Journal articles on the topic 'Re-entrant Cavity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Re-entrant Cavity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CALLENAERE, MATHIEU, JEAN-PIERRE FRANC, JEAN-MARIE MICHEL, and MICHEL RIONDET. "The cavitation instability induced by the development of a re-entrant jet." Journal of Fluid Mechanics 444 (September 25, 2001): 223–56. http://dx.doi.org/10.1017/s0022112001005420.
Full textLABERTEAUX, K. R., and S. L. CECCIO. "Partial cavity flows. Part 1. Cavities forming on models without spanwise variation." Journal of Fluid Mechanics 431 (March 25, 2001): 1–41. http://dx.doi.org/10.1017/s0022112000002925.
Full textTiwari, Ashish Kumar, Ramesh Kumar, and P. R. Hannurkar. "Resonant frequency of re-entrant klystron cavity." International Journal of Electronics Letters 4, no. 4 (June 15, 2015): 404–10. http://dx.doi.org/10.1080/21681724.2015.1055593.
Full textPelz, P. F., T. Keil, and T. F. Groß. "The transition from sheet to cloud cavitation." Journal of Fluid Mechanics 817 (March 22, 2017): 439–54. http://dx.doi.org/10.1017/jfm.2017.75.
Full textDeliceoğlu, Ali, Ebutalib Çelik, and Fuat Gürcan. "Singular treatment of viscous flow near the corner by using matched eigenfunctions." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 5 (May 15, 2018): 1660–76. http://dx.doi.org/10.1177/0954406218772603.
Full textDang, J., and G. Kuiper. "Re-Entrant Jet Modeling of Partial Cavity Flow on Three-Dimensional Hydrofoils." Journal of Fluids Engineering 121, no. 4 (December 1, 1999): 781–87. http://dx.doi.org/10.1115/1.2823537.
Full textKalhori, Shirzad, Nils Elander, Jan Svennebrink, and Sharon Stone-Elander. "A Re-Entrant Cavity for Microwave-Enhanced Chemistry." Journal of Microwave Power and Electromagnetic Energy 38, no. 2 (January 2003): 125–35. http://dx.doi.org/10.1080/08327823.2003.11688493.
Full textPandit, Himanshu, Donglu Shi, N. Hari Babu, X. Chaud, D. A. Cardwell, P. He, D. Isfort, Robert Tournier, David Mast, and Altan M. Ferendeci. "High Tc superconductor re-entrant cavity filter structures." Physica C: Superconductivity 425, no. 1-2 (September 2005): 44–51. http://dx.doi.org/10.1016/j.physc.2005.05.010.
Full textSangster, A. J., E. McErlean, G. Beale, M. Kelly, and P. Smith. "Coupled Re-Entrant Cavity System for Electromagnetic Levitation." Journal of Electromagnetic Waves and Applications 15, no. 6 (January 2001): 815–31. http://dx.doi.org/10.1163/156939301x01048.
Full textZang, Jianbo, Hu Zhang, Jiean Shen, and Yaoyao Wang. "Analysis of cavity shedding around the twisted hydrofoil." Thermal Science, no. 00 (2022): 180. http://dx.doi.org/10.2298/tsci220606180z.
Full textLABERTEAUX, K. R., and S. L. CECCIO. "Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation." Journal of Fluid Mechanics 431 (March 25, 2001): 43–63. http://dx.doi.org/10.1017/s0022112000002937.
Full textChen, Jie, Chang-Chang Wang, Guoyu Wang, and Biao Huang. "Numerical investigation of the cavitating flow structure with special emphasis on the vortex identification method." Modern Physics Letters B 34, no. 04 (January 31, 2020): 2050058. http://dx.doi.org/10.1142/s021798492050058x.
Full textMohammed, Ali Musa, Yi Wang, Talal Skaik, Sheng Li, and Moataz Attallah. "Conductivity measurement using 3D printed re-entrant cavity resonator." Measurement Science and Technology 33, no. 5 (February 18, 2022): 055017. http://dx.doi.org/10.1088/1361-6501/ac5134.
Full textKawanami, Y., H. Kato, H. Yamaguchi, M. Tanimura, and Y. Tagaya. "Mechanism and Control of Cloud Cavitation." Journal of Fluids Engineering 119, no. 4 (December 1, 1997): 788–94. http://dx.doi.org/10.1115/1.2819499.
Full textHamzah, Hayder, Ali Abduljabar, Jonathan Lees, and Adrian Porch. "A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity." Sensors 18, no. 3 (March 19, 2018): 910. http://dx.doi.org/10.3390/s18030910.
Full textHemawan, Kadek W., Indrek S. Wichman, Tonghun Lee, Timothy A. Grotjohn, and Jes Asmussen. "Compact microwave re-entrant cavity applicator for plasma-assisted combustion." Review of Scientific Instruments 80, no. 5 (May 2009): 053507. http://dx.doi.org/10.1063/1.3131623.
Full textKelly, M. B., and A. J. Sangster. "Cylindrical re-entrant cavity resonator design using finite-element simulation." Microwave and Optical Technology Letters 18, no. 2 (June 5, 1998): 112–17. http://dx.doi.org/10.1002/(sici)1098-2760(19980605)18:2<112::aid-mop8>3.0.co;2-d.
Full textDang, J., and G. Kuiper. "Re-Entrant Jet Modeling of Partial Cavity Flow on Two-Dimensional Hydrofoils." Journal of Fluids Engineering 121, no. 4 (December 1, 1999): 773–80. http://dx.doi.org/10.1115/1.2823536.
Full textZhang, Desheng, Jian Chen, Lei Shi, Guangjian Zhang, Weidong Shi, and van Esch. "Numerical analysis of the unsteady cavitation shedding flow around twisted hydrofoil based on hybrid filter model." Thermal Science 22, no. 4 (2018): 1629–36. http://dx.doi.org/10.2298/tsci1804629z.
Full textLi, Jiupeng, Yu Zhang, Yanlin Ke, Tianzeng Hong, and Shaozhi Deng. "A Carbon-Nanotube Cold-Cathode Reflex Klystron Oscillator: Fabrication @ X-Band and Returning Electron Beam Realization." Electronics 11, no. 8 (April 13, 2022): 1231. http://dx.doi.org/10.3390/electronics11081231.
Full textGiunchi, G., A. Figini Albisetti, C. Braggio, G. Carugno, G. Messineo, G. Ruoso, G. Galeazzi, and F. Della Valle. "A Re-Entrant ${\hbox{MgB}}_{2}$ Cavity for Dynamic Casimir Experiment." IEEE Transactions on Applied Superconductivity 21, no. 3 (June 2011): 745–47. http://dx.doi.org/10.1109/tasc.2010.2097575.
Full textKartikeyan, M. V., L. M. Joshi, A. K. Sinha, H. N. Bandopadhyay, and D. S. Venkateswarlu. "Computer Aided Study of Some Re-entrant Cavity Structures for Klystrons." IETE Journal of Research 39, no. 6 (November 1993): 339–44. http://dx.doi.org/10.1080/03772063.1993.11437144.
Full textWei, Zhihua, Jie Huang, Jing Li, Junshan Li, Xuyang Liu, and Xingsheng Ni. "A Compact Double-Folded Substrate Integrated Waveguide Re-Entrant Cavity for Highly Sensitive Humidity Sensing." Sensors 19, no. 15 (July 27, 2019): 3308. http://dx.doi.org/10.3390/s19153308.
Full textZhao, Yu, Guoyu Wang, and Biao Huang. "Vortex structure analysis of unsteady cloud cavitating flows around a hydrofoil." Modern Physics Letters B 30, no. 02 (January 20, 2016): 1550275. http://dx.doi.org/10.1142/s0217984915502759.
Full textKumar, Sumit, Sebastian Spence, Simon Perrett, Zaynab Tahir, Angadjit Singh, Chichi Qi, Sara Perez Vizan, and Xavier Rojas. "A novel architecture for room temperature microwave optomechanical experiments." Journal of Applied Physics 133, no. 9 (March 7, 2023): 094501. http://dx.doi.org/10.1063/5.0136214.
Full textXi, W., W. R. Tinga, W. A. G. Voss, and B. Q. Tian. "New results for coaxial re-entrant cavity with partially dielectric filled gap." IEEE Transactions on Microwave Theory and Techniques 40, no. 4 (April 1992): 747–53. http://dx.doi.org/10.1109/22.127525.
Full textMenke, T., P. S. Burns, A. P. Higginbotham, N. S. Kampel, R. W. Peterson, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert. "Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device." Review of Scientific Instruments 88, no. 9 (September 2017): 094701. http://dx.doi.org/10.1063/1.5000973.
Full textPhadke, N. K., S. H. Bhavnani, A. Goyal, R. C. Jaeger, and J. S. Goodling. "Re-entrant cavity surface enhancements for immersion cooling of silicon multichip packages." IEEE Transactions on Components, Hybrids, and Manufacturing Technology 15, no. 5 (1992): 815–22. http://dx.doi.org/10.1109/33.180047.
Full textBarroso, J. J., P. J. Castro, O. D. Aguiar, and L. A. Carneiro. "Experimental tests on re-entrant klystron cavity for a gravitational wave antenna." Classical and Quantum Gravity 21, no. 5 (February 13, 2004): S1221—S1224. http://dx.doi.org/10.1088/0264-9381/21/5/123.
Full textBordoni, F., Li Yinghua, B. Spataro, F. Feliciangeli, F. Vasarelli, G. Cardarilli, B. Antonini, and R. Scrimaglio. "A microwave scanning surface harmonic microscope using a re-entrant resonant cavity." Measurement Science and Technology 6, no. 8 (August 1, 1995): 1208–14. http://dx.doi.org/10.1088/0957-0233/6/8/017.
Full textHopkins, Matthew G., Yvonne Leusmann, Markus Richter, Eric F. May, and Paul L. Stanwix. "Characterization of Fluid-Phase Behavior Using an Advanced Microwave Re-Entrant Cavity." Journal of Chemical & Engineering Data 65, no. 7 (June 10, 2020): 3393–402. http://dx.doi.org/10.1021/acs.jced.0c00213.
Full textLinthorne, N. P., and D. G. Blair. "Superconducting re‐entrant cavity transducer for a resonant bar gravitational radiation antenna." Review of Scientific Instruments 63, no. 9 (September 1992): 4154–60. http://dx.doi.org/10.1063/1.1143227.
Full textBarbaca, Luka, Bryce W. Pearce, Harish Ganesh, Steven L. Ceccio, and Paul A. Brandner. "On the unsteady behaviour of cavity flow over a two-dimensional wall-mounted fence." Journal of Fluid Mechanics 874 (July 10, 2019): 483–525. http://dx.doi.org/10.1017/jfm.2019.455.
Full textPark, Sunho, Woochan Seok, Sung Taek Park, Shin Hyung Rhee, Yohan Choe, Chongam Kim, Ji-Hye Kim, and Byoung-Kwon Ahn. "Compressibility Effects on Cavity Dynamics behind a Two-Dimensional Wedge." Journal of Marine Science and Engineering 8, no. 1 (January 13, 2020): 39. http://dx.doi.org/10.3390/jmse8010039.
Full textMohammed, Ali M., Abarasi Hart, Joe Wood, Yi Wang, and Michael J. Lancaster. "3D printed re-entrant cavity resonator for complex permittivity measurement of crude oils." Sensors and Actuators A: Physical 317 (January 2021): 112477. http://dx.doi.org/10.1016/j.sna.2020.112477.
Full textDular, Matevž, Rudolf Bachert, Christian Schaad, and Bernd Stoffel. "Investigation of a re-entrant jet reflection at an inclined cavity closure line." European Journal of Mechanics - B/Fluids 26, no. 5 (September 2007): 688–705. http://dx.doi.org/10.1016/j.euromechflu.2007.01.001.
Full textIga, Yuka, Motohiko Nohmi, Akira Goto, Byeong Rog Shin, and Toshiaki Ikohagi. "Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil." Journal of Fluids Engineering 125, no. 4 (July 1, 2003): 643–51. http://dx.doi.org/10.1115/1.1596239.
Full textWatanabe, Satoshi, Yoshinobu Tsujimoto, and Akinori Furukawa. "Theoretical Analysis of Transitional and Partial Cavity Instabilities." Journal of Fluids Engineering 123, no. 3 (March 30, 2001): 692–97. http://dx.doi.org/10.1115/1.1378295.
Full textSaitoh, Yoshiaki, Jin-ichi Matsuda, and Kazuo Kato. "Characteristics of re-entrant type cavity applicator for hyperthermia. I. Experiments for heating possibility." Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 7, no. 1 (1991): 42–52. http://dx.doi.org/10.3191/thermalmedicine.7.42.
Full textBalagi, V., and J. P. Singh. "A new design of a re-entrant cavity ionisation chamber for use in brachytherapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 578, no. 3 (August 2007): 523–27. http://dx.doi.org/10.1016/j.nima.2007.06.006.
Full textEgo, Hiroyasu. "HOM-damped re-entrant quasi-half-cell cavity for the SPring-8 storage ring." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 516, no. 2-3 (January 2004): 270–80. http://dx.doi.org/10.1016/j.nima.2003.07.060.
Full textJI, BIN, XIANWU LUO, YULIN WU, XIAOXING PENG, and HONGYUAN XU. "NUMERICAL AND EXPERIMENTAL STUDY ON UNSTEADY SHEDDING OF PARTIAL CAVITATION." Modern Physics Letters B 24, no. 13 (May 30, 2010): 1441–44. http://dx.doi.org/10.1142/s0217984910023827.
Full textHarwood, Casey M., Yin L. Young, and Steven L. Ceccio. "Ventilated cavities on a surface-piercing hydrofoil at moderate Froude numbers: cavity formation, elimination and stability." Journal of Fluid Mechanics 800 (June 29, 2016): 5–56. http://dx.doi.org/10.1017/jfm.2016.373.
Full textZhang, De-Sheng, Guan-Gjian Zhang, Hai-Yu Wang, and Wei-Dong Shi. "Numerical investigation of time-dependent cloud cavitating flow around a hydrofoil." Thermal Science 20, no. 3 (2016): 913–20. http://dx.doi.org/10.2298/tsci1603913z.
Full textMATSUDA, Jin-ichi, Kazuo KATO, and Yoshiaki SAITOH. "The Application of a Re-entrant Type Resonant Cavity Applicator to Deep and Concentrated Hyperthermia." Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 4, no. 2 (1988): 111–18. http://dx.doi.org/10.3191/thermalmedicine.4.111.
Full textNAGASAWA, Junichi, Jiro ARAKAWA, YUYA Iseki, Yasuhiro SHINDO, and Kazuo KATO. "2D44 Heating properties of re-entrant type resonant cavity applicator using simple blood vessel model." Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2014.26 (2014): 427–28. http://dx.doi.org/10.1299/jsmebio.2014.26.427.
Full textBansiwal, Ashok, Sushil Raina, K. J. Vinoy, and Subrata Kumar Datta. "A simple method for estimating the quality factor of cylindrical re-entrant cavity of Klystrons." Journal of Electromagnetic Waves and Applications 33, no. 8 (March 18, 2019): 1082–91. http://dx.doi.org/10.1080/09205071.2019.1592710.
Full textNakayama, Shigeru. "Microwave Sensor of Basis Weight and Moisture Content of Sheet Materials by Re-Entrant Cavity." Japanese Journal of Applied Physics 26, Part 1, No. 11 (November 20, 1987): 1935–36. http://dx.doi.org/10.1143/jjap.26.1935.
Full textTSAI, T. M., and MICHAEL J. MIKSIS. "The effects of surfactant on the dynamics of bubble snap-off." Journal of Fluid Mechanics 337 (April 25, 1997): 381–410. http://dx.doi.org/10.1017/s0022112097004898.
Full textWei, Zhihua, Jie Huang, Jing Li, Guoqing Xu, Zongde Ju, Xuyang Liu, and Xingsheng Ni. "A High-Sensitivity Microfluidic Sensor Based on a Substrate Integrated Waveguide Re-Entrant Cavity for Complex Permittivity Measurement of Liquids." Sensors 18, no. 11 (November 16, 2018): 4005. http://dx.doi.org/10.3390/s18114005.
Full text