerical approximations.
APA, Harvard, Vancouver, ISO, and other styles
35

K. Maini, Philip, Luisa Malaguti, Cristina Marcelli, and Serena Matucci. "Diffusion-aggregation processes with mono-stable reaction terms." Discrete & Continuous Dynamical Systems - B 6, no. 5 (2006): 1175–89. http://dx.doi.org/10.3934/dcdsb.2006.6.1175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wilhelmsson, Hans. "Simultaneous diffusion and reaction processes in plasma dynamics." Physical Review A 38, no. 3 (August 1, 1988): 1482–89. http://dx.doi.org/10.1103/physreva.38.1482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ignatyuk, V. V. "Reaction-diffusion processes in the “adsorbate-substrate” system." European Physical Journal Special Topics 216, no. 1 (January 2013): 153–63. http://dx.doi.org/10.1140/epjst/e2013-01738-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Wen-Biao, and Ming Yi. "Reaction-anomalous diffusion processes for A+B⇌C." Physica A: Statistical Mechanics and its Applications 527 (August 2019): 121347. http://dx.doi.org/10.1016/j.physa.2019.121347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Taitelbaum, Haim, and Zbigniew Koza. "Reaction–diffusion processes: exotic phenomena in simple systems." Physica A: Statistical Mechanics and its Applications 285, no. 1-2 (September 2000): 166–75. http://dx.doi.org/10.1016/s0378-4371(00)00299-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bachmann, P., and D. Sünder. "Multi-Fluid Plasma Description of Reaction-Diffusion Processes." Contributions to Plasma Physics 38, no. 1-2 (1998): 290–95. http://dx.doi.org/10.1002/ctpp.2150380144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fujii, Yasuhiro, and Miki Wadati. "Reaction-Diffusion Processes with Multi-Species of Particles." Journal of the Physical Society of Japan 66, no. 12 (December 15, 1997): 3770–77. http://dx.doi.org/10.1143/jpsj.66.3770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Epstein, Irving R., and Bing Xu. "Reaction–diffusion processes at the nano- and microscales." Nature Nanotechnology 11, no. 4 (April 2016): 312–19. http://dx.doi.org/10.1038/nnano.2016.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Canet, Léonie. "Reaction–diffusion processes and non-perturbative renormalization group." Journal of Physics A: Mathematical and General 39, no. 25 (June 7, 2006): 7901–12. http://dx.doi.org/10.1088/0305-4470/39/25/s07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rubinstein, Jacob, Peter Sternberg, and Joseph B. Keller. "Reaction-Diffusion Processes and Evolution to Harmonic Maps." SIAM Journal on Applied Mathematics 49, no. 6 (December 1989): 1722–33. http://dx.doi.org/10.1137/0149104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hou, Ru, and Weihua Deng. "Feynman–Kac equations for reaction and diffusion processes." Journal of Physics A: Mathematical and Theoretical 51, no. 15 (March 15, 2018): 155001. http://dx.doi.org/10.1088/1751-8121/aab1af.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Mingheng, and Panagiotis D. Christofides. "OPTIMAL TRANSITION CONTROL OF DIFFUSION-CONVECTION-REACTION PROCESSES." IFAC Proceedings Volumes 40, no. 5 (2007): 135–40. http://dx.doi.org/10.3182/20070606-3-mx-2915.00021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bayati, Basil, Philippe Chatelain, and Petros Koumoutsakos. "Adaptive mesh refinement for stochastic reaction–diffusion processes." Journal of Computational Physics 230, no. 1 (January 2011): 13–26. http://dx.doi.org/10.1016/j.jcp.2010.08.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hellander, Stefan, and Per Lötstedt. "Flexible single molecule simulation of reaction–diffusion processes." Journal of Computational Physics 230, no. 10 (May 2011): 3948–65. http://dx.doi.org/10.1016/j.jcp.2011.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schütz, G. M. "Dynamic matrix ansatz for integrable reaction-diffusion processes." European Physical Journal B 5, no. 3 (October 1998): 589–97. http://dx.doi.org/10.1007/s100510050483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Carlon, E., M. Henkel, and U. Schollwöck. "Density matrix renormalization group and reaction-diffusion processes." European Physical Journal B 12, no. 1 (October 1999): 99–114. http://dx.doi.org/10.1007/s100510050983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography