Academic literature on the topic 'RDF Data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RDF Data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RDF Data"
Jun, Hee-Gook, and Dong-Hyuk Im. "Semantics-Preserving RDB2RDF Data Transformation Using Hierarchical Direct Mapping." Applied Sciences 10, no. 20 (October 12, 2020): 7070. http://dx.doi.org/10.3390/app10207070.
Full textNatarajan, Senthilselvan, Subramaniyaswamy Vairavasundaram, Yuvaraja Teekaraman, Ramya Kuppusamy, and Arun Radhakrishnan. "Schema-Based Mapping Approach for Data Transformation to Enrich Semantic Web." Wireless Communications and Mobile Computing 2021 (November 10, 2021): 1–15. http://dx.doi.org/10.1155/2021/8567894.
Full textChystiakova, I. S. "Implementation of mappings between the description logic and the binary relational data model on the RDF level." PROBLEMS IN PROGRAMMING, no. 4 (December 2020): 041–54. http://dx.doi.org/10.15407/pp2020.04.041.
Full textRi Kim, Ju, Zhanfang Zhao, and Sung Kook Han. "Sparql query processing in relational databases." International Journal of Engineering & Technology 7, no. 3.3 (June 8, 2018): 84. http://dx.doi.org/10.14419/ijet.v7i2.33.13860.
Full textGayo, Jose Emilio Labra, Eric Prud'hommeaux, Iovka Boneva, and Dimitris Kontokostas. "Validating RDF Data." Synthesis Lectures on the Semantic Web: Theory and Technology 7, no. 1 (September 28, 2017): 1–328. http://dx.doi.org/10.2200/s00786ed1v01y201707wbe016.
Full textRi Kim, Ju, and Sung Kook Han. "R2RS: schema-based relational databases mapping to linked datasets." International Journal of Engineering & Technology 7, no. 3.3 (June 8, 2018): 119. http://dx.doi.org/10.14419/ijet.v7i2.33.13868.
Full textSoliman, Hatem, Izhar Ahmed Khan, and Yasir Hussain. "Global Sensitivity Analysis for Fuzzy RDF Data." International Journal of Software Engineering and Knowledge Engineering 31, no. 08 (August 2021): 1119–44. http://dx.doi.org/10.1142/s0218194021500352.
Full textFernández, Javier D., Miguel A. Martínez-Prieto, Pablo de la Fuente Redondo, and Claudio Gutiérrez. "Characterising RDF data sets." Journal of Information Science 44, no. 2 (January 9, 2017): 203–29. http://dx.doi.org/10.1177/0165551516677945.
Full textMeng, Xiangfu, Lin Zhu, Qing Li, and Xiaoyan Zhang. "Spatiotemporal RDF Data Query Based on Subgraph Matching." ISPRS International Journal of Geo-Information 10, no. 12 (December 12, 2021): 832. http://dx.doi.org/10.3390/ijgi10120832.
Full textPermatasari, Ayu Novira Shinta, and Herlina Jayadianti. "Direct Mapping and Turtle Ontology for Management of Indonesian Movies Knowledge." MATEC Web of Conferences 372 (2022): 04011. http://dx.doi.org/10.1051/matecconf/202237204011.
Full textDissertations / Theses on the topic "RDF Data"
Abedjan, Ziawasch. "Improving RDF data with data mining." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7133/.
Full textLinked Open Data (LOD) umfasst viele und oft sehr große öffentlichen Datensätze und Wissensbanken, die hauptsächlich in der RDF Triplestruktur bestehend aus Subjekt, Prädikat und Objekt vorkommen. Dabei repräsentiert jedes Triple einen Fakt. Unglücklicherweise erfordert die Heterogenität der verfügbaren öffentlichen Daten signifikante Integrationsschritte bevor die Daten in Anwendungen genutzt werden können. Meta-Daten wie ontologische Strukturen und Bereichsdefinitionen von Prädikaten sind zwar wünschenswert und idealerweise durch eine Wissensbank verfügbar. Jedoch sind Wissensbanken im Kontext von LOD oft unvollständig oder einfach nicht verfügbar. Deshalb ist es nützlich automatisch Meta-Informationen, wie ontologische Abhängigkeiten, Bereichs-und Domänendefinitionen und thematische Assoziationen von Ressourcen generieren zu können. Eine neue und vielversprechende Technik um solche Daten zu untersuchen basiert auf das entdecken von Assoziationsregeln, welche ursprünglich für Verkaufsanalysen in transaktionalen Datenbanken angewendet wurde. Wir haben eine Adaptierung dieser Technik auf RDF Daten entworfen und stellen das Konzept der Mining Konfigurationen vor, welches uns befähigt in RDF Daten auf unterschiedlichen Weisen Muster zu erkennen. Verschiedene Konfigurationen erlauben uns Schema- und Wertbeziehungen zu erkennen, die für interessante Anwendungen genutzt werden können. In dem Sinne, stellen wir assoziationsbasierte Verfahren für eine Prädikatvorschlagsverfahren, Datenvervollständigung, Ontologieverbesserung und Anfrageerleichterung vor. Das Vorschlagen von Prädikaten behandelt das Problem der inkonsistenten Verwendung von Ontologien, indem einem Benutzer, der einen neuen Fakt einem Rdf-Datensatz hinzufügen will, eine sortierte Liste von passenden Prädikaten vorgeschlagen wird. Eine Kombinierung von verschiedenen Konfigurationen erweitert dieses Verfahren sodass automatisch komplett neue Fakten für eine Wissensbank generiert werden. Hierbei stellen wir zwei Verfahren vor, einen nutzergesteuertenVerfahren, bei dem ein Nutzer die Entität aussucht die erweitert werden soll und einen datengesteuerten Ansatz, bei dem ein Algorithmus selbst die Entitäten aussucht, die mit fehlenden Fakten erweitert werden. Da Wissensbanken stetig wachsen und sich verändern, ist ein anderer Ansatz um die Verwendung von RDF Daten zu erleichtern die Verbesserung von Ontologien. Hierbei präsentieren wir ein Assoziationsregeln-basiertes Verfahren, der Daten und zugrundeliegende Ontologien zusammenführt. Durch die Verflechtung von unterschiedlichen Konfigurationen leiten wir einen neuen Algorithmus her, der gleichbedeutende Prädikate entdeckt. Diese Prädikate können benutzt werden um Ergebnisse einer Anfrage zu erweitern oder einen Nutzer während einer Anfrage zu unterstützen. Für jeden unserer vorgestellten Anwendungen präsentieren wir eine große Auswahl an Experimenten auf Realweltdatensätzen. Die Experimente und Evaluierungen zeigen den Mehrwert von Assoziationsregeln-Generierung für die Integration und Nutzbarkeit von RDF Daten und bestätigen die Angemessenheit unserer konfigurationsbasierten Methodologie um solche Regeln herzuleiten.
Qiao, Shi. "QUERYING GRAPH STRUCTURED RDF DATA." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1447198654.
Full textFrommhold, Marvin, Piris Rubén Navarro, Natanael Arndt, Sebastian Tramp, Niklas Petersen, and Michael Martin. "Towards versioning of arbitrary RDF data." Universität Leipzig, 2016. https://ul.qucosa.de/id/qucosa%3A15777.
Full textHERRERA, JOSE EDUARDO TALAVERA. "AN ARCHITECTURE FOR RDF DATA SOURCES RECOMMENDATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21367@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Dentro do processo de publicação de dados na Web recomenda-se interligar os dados entre diferentes fontes, através de recursos similares que descrevam um domínio em comum. No entanto, com o crescimento do número dos conjuntos de dados publicados na Web de Dados, as tarefas de descoberta e seleção de dados tornam-se cada vez mais complexas. Além disso, a natureza distribuída e interconectada dos dados, fazem com que a sua análise e entendimento sejam muito demorados. Neste sentido, este trabalho visa oferecer uma arquitetura Web para a identificação de fontes de dados em RDF, com o objetivo de prover melhorias nos processos de publicação, interconex ão, e exploração de dados na Linked Open Data. Para tal, nossa abordagem utiliza o modelo de MapReduce sobre o paradigma de computa ção nas nuvens. Assim, podemos efetuar buscas paralelas por palavraschave sobre um índice de dados semânticos existente na Web. Estas buscas permitem identificar fontes candidatas para ligar os dados. Por meio desta abordagem, foi possível integrar diferentes ferramentas da web semântica em um processo de busca para descobrir fontes de dados relevantes, e relacionar tópicos de interesse denidos pelo usuário. Para atingir nosso objetivo foi necessária a indexação e análise de texto para aperfeiçoar a busca de recursos na Linked Open Data. Para mostrar a ecácia de nossa abordagem foi desenvolvido um estudo de caso, utilizando um subconjunto de dados de uma fonte na Linked Open Data, através do seu serviço SPARQL endpoint. Os resultados do nosso trabalho revelam que a geração de estatísticas sobre os dados da fonte é, de fato, um grande diferencial no processo de busca. Estas estatísticas ajudam ao usuário no processo de escolha de indivíduos. Um processo especializado de extração de palavras-chave é aplicado para cada indivíduo com o objetivo de gerar diferentes buscas sobre o índice semântico. Mostramos a escalabilidade de nosso processo de recomendação de fontes RDF através de diferentes amostras de indivíduos.
In the Web publishing process of data it is recommended to link the data from different sources using similar resources that describe a domain in common. However, the growing number of published data sets on the Web have made the data discovery and data selection tasks become increasingly complex. Moreover, the distributed and interconnected nature of the data causes the understanding and analysis to become too prolonged. In this context, this work aims to provide a Web architecture for identifying RDF data sources with the goal of improving the publishing, interconnection, and data exploration processes within the Linked Open Data. Our approach utilizes the MapReduce computing model on top of the cloud computing paradigm. In this manner, we are able to make parallel keyword searches over existing semantic data indexes available on the web. This will allow to identify candidate sources to link the data. Through this approach, it was possible to integrate different semantic web tools and relevant data sources in a search process, and also to relate topics of interest denied by the user. In order to achieve our objectives it was necessary to index and analyze text to improve the search of resources in the Linked Open Data. To show the effectiveness of our approach we developed a case study using a subset of data from a source in the Linked Open Data through its SPARQL endpoint service. The results of our work reveal that the generation and usage of data source s statistics do make a great difference within the search process. These statistics help the user within the choosing individuals process. Furthermore, a specialized keyword extraction process is run for each individual in order to create different search processes using the semantic index. We show the scalability of our RDF recommendation process by sampling several individuals.
Kaithi, Bhargavacharan Reddy. "Knowledge Graph Reasoning over Unseen RDF Data." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1571955816559707.
Full textEspinola, Roger Humberto Castillo. "Indexing RDF data using materialized SPARQL queries." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16582.
Full textIn this thesis, we propose to use materialized queries as a special index structure for RDF data. We strive to reduce the query processing time by minimizing the number of comparisons between the query and the RDF dataset. We also emphasize the role of cost models in the selection of execution plans as well as index sets for a given workload. We provide an overview of the materialized view selection problem in relational databases and discuss its application for optimization of query processing. We introduce RDFMatView, a framework for answering SPARQL queries using materialized views as indexes. We provide algorithms to discover those indexes that can be used to process a given query and we develop different strategies to integrate these views in query execution plans. The selection of an efficient execution plan states the topic of our second major contribution. We introduce three different cost models designed for SPARQL query processing with materialized views. A detailed comparison of these models reveals that a model based on index and predicate statistics provides the most accurate cost estimation. We show that selecting an execution plan using this cost model yields a reduction of processing time with several orders of magnitude compared to standard SPARQL query processing. Finally, we propose a simple yet effective strategy for the materialized view selection problem applied to RDF data. Based on a given workload of SPARQL queries we provide algorithms for selecting a set of indexes that minimizes the workload processing time. We create a candidate index by retrieving all connected components from query patterns. Our evaluation shows that using the set of suggested indexes usually achieves larger runtime savings than other index sets regarding the given workload.
Sherif, Mohamed Ahmed Mohamed. "Automating Geospatial RDF Dataset Integration and Enrichment." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-215708.
Full textAbedjan, Ziawasch [Verfasser], and Felix [Akademischer Betreuer] Naumann. "Improving RDF data with data mining / Ziawasch Abedjan. Betreuer: Felix Naumann." Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1059014122/34.
Full textMorgan, Juston. "Visual language for exploring massive RDF data sets." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/J_Morgan_041210.pdf.
Full textTitle from PDF title page (viewed on July 12, 2010). "School of Engineering and Computer Science." Includes bibliographical references (p. 33-34).
Fan, Zhengjie. "Concise Pattern Learning for RDF Data Sets Interlinking." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM013/document.
Full textThere are many data sets being published on the web with Semantic Web technology. The data sets usually contain analogous data which represent the similar resources in the world. If these data sets are linked together by correctly identifying the similar instances, users can conveniently query data through a uniform interface, as if they are connecting a single database. However, finding correct links is very challenging because web data sources usually have heterogeneous ontologies maintained by different organizations. Many existing solutions have been proposed for this problem. (1) One straight-forward idea is to compare the attribute values of instances for identifying links, yet it is impossible to compare all possible pairs of attribute values. (2) Another common strategy is to compare instances with correspondences found by instance-based ontology matching, which can generate attribute correspondences based on overlapping ranges between two attributes, while it is easy to cause incomparable attribute correspondences or undiscovered comparable attribute correspondences. (3) Many existing solutions leverage Genetic Programming to construct interlinking patterns for comparing instances, however the running times of the interlinking methods are usually long. In this thesis, an interlinking method is proposed to interlink instances for different data sets, based on both statistical learning and symbolic learning. On the one hand, the method discovers potential comparable attribute correspondences of each class correspondence via a K-medoids clustering algorithm with instance value statistics. We adopt K-medoids because of its high working efficiency and high tolerance on irregular data and even incorrect data. The K-medoids classifies attributes of each class into several groups according to their statistical value features. Groups from different classes are mapped when they have similar statistical value features, to determine potential comparable attribute correspondences. The clustering procedure effectively narrows the range of candidate attribute correspondences. On the other hand, our solution also leverages a symbolic learning method, called Version Space. Version Space is an iterative learning model that searches for the interlinking pattern from two directions. Our design can solve the interlinking task that does not have a single compatible conjunctive interlinking pattern that covers all assessed correct links with a concise format. The interlinking solution is evaluated with large-scale real-world data from IM@OAEI and CKAN. Experiments confirm that the solution with only 1% of sample links already reaches a high accuracy (up to 0.94-0.99 on F-measure). The F-measure quickly converges improving on other state-of-the-art approaches, by nearly 10 percent of their F-measure values
Books on the topic "RDF Data"
Gayo, Jose Emilio Labra, Eric Prud’hommeaux, Iovka Boneva, and Dimitris Kontokostas. Validating RDF Data. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-79478-0.
Full textKaoudi, Zoi, Ioana Manolescu, and Stamatis Zampetakis. Cloud-Based RDF Data Management. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01875-6.
Full textMa, Zongmin, Guanfeng Li, and Ruizhe Ma. Modeling and Management of Fuzzy Semantic RDF Data. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11669-8.
Full textEvans, Colin. Programming the Semantic Web: Build Flexible Applications with Graph Data. Sebastopol, USA: O'Reilly, 2009.
Find full textRDA vocabularies for a twenty-first-century data environment. Chicago, IL: ALATechSource, 2010.
Find full textWang, Shenghui (Computer scientist), author, Mixter Jeffrey author, and OCLC Research, eds. Library linked data in the cloud: OCLC's experiments with new models of resource description. San Rafael, California]: Morgan & Claypool Publishers, 2015.
Find full textW, White Norman, ed. Broadcast data systems: Teletext and RDS. London: Butterworths, 1990.
Find full textMothersole, Peter L. Broadcast data systems: Teletext and RDS. Oxford: Focal Press, 1992.
Find full textMothersole, Peter L. Broadcast data systems: Teletext and RDS. Oxford: Focal Press, 1990.
Find full textBook chapters on the topic "RDF Data"
Martínez-Prieto, Miguel A., Javier D. Fernández, Antonio Hernández-Illera, and Claudio Gutiérrez. "RDF Compression." In Encyclopedia of Big Data Technologies, 1–11. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63962-8_62-1.
Full textMartínez-Prieto, Miguel A., Javier D. Fernández, Antonio Hernández-Illera, and Claudio Gutiérrez. "RDF Compression." In Encyclopedia of Big Data Technologies, 1368–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77525-8_62.
Full textGiannini, Silvia. "RDF Data Clustering." In Business Information Systems Workshops, 220–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41687-3_21.
Full textIoannidis, Theofilos. "Geospatial RDF Stores." In Geospatial Data Science, 221–40. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581906.3581920.
Full textSakr, Sherif, Marcin Wylot, Raghava Mutharaju, Danh Le Phuoc, and Irini Fundulaki. "Centralized RDF Query Processing." In Linked Data, 33–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73515-3_3.
Full textSakr, Sherif, Marcin Wylot, Raghava Mutharaju, Danh Le Phuoc, and Irini Fundulaki. "Distributed RDF Query Processing." In Linked Data, 51–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73515-3_4.
Full textGayo, Jose Emilio Labra, Eric Prud’hommeaux, Iovka Boneva, and Dimitris Kontokostas. "Data Quality." In Validating RDF Data, 27–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-79478-0_3.
Full textFutrelle, Joe. "Harvesting RDF Triples." In Provenance and Annotation of Data, 64–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11890850_8.
Full textDietze, Stefan, Elena Demidova, and Konstantin Todorov. "RDF Dataset Profiling." In Encyclopedia of Big Data Technologies, 1–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63962-8_288-1.
Full textDietze, Stefan, Elena Demidova, and Konstantin Todorov. "RDF Dataset Profiling." In Encyclopedia of Big Data Technologies, 1378–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77525-8_288.
Full textConference papers on the topic "RDF Data"
Huajun Chen, Zhaohui Wu, Heng Wang, and Yuxin Mao. "RDF/RDFS-based Relational Database Integration." In 22nd International Conference on Data Engineering (ICDE'06). IEEE, 2006. http://dx.doi.org/10.1109/icde.2006.127.
Full textAlbahli, Saleh, and Austin Melton. "RDF Data Management." In WIMS '16: International Conference on Web Intelligence, Mining and Semantics. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2912845.2912878.
Full textCerdeira-Pena, Ana, Antonio Farina, Javier D. Fernandez, and Miguel A. Martinez-Prieto. "Self-Indexing RDF Archives." In 2016 Data Compression Conference (DCC). IEEE, 2016. http://dx.doi.org/10.1109/dcc.2016.40.
Full textTang, Nan. "Big RDF data cleaning." In 2015 31st IEEE International Conference on Data Engineering Workshops (ICDEW). IEEE, 2015. http://dx.doi.org/10.1109/icdew.2015.7129549.
Full textDokulil, Jiri, and Jana Katreniakova. "Navigation in RDF Data." In 2008 12th International Conference Information Visualisation (IV). IEEE, 2008. http://dx.doi.org/10.1109/iv.2008.12.
Full textLevandoski, Justin J., and Mohamed F. Mokbel. "RDF Data-Centric Storage." In 2009 IEEE International Conference on Web Services (ICWS). IEEE, 2009. http://dx.doi.org/10.1109/icws.2009.49.
Full textLin, Harris T., Ngot Bui, and Vasant Honavar. "Learning classifiers from remote RDF data stores augmented with RDFS subclass hierarchies." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363953.
Full textPapailiou, Nikolaos, Dimitrios Tsoumakos, Ioannis Konstantinou, Panagiotis Karras, and Nectarios Koziris. "H 2 RDF+." In SIGMOD/PODS'14: International Conference on Management of Data. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2588555.2594535.
Full textLiLi Xu, SangWon Lee, and Seokhyun Kim. "E-R model based RDF data storage in RDB." In 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccsit.2010.5565036.
Full textAzzam, Amr, Sabrina Kirrane, and Axel Polleres. "Towards Making Distributed RDF Processing FLINKer." In 2018 4th International Conference on Big Data Innovations and Applications (Innovate-Data). IEEE, 2018. http://dx.doi.org/10.1109/innovate-data.2018.00009.
Full textReports on the topic "RDF Data"
González-Montaña, Luis Antonio. Semantic-based methods for morphological descriptions: An applied example for Neotropical species of genus Lepidocyrtus Bourlet, 1839 (Collembola: Entomobryidae). Verlag der Österreichischen Akademie der Wissenschaften, November 2021. http://dx.doi.org/10.1553/biosystecol.1.e71620.
Full textAuthor, Not Given. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10138540.
Full textKramer, Stefan, Amber Leahey, Humphrey Southall, Johanna Vampras, and Joachim Wackerow. Using RDF to Describe and Link Social Science Data to Related Resources on the Web. Inter-university Consortium for Political and Social Research (ICPSR), 2012. http://dx.doi.org/10.3886/ddisemanticweb01.
Full textWherry, Robert J., Forster Jr., Morrison Estrella M., and Jeffery. The Rotated Diagonal Factors (RDF) Approach: A Substitute for MANOVA When Analyzing Multi-Task and Multi-Criterion Data. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada328049.
Full textBorchmann, Daniel, Felix Distel, and Francesco Kriegel. Axiomatization of General Concept Inclusions from Finite Interpretations. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.219.
Full textTurgeon, Mathieu. Causal Modeling with Regression Discontinuity Designs (RDD). Instats Inc., 2023. http://dx.doi.org/10.61700/s3nl5lfnmruqw469.
Full textTurgeon, Mathieu. Causal Modeling with Regression Discontinuity Designs (RDD). Instats Inc., 2023. http://dx.doi.org/10.61700/o6e22r1sh4h7m469.
Full textAli, Ibraheem, Thea Atwood, Renata Curty, Jimmy Ghaphery, Tim McGeary, Jennifer Muilenburg, and Judy Ruttenberg. Research Data Services: Partnerships. Association of Research Libraries and Canadian Association of Research Libraries, January 2022. http://dx.doi.org/10.29242/report.rdspartnerships2022.
Full textHanisch, Robert. NIST Research Data Framework (RDaF):. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.sp.1500-18r1.
Full textZanoni, Wladimir, Jimena Romero, Nicolás Chuquimarca, and Emmanuel Abuelafia. Dealing with Hard-to-Reach Populations in Panel Data: Respondent-Driven Survey (RDS) and Attrition. Inter-American Development Bank, October 2023. http://dx.doi.org/10.18235/0005194.
Full text