Journal articles on the topic 'Ray-based'

To see the other types of publications on this topic, follow the link: Ray-based.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ray-based.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Islam, M. N., and H. Akhter. "Study of FPGA Based Multi-Channel Analyzer for Gamma-Ray and X-Ray Spectrometry." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 61–65. http://dx.doi.org/10.31142/ijtsrd19113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maslyanchuk, O. L., M. M. Solovan, V. V. Brus, E. V. Maistruk, and S. V. Solodin. "CdTe Based X/γ-ray Detector with MoOx Contacts." Journal of Nano- and Electronic Physics 9, no. 3 (2017): 03035–1. http://dx.doi.org/10.21272/jnep.9(3).03035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jin, Longhai, Mun-Ho Jeong, and Key-Seo Lee. "Real-Time Quad-Copter Tracking With Multi-Cameras and Ray-based Importance Sampling." Journal of the Korea institute of electronic communication sciences 8, no. 6 (June 30, 2013): 899–905. http://dx.doi.org/10.13067/jkiecs.2013.8.6.899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

TAKEDA, Tohoru, Jin WU, and Akio YONEYAMA. "X-ray Interferometer Based Phase-contrast X-ray Imaging." Journal of The Institute of Electrical Engineers of Japan 128, no. 1 (2008): 16–19. http://dx.doi.org/10.1541/ieejjournal.128.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yuqin Li, Yuqin Li. "Lung Fields Segmentation Based on Shape Compactness in Chest X-Ray Images." 電腦學刊 32, no. 4 (August 2021): 152–65. http://dx.doi.org/10.53106/199115992021083204012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stepanov, S. "Internet-based X-ray server." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c491. http://dx.doi.org/10.1107/s010876730507964x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cole, Matthew T., R. J. Parmee, and William I. Milne. "Nanomaterial-based x-ray sources." Nanotechnology 27, no. 8 (January 25, 2016): 082501. http://dx.doi.org/10.1088/0957-4484/27/8/082501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tate, Mark W. "CCD Based X-ray Detectors." Advances in X-ray Analysis 34 (1990): 357–62. http://dx.doi.org/10.1154/s037603080001466x.

Full text
Abstract:
The advent of intense synchrotron radiation sources for X-ray diffraction has made many otherwise difficult experiments feasible. The increased intensity will not he fully utilized, however, unless there are farther developments in detector technology. Improvement in detector characteristics will, of course, aid those using laboratory sources as well. For instance, construction of low noise, high, quantum efficiency detectors will reduce integration times and enable one to detect weak signals.
APA, Harvard, Vancouver, ISO, and other styles
9

Cogan, Peter, Michael K. Daniel, David J. Fegan, Stephen Gammell, Andrew McCann, and John Quinn. "Ground Based Gamma-Ray Astronomy." Proceedings of the International Astronomical Union 1, S230 (August 2005): 103–4. http://dx.doi.org/10.1017/s1743921306008003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clay, R. W., and B. R. DawSOn. "Ground-based Gamma-ray Astronomy." Publications of the Astronomical Society of Australia 10, no. 3 (1993): 183–88. http://dx.doi.org/10.1017/s1323358000025637.

Full text
Abstract:
AbstractGround-based gamma-ray astronomy has slowly developed over the past quarter of a century to a position now where a number of sources are known to produce gamma-rays in the energy range 1011eV to 1018eV. The observations are difficult, with exceptional signal to noise problems, but improved techniques are now allowing observers to proceed with confidence. In this paper the physical bases of the observations are emphasised to show the important issues in the field and the present state of the observations is indicated.
APA, Harvard, Vancouver, ISO, and other styles
11

Holder, Jamie. "Ground-Based Gamma Ray Astronomy." Brazilian Journal of Physics 44, no. 5 (August 7, 2014): 450–64. http://dx.doi.org/10.1007/s13538-014-0245-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

BILAND, ADRIAN. "GROUND-BASED GAMMA-RAY ASTRONOMY." International Journal of Modern Physics A 20, no. 29 (November 20, 2005): 6981–90. http://dx.doi.org/10.1142/s0217751x05030661.

Full text
Abstract:
Very High Energy Gamma-Ray Astronomy (the measurement of γ above 10 GeV) is a rather young but fast evolving field. In the past 16 years some 20 sources have been discovered, about half of them are firmly established and seen with high significance by more than one experiment. This rather short list already contains very different objects like plerions, supernova remnants and active galactic nuclei. A new generation of instruments (CANGAROO III, HESS, MAGIC, VERITAS) is just starting to take data, and first preliminary results show that the sensitivity is improved by at least a factor of 100. Already during commissioning, some new sources have been discovered. This overview will summarize the techniques used in VHE gamma-ray observations as well discuss briefly some physics topics that can be investigated in this energy range.
APA, Harvard, Vancouver, ISO, and other styles
13

Andreas, Birk, Giovanni Mana, and Carlo Palmisano. "Vectorial ray-based diffraction integral." Journal of the Optical Society of America A 32, no. 8 (July 2, 2015): 1403. http://dx.doi.org/10.1364/josaa.32.001403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

von Ballmoos, P. "Space-based gamma-ray detectors." EAS Publications Series 37 (2009): 155–70. http://dx.doi.org/10.1051/eas/0937019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Weiskopf, Daniel, Tobias Schafhitzel, and Thomas Ertl. "GPU-Based Nonlinear Ray Tracing." Computer Graphics Forum 23, no. 3 (September 2004): 625–33. http://dx.doi.org/10.1111/j.1467-8659.2004.00794.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hillas, A. M. "Ground-based gamma-ray astronomy." Il Nuovo Cimento C 19, no. 5 (September 1996): 701–12. http://dx.doi.org/10.1007/bf02506663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xiao, Q. F., and S. V. Poturaev. "Polycapillary-based X-ray optics." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 347, no. 1-3 (August 1994): 376–83. http://dx.doi.org/10.1016/0168-9002(94)91913-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

HARADA, Jimpei. "X-ray Source and X-ray Optics Based on Multilayer." Nihon Kessho Gakkaishi 45, no. 5 (2003): 306–13. http://dx.doi.org/10.5940/jcrsj.45.306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

NOH, Do Young. "X-ray Diffraction Based on X-ray Free Electron Lasers." Physics and High Technology 24, no. 9 (September 30, 2015): 2. http://dx.doi.org/10.3938/phit.24.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Timofeev, G., and N. Potrakhov. "Pulsed X-ray source based on photo X-ray tube." IOP Conference Series: Materials Science and Engineering 387 (July 2018): 012079. http://dx.doi.org/10.1088/1757-899x/387/1/012079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Schroer, C. G., O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, et al. "Hard x-ray nanoprobe based on refractive x-ray lenses." Applied Physics Letters 87, no. 12 (September 19, 2005): 124103. http://dx.doi.org/10.1063/1.2053350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yoneyama, Akio, Tohoru Takeda, Yoshinori Tsuchiya, Jin Wu, Thet-Thet Lwin, and Kazuyuki Hyodo. "Coherence-contrast x-ray imaging based on x-ray interferometry." Applied Optics 44, no. 16 (June 1, 2005): 3258. http://dx.doi.org/10.1364/ao.44.003258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shixiu, Kang, A. Grilli, and A. Raco. "X-ray mask copying based on negative resist RAY-PN." Microelectronic Engineering 23, no. 1-4 (January 1994): 231–34. http://dx.doi.org/10.1016/0167-9317(94)90144-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Holstad, Theodor Secanell, Trygve Magnus Ræder, Mads Carlsen, Erik Bergbäck Knudsen, Leora Dresselhaus-Marais, Kristoffer Haldrup, Hugh Simons, Martin Meedom Nielsen, and Henning Friis Poulsen. "X-ray free-electron laser based dark-field X-ray microscopy: a simulation-based study." Journal of Applied Crystallography 55, no. 1 (February 1, 2022): 112–21. http://dx.doi.org/10.1107/s1600576721012760.

Full text
Abstract:
Dark-field X-ray microscopy (DFXM) is a nondestructive full-field imaging technique providing three-dimensional mapping of microstructure and local strain fields in deeply embedded crystalline elements. This is achieved by placing an objective lens in the diffracted beam, giving a magnified projection image. So far, the method has been applied with a time resolution of milliseconds to hours. In this work, the feasibility of DFXM at the picosecond time scale using an X-ray free-electron laser source and a pump–probe scheme is considered. Thermomechanical strain-wave simulations are combined with geometrical optics and wavefront propagation optics to simulate DFXM images of phonon dynamics in a diamond single crystal. Using the specifications of the XCS instrument at the Linac Coherent Light Source as an example results in simulated DFXM images clearly showing the propagation of a strain wave.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhao, Xin, Xinzhu Sang, Hui Li, Duo Chen, Yuanhang Li, Cheng Peng, and Binbin Yan. "Holographic visualization of volume data based on adjustable ray to optical-wave conversion." Chinese Optics Letters 20, no. 1 (2022): 010501. http://dx.doi.org/10.3788/col202220.010501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yurov, V. M. "X-RAY COMPUTED TOMOGRAPHY-BASED ANALYSIS OF IMPACT DAMAGE PROPAGATION IN COMPOSITE MATERIALS." Eurasian Physical Technical Journal 16, no. 2 (December 25, 2019): 31–35. http://dx.doi.org/10.31489/2019no2/31-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Yuan-jian, Ye-rong Zhang, and Wei Cao. "A Novel Splitting Technique of Ray Tubes Based on Ray Tracing." Journal of Electronics & Information Technology 30, no. 4 (March 11, 2011): 999–1003. http://dx.doi.org/10.3724/sp.j.1146.2006.01454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Wei, Dianwen Zhu, Michael Lun, and Changqing Li. "Collimated superfine x-ray beam based x-ray luminescence computed tomography." Journal of X-Ray Science and Technology 25, no. 6 (November 28, 2017): 945–57. http://dx.doi.org/10.3233/xst-17265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sun Minyuan, 孙敏远, 袁园 Yuan Yuan, 毕勇 Bi Yong, 朱建英 Zhu Jianying, 张硕 Zhang Shuo, and 张文平 Zhang Wenping. "Ray-Tracing Hologram Generation Algorithm Based on OptiX Ray-Tracing Engine." Laser & Optoelectronics Progress 57, no. 24 (2020): 240901. http://dx.doi.org/10.3788/lop57.240901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rudakov, L. I., K. A. Baigarin, Y. G. Kalinin, V. D. Korolev, and M. A. Kumachov. "Pulsed‐plasma‐based x‐ray source and new x‐ray optics." Physics of Fluids B: Plasma Physics 3, no. 8 (August 1991): 2414–19. http://dx.doi.org/10.1063/1.859612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ayzenshtat, G. I., V. P. Germogenov, S. M. Guschin, L. S. Okaevich, O. G. Shmakov, O. P. Tolbanov, and A. P. Vorobiev. "X-ray and γ-ray detectors based on GaAs epitaxial structures." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 531, no. 1-2 (September 2004): 97–102. http://dx.doi.org/10.1016/j.nima.2004.05.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hu Hui-Jun, Zhao Bao-Sheng, Sheng Li-Zhi, Sai Xiao-Feng, Yan Qiu-Rong, Chen Bao-Mei, and Wang Peng. "X-ray photon counting detector for x-ray pulsar-based navigation." Acta Physica Sinica 61, no. 1 (2012): 019701. http://dx.doi.org/10.7498/aps.61.019701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Momose, Atsushi, Wataru Yashiro, Hiroaki Kuwabara, and Katsuyuki Kawabata. "Grating-Based X-ray Phase Imaging Using Multiline X-ray Source." Japanese Journal of Applied Physics 48, no. 7 (July 21, 2009): 076512. http://dx.doi.org/10.1143/jjap.48.076512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Park, Sukjun, and Nakhoon Baek. "A Shader-Based Ray Tracing Engine." Applied Sciences 11, no. 7 (April 6, 2021): 3264. http://dx.doi.org/10.3390/app11073264.

Full text
Abstract:
Recently, ray tracing techniques have been highly adopted to produce high quality images and animations. In this paper, we present our design and implementation of a real-time ray-traced rendering engine. We achieved real-time capability for triangle primitives, based on the ray tracing techniques on GPGPU (general-purpose graphics processing unit) compute shaders. To accelerate the ray tracing engine, we used a set of acceleration techniques, including bounding volume hierarchy, its roped representation, joint up-sampling, and bilateral filtering. Our current implementation shows remarkable speed-ups, with acceptable error values. Experimental results shows 2.5–13.6 times acceleration, and less than 3% error values for the 95% confidence range. Our next step will be enhancing bilateral filter behaviors.
APA, Harvard, Vancouver, ISO, and other styles
35

Evans-Lutterodt, Kenneth. "Prism-based scanning X-ray microscopy." IUCrJ 8, no. 5 (September 1, 2021): 709–10. http://dx.doi.org/10.1107/s2052252521008927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Polkovnikov, Vladimir N., Nikolai N. Salashchenko, Mikhail V. Svechnikov, and Nikolai I. Chkhalo. "Beryllium-based multilayer X-ray optics." Uspekhi Fizicheskih Nauk 190, no. 01 (May 2019): 92–106. http://dx.doi.org/10.3367/ufnr.2019.05.038623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bharkhada, Deepak, Hengyong Yu, Hong Liu, Robert Plemmons, and Ge Wang. "Line-Source Based X-Ray Tomography." International Journal of Biomedical Imaging 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/534516.

Full text
Abstract:
Current computed tomography (CT) scanners, including micro-CT scanners, utilize a point x-ray source. As we target higher and higher spatial resolutions, the reduced x-ray focal spot size limits the temporal and contrast resolutions achievable. To overcome this limitation, in this paper we propose to use a line-shaped x-ray source so that many more photons can be generated, given a data acquisition interval. In reference to the simultaneous algebraic reconstruction technique (SART) algorithm for image reconstruction from projection data generated by an x-ray point source, here we develop a generalized SART algorithm for image reconstruction from projection data generated by an x-ray line source. Our numerical simulation results demonstrate the feasibility of our novel line-source based x-ray CT approach and the proposed generalized SART algorithm.
APA, Harvard, Vancouver, ISO, and other styles
38

Qu, L. Z., O. Nalcioglu, W. W. Roeck, B. Rabbani, and M. Colman. "Video Based X-Ray Computed Tomography." IEEE Transactions on Nuclear Science 33, no. 1 (February 1986): 527–30. http://dx.doi.org/10.1109/tns.1986.4337158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Woods, Denton. "Ray-based methods in PC SWAT." Journal of the Acoustical Society of America 148, no. 4 (October 2020): 2796. http://dx.doi.org/10.1121/1.5147786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Donaldson, Laurie. "X-ray laser based on atoms." Materials Today 15, no. 3 (March 2012): 83. http://dx.doi.org/10.1016/s1369-7021(12)70038-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Harris, E. J., G. J. Royle, M. J. Mooney, and R. D. Speller. "A CCD-based γ-ray dosimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 458, no. 1-2 (February 2001): 227–32. http://dx.doi.org/10.1016/s0168-9002(00)00866-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yu, Shi-Bao, and Alan D. Watson. "Metal-Based X-ray Contrast Media." Chemical Reviews 99, no. 9 (September 1999): 2353–78. http://dx.doi.org/10.1021/cr980441p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, Sun Jin, Honglu Wu, Dong-Il Moon, Myeong-Lok Seol, Beomseok Kim, Dong Il Lee, Jin-Woo Han, and M. Meyyappan. "Carbon Nanotube Based γ Ray Detector." ACS Sensors 4, no. 4 (March 8, 2019): 1097–102. http://dx.doi.org/10.1021/acssensors.9b00380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yanovskaya, T. B. "Ray tomography based on azimuthal anomalies." Pure and Applied Geophysics PAGEOPH 148, no. 1-2 (1996): 319–36. http://dx.doi.org/10.1007/bf00882065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gentselev, A. N., A. G. Zelinsky, and V. I. Kondratyev. "X-ray masks based on epoxygraphite." Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 7, no. 6 (November 2013): 1261–69. http://dx.doi.org/10.1134/s1027451013130065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Berggren, R. R., S. E. Caldwell, J. R. Faulkner, R. A. Lerche, J. M. Mack, K. J. Moy, J. A. Oertel, and C. S. Young. "Gamma-ray-based fusion burn measurements." Review of Scientific Instruments 72, no. 1 (January 2001): 873–76. http://dx.doi.org/10.1063/1.1321003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Szigeti, Krisztian, Domokos Mathe, and Szabolcs Osvath. "Motion Based X-Ray Imaging Modality." IEEE Transactions on Medical Imaging 33, no. 10 (October 2014): 2031–38. http://dx.doi.org/10.1109/tmi.2014.2329794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Andreas, Birk, Giovanni Mana, and Carlo Palmisano. "Vectorial ray-based diffraction integral: erratum." Journal of the Optical Society of America A 33, no. 4 (March 11, 2016): 559. http://dx.doi.org/10.1364/josaa.33.000559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Polkovnikov, V. N., N. N. Salashchenko, M. V. Svechnikov, and N. I. Chkhalo. "Beryllium-based multilayer X-ray optics." Physics-Uspekhi 63, no. 1 (January 31, 2020): 83–95. http://dx.doi.org/10.3367/ufne.2019.05.038623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Löchel, B. "Diamond membrane based x-ray masks." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 6 (November 1992): 3217. http://dx.doi.org/10.1116/1.585916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography