Academic literature on the topic 'Reaction-diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reaction-diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reaction-diffusion"

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36, no. 5 (1991): 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drábek, Pavel, Milan Kučera, and Marta Míková. "Bifurcation points of reaction-diffusion systems with unilateral conditions." Czechoslovak Mathematical Journal 35, no. 4 (1985): 639–60. http://dx.doi.org/10.21136/cmj.1985.102055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trimper, Steffen, Uwe C. Täuber, and Gunter M. Schütz. "Reaction-controlled diffusion." Physical Review E 62, no. 5 (November 1, 2000): 6071–77. http://dx.doi.org/10.1103/physreve.62.6071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Witkin, Andrew, and Michael Kass. "Reaction-diffusion textures." ACM SIGGRAPH Computer Graphics 25, no. 4 (July 2, 1991): 299–308. http://dx.doi.org/10.1145/127719.122750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henry, B. I., and S. L. Wearne. "Fractional reaction–diffusion." Physica A: Statistical Mechanics and its Applications 276, no. 3-4 (February 2000): 448–55. http://dx.doi.org/10.1016/s0378-4371(99)00469-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nicolis, Gregoire, and Anne Wit. "Reaction-diffusion systems." Scholarpedia 2, no. 9 (2007): 1475. http://dx.doi.org/10.4249/scholarpedia.1475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Mufa. "Reaction-diffusion processes." Chinese Science Bulletin 43, no. 17 (September 1998): 1409–20. http://dx.doi.org/10.1007/bf02884118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eisner, Jan. "Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions." Mathematica Bohemica 125, no. 4 (2000): 385–420. http://dx.doi.org/10.21136/mb.2000.126272.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Reaction-diffusion"

1

He, Taiping. "Reaction-Diffusion Systems with Discontinuous Reaction Functions." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-03192005-101102/.

Full text
Abstract:
This dissertation studies coupled reaction diffusion systems with discontinuous reaction functions. It includes three parts: The first part is concerned with the existence of solutions for a coupled system of two parabolic equations and the second part is devoted to the monotone iterative methods for monotone and mixed quasimonotone functions. Various monotone iterative schemes are presented and each of these schemes leads to an existence-comparison theorem and the monotone convergence of the maximal and minimal sequences. In the third part, the monotone iterative schemes are applied to compute numerical solutions of the system. These numerical solutions are based on the finite element method which gives a finite approximation of the coupled system. Numerical results for some scalar parabolic bounday problems and a coupled system of parabolic equations are also given.
APA, Harvard, Vancouver, ISO, and other styles
2

Yangari, Sosa Miguel Ángel. "Fractional reaction-diffusion problems." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115538.

Full text
Abstract:
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática
This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power x^b, where b < 2\alpha and \alpha\in (0,1) is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction.
APA, Harvard, Vancouver, ISO, and other styles
3

Yangari, Sosa Miguel Angel. "Fractional reaction-diffusion problems." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2270/.

Full text
Abstract:
Cette thèse porte sur deux problèmes différents : dans le premier, nous étudions le comportement en temps long des solutions des équations de réaction diffusion 1d-fractionnaire de type Fisher-KPP lorsque la condition initiale est asymptotiquement de type front et décroît à l'infini plus lentement que, où et est l'indice du laplacien fractionnaire (Chapitre 2). Dans le second problème, nous étudions la propagation asymptotique en temps des solutions de systèmes coopératifs de réaction-diffusion (Chapitre 3). Dans le premier problème, nous démontrons que les ensembles de niveau des solutions se déplacent exponentiellement vite en temps quand t tend vers l'infini. De plus, une estimation quantitative du mouvement de ces ensembles est obtenue en fonction de la décroissance à l'infini de la condition initiale. Dans le second problème, nous montrons que la vitesse de propagation est exponentielle en temps et nous trouvons un exposant précis qui dépend du plus petit ordre des laplaciens fractionnaires considérés et de la non-linéarité. Nous notons aussi que cet indice ne dépend pas de la direction spatiale de propagation
This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power , where and is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction
APA, Harvard, Vancouver, ISO, and other styles
4

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Full text
Abstract:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species, and we want to understand at which speed this invasion takes place. To answer this question, we set up a new method to study the speed of propagation when fractional diffusion is at stake and apply it on three different problems. Part I of the thesis is devoted to an analysis of the asymptotic location of the level sets of the solution to two different problems : Fisher-KPP models in periodic media and cooperative systems, both including fractional diffusion. On the first model, we prove that, under some assumptions on the periodic medium, the solution spreads exponentially fast in time and we find the precise exponent that appears in this exponential speed of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. On the second model, we prove that the speed of propagation is once again exponential in time, with an exponent depending on the smallest index of the fractional Laplacians at stake and on the reaction term. Part II of the thesis deals with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as 'the field' and the line to 'the road', as a reference to the biological situations we have in mind. Indeed, it has long been known that fast diffusion on roads can have a driving effect on the spread of epidemics. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. Contrary to the precise asymptotics obtained in Part I, for this model, we are not able to give a sharp location of the level sets on the road and in the field. The expansion shape of the level sets in the field is investigated through numerical simulations.
Esta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
APA, Harvard, Vancouver, ISO, and other styles
5

Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frömberg, Daniela. "Reaction Kinetics under Anomalous Diffusion." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16374.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit der Verallgemeinerung von Reaktions-Diffusions-Systemen auf Subdiffusion. Die subdiffusive Dynamik auf mesoskopischer Skala wurde mittels Continuous-Time Random Walks mit breiten Wartezeitverteilungen modelliert. Die Reaktion findet auf mikroskopischer Skala, d.h. während der Wartezeiten, statt und unterliegt dem Massenwirkungsgesetz. Die resultierenden Integro-Differentialgleichungen weisen im Integralkern des Transportterms eine Abhängigkeit von der Reaktion auf. Im Falle der Degradation A->0 wurde ein allgemeiner Ausdruck für die Lösungen beliebiger Dirichlet-Randwertprobleme hergeleitet. Die Annahme, dass die Reaktion dem Massenwirkungsgesetz unterliegt, ist eine entscheidende Voraussetzung für die Existenz stationärer Profile unter Subdiffusion. Eine nichtlineare Reaktion stellt die irreversible autokatalytische Reaktion A+B->2A unter Subdiffusion dar. Es wurde ein Analogon zur Fisher-Kolmogorov-Petrovskii-Piscounov-Gleichung (FKPP) aufgestellt und die resultierenden propagierenden Fronten untersucht. Numerische Simulationen legten die Existenz zweier Regimes nahe, die sowohl mittels eines Crossover-Argumentes als auch durch analytische Berechnungen untersucht wurden. Das erste Regime ist charakterisiert durch eine Front, deren Breite und Geschwindigkeit sich mit der Zeit verringert. Das zweite, fluktuationsdominierte Regime liegt nicht im Geltungsbereich der kontinuierlichen Gleichung und weist eine stärkere Abnahme der Frontgeschwindigkeit sowie eine atomar scharf definierte Front auf. Ein anderes Szenario, bei dem eine Spezies A in ein mit immobilen B-Partikeln besetztes Medium hineindiffundiert und gemäß dem Schema A+B->(inert) reagiert, wurde ebenfalls betrachtet. Diese Anordnung wurde näherungsweise als ein Randwertproblem mit einem beweglichen Rand (Stefan-Problem) formuliert. Die analytisch gewonnenen Ergebnisse bzgl. der Position des beweglichen Randes wurden durch numerische Simulationen untermauert.
The present work studies the generalization of reaction-diffusion schemes to subdiffusion. The subdiffusive dynamics was modelled by means of continuous-time random walks on a mesoscopic scale with a heavy-tailed waiting time pdf lacking the first moment. The reaction was assumed to take place on a microscopic scale, i.e. during the waiting times, obeying the mass action law. The resultant equations are of integro-differential form, and the reaction explicitly affects the transport term. The long ranged memory of the subdiffusion kernel is modified by a factor accounting for the reaction of particles during the waiting times. The degradation A->0 was considered and a general expression for the solution to arbitrary Dirichlet Boundary Value Problems was derived. For stationary solutions to exist in reaction-subdiffusion, the assumption of reactions according to classical rate kinetics is essential. As an example for a nonlinear reaction-subdiffusion system, the irreversible autocatalytic reaction A+B->2A under subdiffusion is considered. A subdiffusive analogue of the classical Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation was derived and the resultant propagating fronts were studied. Two different regimes were detected in numerical simulations, and were discussed using both crossover arguments and analytic calculations. The first regime is characterized by a decaying front velocity and width. The fluctuation dominated regime is not within the scope of the continuous description. The velocity of the front decays faster in time than in the continuous regime, and the front is atomically sharp. Another setup where reactants A penetrate a medium initially filled with immobile reactants B and react according to the scheme A+B->(inert) was also considered. This problem was approximately described in terms of a moving boundary problem (Stefan-problem). The theoretical predictions concerning the moving boundary were corroborated by numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.

Full text
Abstract:
Cette thèse est consacrée à l'étude du comportement en temps long, et plus précisément de phénomènes de propagation rapide, des équations de réaction-diffusion de type Kisher-KPP avec diffusion fractionnaire. Ces équations modélisent, par exemple, la propagation d'espèces biologiques. Sous certaines hypothèses, la population envahit le milieu et nous voulons comprendre à quelle vitesse cette invasion a lieu. Pour répondre à cette question, nous avons mis en place une nouvelle méthode et nous l'appliquons à différents modèles. Dans une première partie, nous étudions deux problèmes d'évolution comprenant une diffusion fractionnaire : un modèle de type Fisher-KPP en milieu périodique et un système coopératif. Dans les deux cas, nous montrons, sous certaines conditions, que la vitesse de propagation est exponentielle en temps, et nous donnons une expression précise de l'exposant de propagation. Nous menons des simulations numériques pour étudier la dépendance de cette vitesse de propagation en la donnée initiale. Dans une seconde partie, nous traitons un environnement bidimensionnel, dans lequel le terme de reproduction est de type Fisher-KPP et le terme diffusif est donné par un laplacien standard, excepté sur une ligne du plan où une diffusion fractionnaire intervient. Le plan est nommé "le champ" et la ligne "la route", en référence aux situations biologiques que nous voulons modéliser. Nous prouvons que la vitesse de propagation est exponentielle en temps sur la route, alors qu'elle dépend linéairement du temps dans le champ. La forme des lignes de niveau dans le champ est étudiée au travers de simulations numériques
This thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
APA, Harvard, Vancouver, ISO, and other styles
10

Coville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations de réaction diffusion non-locale du type $u_(t)-(\int_(\R)J(x-y)[u(y)-u(x)]dy)=f(u)$. Ces équations non-linéaires apparaissent naturellement en physique et en biologie. On s'intéresse plus particulièrement aux propriétés (existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-linéarités $f$ (bistable, ignition, monostable) sont étudiées. L'existence dans les cas bistable et ignition est obtenue via une technique d'homotopie. Le cas monostable nécessite une autre approche. L'existence est obtenue via une approximation des équations sur des semi-intervales infinis $(-r,+\infty)$. L'unicité et la monotonie des solutions sont quand elles obtenues par méthode de glissement. Le comportement asymptotique ainsi que des formules pour les vitesses sont aussi établis.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Reaction-diffusion"

1

Ben, De Lacy Costello, and Asai Tetsuya, eds. Reaction-diffusion computers. Boston: Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1955-, Caristi Gabriella, and Mitidieri Enzo, eds. Reaction diffusion systems. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cherniha, Roman, and Vasyl' Davydovych. Nonlinear Reaction-Diffusion Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65467-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Oxford [England]: Clarendon Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Viehland, Larry A. Gaseous Ion Mobility, Diffusion, and Reaction. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04494-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smoller, Joel. Shock Waves and Reaction—Diffusion Equations. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0873-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adamatzky, Andrew. Reaction-Diffusion Automata: Phenomenology, Localisations, Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31078-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liehr, Andreas W. Dissipative Solitons in Reaction Diffusion Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31251-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hemming, Christopher John. Resonantly forced inhomogeneous reaction-diffusion systems. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reaction-diffusion"

1

Gilding, Brian H., and Robert Kersner. "Reaction-diffusion." In Travelling Waves in Nonlinear Diffusion-Convection Reaction, 43–57. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7964-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adamatzky, Andrew, and Benjamin De Lacy Costello. "Reaction–Diffusion Computing." In Handbook of Natural Computing, 1897–920. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scherer, Philipp, and Sighart F. Fischer. "Reaction–Diffusion Systems." In Biological and Medical Physics, Biomedical Engineering, 147–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85610-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deng, Yansha. "Reaction-Diffusion Channels." In Encyclopedia of Wireless Networks, 1179–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomé, Tânia, and Mário J. de Oliveira. "Reaction-Diffusion Processes." In Graduate Texts in Physics, 351–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11770-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adamatzky, Andrew, and Benjamin De Lacy Costello. "Reaction-Diffusion Computing." In Encyclopedia of Complexity and Systems Science, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_446-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deng, Yansha. "Reaction-Diffusion Channels." In Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_216-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Da Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs, 99–130. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salsa, Sandro, Federico M. G. Vegni, Anna Zaretti, and Paolo Zunino. "Reaction-diffusion models." In UNITEXT, 139–88. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reaction-diffusion"

1

Witkin, Andrew, and Michael Kass. "Reaction-diffusion textures." In the 18th annual conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/122718.122750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mesquita, D., and M. Walter. "Reaction-diffusion Woodcuts." In 14th International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007385900890099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chao-Nien, Tzyy-Leng Horng, Daniel Lee, and Chen-Hsing Tsai. "A NOTE ON REACTION-DIFFUSION SYSTEMS WITH SKEW-GRADIENT STRUCTURE." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nomura, Atsushi, Makoto Ichikawa, Koichi Okada, Hidetoshi Miike, Tatsunari Sakurai, and Yoshiki Mizukami. "Anisotropic reaction-diffusion stereo algorithm." In 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2011. http://dx.doi.org/10.1109/isda.2011.6121735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Timofte, Claudia, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Upscaling in Reaction-Diffusion Problems." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramos, Juan I. "REACTION-DIFFUSION PHENOMENA WITH RELAXATION." In Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.cht-12.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamada, Yoshio. "GLOBAL SOLUTIONS FOR THE SHIGESADA-KAWASAKI-TERAMOTO MODEL WITH CROSS-DIFFUSION." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ackermann, Nils. "LONG-TIME DYNAMICS IN SEMILINEAR PARABOLIC PROBLEMS WITH AUTOCATALYSIS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Du, Yihong. "CHANGE OF ENVIRONMENT IN MODEL ECOSYSTEMS: EFFECT OF A PROTECTION ZONE IN DIFFUSIVE POPULATION MODELS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Farina, Alberto, and Enrico Valdinoci. "THE STATE OF THE ART FOR A CONJECTURE OF DE GIORGI AND RELATED PROBLEMS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reaction-diffusion"

1

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/6922826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5833755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rehm, Ronald G., Howard R. Baum, and Daniel W. Lozier. Diffusion-controlled reaction in a vortex field. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barles, G., L. C. Evans, and P. E. Souganidis. Wavefront Propagation for Reaction-Diffusion Systems of PDE. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada210862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10165611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada185804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rehm, Ronald R., Howard R. Baum, Hai C. Tang, and Daniel W. Lozier. Finite-rate diffusion-controlled reaction in a vortex:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10110970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10117797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turk, Greg. Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada236706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography